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A spatial analysis was carried out to identify factors related to geographic differences in infant mortality risk in
Mali by linking data from two spatially structured databases: the Demographic and Health Surveys of 1995–1996
and the Mapping Malaria Risk in Africa database for Mali. Socioeconomic factors measured directly at the
individual level and site-specific malaria prevalence predicted for the Demographic and Health Surveys’ locations
by a spatial model fitted to the Mapping Malaria Risk in Africa database were examined as possible risk factors.
The analysis was carried out by fitting a Bayesian hierarchical geostatistical logistic model to infant mortality risk,
by Markov chain Monte Carlo simulation. It confirmed that mother’s education, birth order and interval, infant’s
sex, residence, and mother’s age at infant’s birth had a strong impact on infant mortality risk in Mali. The residual
spatial pattern of infant mortality showed a clear relation to well-known foci of malaria transmission, especially
the inland delta of the Niger River. No effect of estimated parasite prevalence could be demonstrated. Possible
explanations include confounding by unmeasured covariates and sparsity of the source malaria data. Spatial
statistical models of malaria prevalence are useful for indicating approximate levels of endemicity over wide areas
and, hence, for guiding intervention strategies. However, at points very remote from those sampled, it is important
to consider prediction error.

infant mortality; malaria; models, statistical; spatial analysis; variogram 

Abbreviations: DHS, Demographic and Health Surveys; MARA, Mapping Malaria Risk in Africa; OR, odds ratio.

Malaria is an important cause of mortality among children
in Africa, but the relation between malaria transmission
intensity and child mortality remains controversial (1–5). A
review of published studies of malaria-specific mortality
shows some evidence that the highest mortality may be at
intermediate transmission intensities (6). Rates of hospital-
ization with severe malaria in African children appeared to
be highest at intermediate levels of transmission.

A difficulty with mortality studies is that the verbal autop-
sies used to assign a cause of death are not very reliable (3).
Many deaths in malaria-endemic areas, assigned to other
causes, are related to malaria infection (4). Moreover, low
birth weight is an important risk factor for infant mortality
and is known to arise because of both prematurity and intra-
uterine growth retardation resulting from malaria infection
of the mother during pregnancy (7). It follows that malaria
may be a relevant risk factor for many deaths even when it is

not the immediate cause. Hence, it is as important to look at
the relation of malaria endemicity to all-cause mortality as it
is to look at its relation to malaria-specific deaths.

Smith et al. (5) linked published all-cause mortality rates
and entomologic inoculation rates across Africa and found
an increase in the infant mortality rate with these rates but no
clear trend with the child (12–59 months of age) mortality
rate. The major shortcomings of the study were the small
number of sites compared and the fact that they were a
convenience sample. Geographic variation in the factors
independently affecting both malaria transmission and
mortality (such as water availability) introduces ecologic
confounding. Analyses linking site-specific mortality data
with local malaria indices, which make appropriate adjust-
ment for these ecologic confounders, are clearly needed.

There are a few data sets that allow these types of analysis.
The databases we have used for this study are the Mapping
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Malaria Risk in Africa (MARA) and the Demographic and
Health Surveys (DHS) databases. The MARA database
consists of surveys recording malariologic information, with
over 10,000 collected data points all over Subsaharan Africa,
to date. It is currently the most comprehensive database on
malariologic surveys in Africa (8). The DHS database, coor-
dinated by Macro International, Inc. (Calverton, Maryland),
provides nationally representative household surveys world-
wide with large sample sizes of between 5,000 and 30,000
households, typically. It monitors indicators in the areas of
demography, health, and nutrition.

We linked the two databases using their site-specific data
and developed a geostatistical model that enabled us to
investigate spatial patterns of infant mortality risk, to assess
its determinants, and to carry out an ecologic analysis exam-
ining the relation between infant mortality risk and malaria.
We demonstrated the methodology by applying the tech-
nique to data collected from Mali. The savanna and Sahel
zones of the country represent an appropriate setting for
implementing such a methodology, because of the tendency
for living conditions to become generally more difficult in
the more northerly, drier areas, while malaria transmission is
generally expected to be more intense in the wetter, southern
areas. Therefore, we cannot properly assess the effect of
malaria transmission on infant mortality without adjustment
for potential confounders. We believe our approach of
linking the two databases to carry out an ecologic analysis of
infant mortality risk to be novel. Instead of a district-specific
approach (9, 10), we modeled the data at the individual level,
using a site-dependent correlation structure, to estimate the
various effects without relying on data that are aggregated by
administrative boundaries, which would have led to loss of
information. This approach provides estimates of the effects

of various factors including malaria endemicity, taking into
account confounding and spatial correlation. In addition, it
allows us to produce maps of infant mortality risk adjusted
for socioeconomic factors.

MATERIALS AND METHODS

Data sources

MARA (8) is an international collaboration initiated to
provide a database and an atlas of malaria in Africa, by
collating both published and unpublished results of malario-
logic surveys. Data on malaria endemicity were obtained
from a model fitted to the MARA database by Kleinschmidt
et al. (11). This was a spatial logistic model of malaria prev-
alence in children aged over 1 year and less than or equal to
10 years using the results of prevalence surveys conducted
between 1965 and 1998 at 101 different locations in Mali.
This age group was chosen because it has the highest preva-
lence and shows the clearest distinction between regional
malaria endemicity patterns. In addition, most of the surveys
were conducted for this age range and thus allowed inclusion
of most of the data. The model included temperature, rainfall
(12), the normalized difference vegetation index obtained
from satellite data collected by the National Oceanic and
Atmospheric Administration/National Aeronautics and
Space Administration’s Pathfinder Advanced Very High
Resolution Radiometer Land Project, and distance from the
nearest water body. The MARA survey sites are shown in
figure 1. We used predictions of this model to obtain esti-
mates of malaria prevalence at the DHS sample sites (figure
2). To avoid the linearity assumption between malaria prev-
alence and infant mortality, we converted these estimates to
the following categories corresponding to different degrees

FIGURE 1. Observed malaria prevalence in 34,800 children aged 1–10 years from the Mapping Malaria Risk in Africa surveys conducted in
Mali between 1965 and 1998 at 101 locations. Rivers and lakes are also indicated.
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of endemicity: 0–<0.25, 0.25–<0.50, 0.50–<0.75, and 0.75–
1.00.

The DHS database is the most comprehensive database on
child survival in Africa, compiled by a survey program in 23
countries funded by the US Agency for International Devel-
opment and coordinated by Macro International, Inc. The
aim of these surveys is to provide data for a range of moni-
toring and impact evaluation indicators within the popula-
tion, health, and nutrition sectors. Birth histories since 1960
corresponding to 35,906 infants were extracted from the
DHS carried out from November 1995 to April 1996 in Mali.
Additionally, year of birth, residence, mother’s education,
infant’s sex, birth order, preceding birth interval, and
mother’s age at infant’s birth were extracted. Using location
information provided by Macro International, we were able
to geolocate the 183 distinct survey sites shown in figure 2
by using digital maps and databases, such as the “Africa
Data Sampler” (13) and the “Geoname Digital Gazetteer”
(14).

Statistical analysis

Logistic regression models were fitted to infant mortality,
using SAS version 8.2 software (SAS Institute, Inc., Cary,
North Carolina) to identify significant socioeconomic,
demographic, and birth-related covariates. The variables
chosen were those analyzed by Coulibaly et al. (15) in their
report that summarizes the results of the 1995–1996 DHS
survey in Mali in relation to mortality. The mother’s age at
the child’s birth and the date of birth of the child were
included in all models. In addition, the following variables
showing a significant bivariate association with infant
mortality were selected for subsequent spatial multivariate

analysis: type of region, mother’s education, sex, birth order,
and preceding birth interval.

Bayesian hierarchical models were fitted to estimate the
amount of spatial heterogeneity in infant mortality as well as
associations between risk factors and infant mortality in the
presence of spatial correlation. Ignoring this correlation
would result in underestimation of the variance of the effects
of risk factors (16). We used logistic models with village-
specific random effects to assess geographic heterogeneity
and the effects of different covariates. Some of the covariates
used were at the individual level (socioeconomic, demo-
graphic, birth-related covariates) and some were at the
village level (malaria prevalence category). Malaria preva-
lence was not observed at the locations of the mortality data
but was estimated using the model by Kleinschmidt et al.
(11). These estimates were categorized because explanatory
analysis revealed a nonlinear relation between infant
mortality and malaria prevalence. The cutoffs were chosen
according to the frequency distribution of mortality data and
on epidemiologic considerations. Spatial correlation was
modeled by assuming that the random effects are distributed
according to a multivariate normal distribution with a vari-
ance-covariance matrix related to the variogram of the
spatial process (17). We used Markov chain Monte Carlo
simulation (18, 19) to estimate the model parameters. Simu-
lation-based Bayesian kriging was also applied to produce
smoothed maps of mortality risk and of the variance of the
map estimates (20). The deviance information criterion (21)
was applied to assess the effect of malaria prevalence on
infant mortality. The smaller the deviance information crite-
rion values, the better the fit of the model. Further details of
this modeling approach are given in the Appendix. The anal-
ysis was implemented using software written by the authors
in Fortran 95 (Compaq Visual Fortran version 6.1) using

FIGURE 2. Estimated malaria prevalence at the 183 infant mortality sample locations in Mali obtained from the model of Kleinschmidt et al.
(11). DHS, Demographic and Health Surveys.
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International Mathematical and Statistical Libraries (IMSL)
numerical libraries (Visual Numerics, Inc., Houston, Texas).

RESULTS

The median malaria prevalence estimated for the 183 loca-
tions was 49 percent, ranging from 4 percent to 82 percent;
16.9 percent of the 35,906 infants sampled died before
completing their first year of life. This is untypically high
compared with the recent census-based estimates of 12.3
percent (Population Reference Bureau, unpublished data,
2000). However, in the DHS data, observations are retro-
spective over 40 years, and there is an indication that infant
mortality occurred at a higher rate in earlier years, although
it was not statistically significant. Of those who died, 53.4
percent were male, and 77.6 percent were living in rural parts
of the country. Infant mortality was higher for children of
mothers younger than 20 years (21.4 percent) and for first-
born children (20.8 percent). Infant mortality was higher
(17.5 percent) for children of mothers with no formal educa-
tion than for those whose mothers had secondary or higher
education (8.0 percent).

Three spatial Bayesian models were fitted. A baseline
model (model 0) included no covariates but an overall
constant and site-specific random effects. Model 1 was an
extension of the baseline model with the inclusion of year of
birth and socioeconomic and demographic variables as
potential risk factors. Model 2 included the same parameters
as did model 1 but, in addition, adjusted for levels of malaria
endemicity. In addition, a Bayesian nonspatial analog of
model 2 was fitted for comparative purposes. The parameter
estimates obtained from models 1 and 2 and from the non-
spatial model are shown in table 1. Estimates of the odds
ratios indicate that, in the nonspatial analysis, infant mor-
tality was related to the estimated malaria prevalence after
adjustment for the other risk factors. After taking into
account the spatial correlation that was present in the infant
mortality risk data, we found that the effect of malaria trans-
mission was no longer significant. In fact, the point estimates
of the odds ratios change little, but the confidence intervals
become wider, confirming the importance of taking spatial
correlation into account when analyzing geographic data
(16). Model comparison revealed that the model with the
smallest deviance information criterion value and, therefore,
with the best fit was spatial model 1, which does not include
malaria risk.

The fixed-effects parameters of the best fit model 1
showed well-known patterns and confirmed most of the
results obtained from the crude data summaries (table 1). In
particular, non-firstborn children are at higher risk than their
firstborn siblings (odds ratio (OR) = 1.10, 95 percent confi-
dence interval: 1.01, 1.20 for second- or thirdborn; OR =
1.35, 95 percent confidence interval: 1.17, 1.52 for seventh
or higher in the birth order). The discrepancies between
model-based estimates and observed frequencies in the esti-
mates of the parameters for birth order and preceding birth
interval can be explained by the high correlation of the two
variables, which introduces confounding. The model allows
adjustment for confounders and provides estimates of the
effects of one factor in the presence of the other. Infants born

to mothers with no education are at higher risk than those
born to mothers with secondary education or higher (OR =
0.55, 95 percent confidence interval: 0.43, 0.74). Mortality
was related to the sex of the infant, with boys being at higher
risk of dying during the first year of life than girls (OR =
1.15, 95 percent confidence interval: 1.10, 1.21). On the
other hand, longer birth intervals reduce the risk of infant
death (OR = 0.40, 95 percent confidence interval: 0.35, 0.47
above 4 years vs. less than 2 years). Infants born to older
mothers and in urban areas have higher chances of surviving
to their first birthday, and there is an indication that infants
born in recent years have better survival chances.

The parameters σ2 and φ (table 1) measure the variance of
the spatial process and the rate of correlation decay
(smoothing parameter), respectively. Our data set indicates a
small value of φ with a posterior median of 0.04 (95 percent
credible interval: 0.007, 0.24), suggesting a strong spatial
correlation, because this parameter measures the range of the
geographic dependency, which is defined as the minimum
distance at which spatial correlation between locations is
below 5 percent. In our exponential setting, it can be calcu-
lated as 3/φ = 75 degrees of longitude and latitude. This
implies a nonvanishing correlation between all sampled
points and results in very smooth maps for the predicted
random effects.

Figure 1 displays the distribution of malaria surveys. The
figure shows that most of the surveys were carried out in the
south and southwest of the country. There are very few
surveys in the center around the Niger River and no surveys
in the north of Mali. Model predictions of malaria risk at the
DHS locations (figure 2) indicate a low-malaria-risk zone
north of the Niger River that contradicts empirical evidence
of high transmission, suggesting that the lack of data leads to
imprecise estimates in this part of the country, which may
distort the relation between malaria endemicity and infant
mortality. The unadjusted map of infant mortality risk
(figure 3), obtained by the predictions of the Bayesian
model, reveals that the highest infant mortality rates are
found in the central and central-east part of the country
around the Niger River. Distinct foci of high mortality can be
identified in the regions of Nara, Banamba, Dioila, Kadiolo,
Kolondieba, and Kenieba. Figure 4 represents the variation
in infant mortality that is not explained by socioeconomic
differences (on a logit scale). This map is a measure of our
estimate of the geographic variation of risk of infant
mortality, independent of the particular socioeconomic
circumstances of the mother. It therefore reflects the
marginal burden of infant mortality that is due to ecologic
factors, such as malaria transmission intensity and other
diseases, at the map locations. A component of this may be
residual socioeconomic factors that our covariate data did
not fully take into account. In this map, we can distinguish
three zones of high risk: the one in the central and central-
east border with Burkina Faso, a zone of south Mali that
covers the regions from Nara and Diema to Kolondieba and
Bougouni, and a zone in the southwest in the region of
Kenieba. Estimates of the variance of the residual spatial
variation (figure 5) show lower variance in the estimates
near locations with observed mortality.
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DISCUSSION

This analysis demonstrates the use of Bayesian geostatis-
tical models in assessing risk factors and producing smooth
maps of infant mortality risk from spatially correlated
disease data on individuals, such as those available from the

DHS. Results confirmed strong geographic differences in
mortality risk and the importance of a number of risk factors
such as maternal education and age, birth order and interval,
sex, and residence. Year of birth appeared not to be signifi-
cantly associated with mortality during the first year of life,
except for the period 1966–1971, in which a statistically

TABLE 1.   Infant mortality estimates for Mali from Demographic and Health Surveys’ data in 1995–1996 in combination with malaria 
risk extracted from the MARA*/ARMA* database

* MARA, Mapping Malaria Risk in Africa; ARMA, Atlas du Risque de la Malaria en Afrique; IMR, infant mortality rate; OR, odds ratio; CI, confidence interval; DIC,
deviance information criterion (a measure of model fit for the comparison of models, with smaller values of DIC indicating superior fit).

† σ2 is an estimate of the geographic variability. 
‡ φ is the smoothing parameter (see Appendix). 

Crude data Nonspatial Model 1 Model 2

No. of 
births IMR* per 1,000 OR* 95% CI* OR 95% CI OR 95% CI

Year of birth

1960–1965 299 230.8 1.16 0.89, 1.56 1.16 0.88, 1.56 1.16 0.89, 1.56

1966–1971 1,766 239.0 1.41 1.15, 1.79 1.42 1.09, 1.85 1.42 1.12, 1.79

1972–1977 4,200 186.4 1.14 0.93, 1.41 1.15 0.90, 1.49 1.15 0.91, 1.42

1978–1983 7,709 172.8 1.09 0.92, 1.35 1.08 0.84, 1.40 1.09 0.86, 1.34

1984–1989 11,087 163.2 1.05 0.88, 1.30 1.05 0.81, 1.35 1.06 0.85, 1.30

1990–1996 10,845 152.6 1 1 1

Residence

Rural 25,615 183.9 1 1 1 

Urban 10,291 132.1 0.68 0.64, 0.72 0.74 0.69, 0.80 0.73 0.68, 0.80

Mother’s education

Secondary or higher 1,416 79.8 0.54 0.42, 0.73 0.55 0.43, 0.74 0.55 0.42, 0.73

Primary 3,563 149.3 0.95 0.80, 1.11 0.95 0.79, 1.15 0.96 0.80, 1.13

None 30,927 175.4 1 1 1

Sex

Female 17,718 159.6 1 1 1

Male 18,188 178.3 1.15 1.10, 1.20 1.15 1.10, 1.21 1.16 1.10, 1.21

Birth order

1 (firstborn) 7,680 208.3 1 1 1

2–3 11,746 158.6 1.10 1.02, 1.17 1.10 1.01, 1.20 1.10 1.01, 1.21

4–6 10,851 154.3 1.17 1.06, 1.29 1.15 1.05, 1.31 1.17 1.06, 1.30

≥7 5,629 165.7 1.34 1.20, 1.52 1.35 1.17, 1.52 1.34 1.17, 1.55

Preceding birth interval 

<2 years 18,149 213.8 1 1 1

2–4 years 15,231 131.8 0.59 0.56, 0.62 0.58 0.53, 0.63 0.59 0.54, 0.63

>4 years 2,526 88.7 0.40 0.36, 0.44 0.40 0.35, 0.47 0.39 0.32, 0.46

Mother’s age at infant’s 
birth

<20 years 9,070 213.9 1 1 1

20–29 years 19,087 156.6 0.79 0.75, 0.83 0.78 0.72, 0.83 0.78 0.73, 0.83

30–39 years 7,163 146.2 0.73 0.67, 0.78 0.72 0.65, 0.80 0.72 0.65, 0.80

40–49 years 586 160.4 0.82 0.69, 1.02 0.81 0.66, 1.01 0.83 0.66, 1.02

Malaria endemicity

0.0–0.15 9,951 157.8 1 1

0.16–0.35 5,159 185.3 0.96 0.88, 1.04 0.97 0.87, 1.09

0.36–0.64 16,824 170.9 0.88 0.83, 0.94 0.89 0.78, 1.10

0.65–1.0 3,972 168.4 0.85 0.77, 0.92 0.92 0.80, 1.08

σ2† 0.88 0.21, 3.82 0.88 0.20, 3.56

φ‡ 0.04 0.007, 0.24 0.05 0.008, 0.30

DIC* 31,794.21 31,682.64 31,755.73
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significant increase in infant mortality was observed. There
were no differences in infant mortality among the four cate-
gories of malaria endemicity defined using the model of
Kleinschmidt et al. (11), suggesting that the geographic
distribution of malaria is not a major determinant of the
pattern of infant mortality in Mali. This finding was not
supported by the nonspatial analysis, since accounting for

spatial correlation results in more precise estimates of the
standard error and widens the confidence limits of the esti-
mated odds ratios.

The risk factors that were found to be related to mortality
are already well known. The negative association between
maternal education and mortality has been previously
described by Farah and Preston (22). Higher education may

FIGURE 3. Smoothed map of the infant mortality rate (per 1,000) in Mali based on the baseline model without covariates. 

FIGURE 4. Map of Mali showing the spatial random effects at the log-odds scale for the socioeconomic-adjusted model.
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result in greater health awareness, better utilization of health
facilities (23), higher income and the ability to purchase
goods and services that improve infants’ health (24), longer
birth intervals, and possibly higher maternal ages (25).

Although several studies have investigated the relation
between malaria transmission and child mortality, this is the
first study to our knowledge that attempts to assess this rela-
tion by taking into account the geographic variation that is
present for both parameters after adjustment for socioeco-
nomic confounders. In this analysis, we consider malaria
prevalence as a measure of malaria transmission. There are
alternative indicators of transmission intensity that have
been used to study the effects of malaria on mortality.
However, the relation between these indicators has not been
fully investigated. The most usual measure is the entomo-
logic inoculation rate, which is the product of the vector-
biting rate multiplied by the proportion of mosquitoes
infected with sporozoite-stage malaria parasites. Beier et al.
(26) report that the entomologic inoculation rate is only
weakly related to malaria prevalence. To our knowledge, no
studies have been carried out on the best measure of trans-
mission to study mortality.

We have estimated for the first time the geographic distri-
bution of the burden of infant mortality in Mali in addition to
that which can be attributed to socioeconomic differences. It
is plausible that a large measure of this burden is due to the
effect of malaria on infant mortality, even though we were
not able to demonstrate this directly. The lack of a relation
between malaria risk and infant mortality could reflect
unmeasured local factors, for instance, variations in health
provisions or the availability of a water supply in the dry
Sahel region, which could have a stronger influence than
malaria risk on infant mortality. Such unmeasured covariates

with spatial structure could also explain the residual spatial
correlation in the data. Information missing from the data-
base regarding malaria control measures taken at different
locations could also confound the analysis. Methodological
problems related to the compilation of survey data sets, such
as the MARA database, constitute a further limitation to our
analysis. The surveys, for example, were carried out at
different seasons and include different age groups at the
various locations. It may well be that, in areas with seasonal
malaria, the effect on mortality would be stronger than in
areas with perennial malaria. The model of Kleinschmidt et
al. (11) for malaria prevalence did not take seasonal variation
into account, although malaria transmission in Mali is
known to be highly seasonal (F. C. Tanser, South African
Medical Research Council, Hlabisa, South Africa, unpub-
lished manuscript).

An additional problem with the database is the sparsity of
the surveys in the central-east part of the country. In this
analysis, we used a subset of the data in order to deal with the
different age groupings of the surveys at the various loca-
tions. Currently we are working on alternative approaches
that overcome the limitations of heterogeneous age
grouping, without omitting data.

An additional methodological problem is the misalign-
ment of the DHS and MARA surveys in time and space. Our
analysis is based on the assumption that spatial patterns of
infant mortality and malaria risk are relatively stable in time.
Although this assumption can be questioned, statistical anal-
ysis of the temporal changes of malaria prevalence over the
last 40 years at the country level (27) showed no significant
patterns. In addition, our analysis of infant mortality rates
indicates a statistically significant time trend only for the
early years of 1966–1971, but it is quite stable for the last 20

FIGURE 5. Map of Mali showing the variance of the residual spatial variation of the infant mortality risk (at logit scale) adjusted for socioeco-
nomic variables.
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years, when over 80 percent of all cases are recorded. To
overcome geographic misalignment, we estimated malaria
prevalence at the DHS locations using the spatial malaria
model of Kleinschmidt et al. (11). Although we believe that
this modeling approach gives a good estimate of the general
pattern of malaria prevalence in Mali and of the overall
populations at risk, we cannot be confident in local malaria
predictions, especially in areas remote from sampled loca-
tions. In particular, the paucity of sampling points in areas of
very high infant mortality, especially in the Niger River
delta, may have resulted in poor predictions in these areas.
We propose to address this problem by compiling the data-
bases from a larger area of West Africa and analyzing only
the data points where misalignment is minimal. Despite
these limitations, our study has demonstrated the consider-
able potential of spatial statistical methods for analyzing the
DHS data. To our knowledge, this is the first analysis of
infant mortality to use geostatistical models. The methods
presented are valuable for both producing smoothed (cova-
riate-adjusted) maps of mortality risk and assessing cova-
riate effects. Such maps are particularly helpful to identify
high mortality areas for most efficiently allocating limited
resources in child survival programs.
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APPENDIX

Let Yij be a binary response corresponding to the survival status of child i at site sj, j = 1, ..., n taking value 1 if the child is
alive after the first year and 0 otherwise, and let Xij be the vector of associated covariates. Following the modeling framework
of Diggle et al. (17), we introduce the unobserved spatial variation by assuming a latent stationary Gaussian process U(s) over
our study region, , such that U = (U(s1), U(s2), ..., U(sn)) ~ N(0, Σ), where Σij is a parametric function of the separation vector
si – sj. Conditional on U and the regression coefficients β, the Yij are independent Bernoulli variates with survival probabilities
pij given by logit(pij) = Xijβ + U(sj). We assume an isotropic spatial process with Σij = σ2ρ(si – sj; φ) and an exponential correla-
tion function ρ(si – sj; φ) = exp(–φdij), where dij measures the Euclidean distance between the sites si and sj.

To complete the Bayesian model specification, we need to adopt prior distributions for the model parameters. We chose
noninformative uniform priors for the regression coefficients, that is, β ∝ 1, and the following vague priors for the σ2 and φ
parameters: σ2 ~ inverse gamma(a1, b1) and φ ~ inverse gamma(a2, b2), with a1 = a2 = 2.01, b1 = b2 = 1.01. The model was fitted
using Markov chain Monte Carlo simulation and, in particular, Gibbs sampling (18). The posterior distribution of σ2 then is
conjugate inverse gamma. From the nonstandard one-dimensional conditional distributions of all components of β, U such as
φ, we sampled by using a random walk metropolis algorithm having a Gaussian proposal density with the mean equal to the
estimate from the previous iteration and the variance derived from the inverse second derivative of the log-posterior. We ran a
single chain sampler with a burn-in of 5,000 iterations, with convergence assessed by inspection of ergodic averages of selected
model parameters. The chain thereafter sampled every 60th iteration until a sample size of 2,000 had been attained.

For model comparison, we utilize the deviance information criterion (DIC), as recently proposed by Spiegelhalter et al.
(21). For a vector of parameters θ, it is defined by , with D(⋅) being the deviance statistic

  is the posterior expectation of D, and  is the posterior expectation of , with both
of them easily estimated from outputs of the Markov chain Monte Carlo simulation. Smaller values of the deviance informa-
tion criterion indicate better fitting models.

To produce a smooth map of mortality risk, we use Bayesian kriging (16, 20). In particular, we obtain estimates of the
mortality risk, Y0 = (Y(s01), Y(s02), ..., Y(s0l)) at any unsampled location s0 = (s01, s02, ..., s0l) by the predictive distribution

(1)

where the distribution of U0 at new sites given U at observed sites is normal

(2)

with  and p(Y(s0i)|β, U(s0i)) ~ ber(p(s0i)), with logit(p(s0i)) = x(s0i)β +
U(s0i). Equation 1 is the expectation E[P(Y0|β, U0)P(U0|U, σ2, φ)]  over the posterior distribution P(β, U, σ2, φ|Y), which is iden-
tified by the Gibbs sampler. Numerically, this expectation is approximated by the average

(3)

where (β(k), U(k), σ2(k), φ(k)) are samples drawn from the posterior P(β, U, σ2, φ | Y). For mapping purposes, predictions were made
for 600,000 pixels covering a regular grid of the whole area of Mali south of 18 degrees latitude north.

D
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