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Summary The methods kriging with external drift (KED) and indicator kriging with external
drift (IKED) are used for the spatial interpolation of hourly rainfall from rain gauges using addi-
tional information from radar, daily precipitation of a denser network, and elevation. The tech-
niques are illustrated using data from the storm period of the 10th to the 13th of August 2002
that led to the extreme flood event in the Elbe river basin in Germany. Cross-validation is
applied to compare the interpolation performance of the KED and IKED methods using different
additional information with the univariate reference methods nearest neighbour (NN) or Thies-
sen polygons, inverse square distance weighting (IDW), ordinary kriging (OK) and ordinary indi-
cator kriging (IK). Special attention is given to the analysis of the impact of the semivariogram
estimation on the interpolation performance. Hourly and average semivariograms are inferred
from daily, hourly and radar data considering either isotropic or anisotropic behaviour using
automatic and manual fitting procedures.
The multivariate methods KED and IKED clearly outperform the univariate ones with the most

important additional information being radar, followed by precipitation from the daily network
and elevation, which plays only a secondary role here. The best performance is achieved when
all additional information are used simultaneously with KED. The indicator-based kriging meth-
ods provide, in some cases, smaller root mean square errors than the methods, which use the
original data, but at the expense of a significant loss of variance. The impact of the semivari-
ogram on interpolation performance is not very high. The best results are obtained using an
automatic fitting procedure with isotropic variograms either from hourly or radar data.
ª 2006 Elsevier B.V. All rights reserved.
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Introduction

Precipitation data with high-resolution in space and time
are needed for distributed hydrological modelling of floods,
erosion and other highly non-linear processes. While the
spatial resolution of non-recording precipitation networks
with daily data are often suitable, this is seldom the case
for hourly data or data from shorter time intervals. A reli-
able spatial estimation of data from shorter time intervals
based solely on the sparse gauge networks is, therefore,
hardly feasible. Radar data have recently been used more
frequently as inputs for hydrological modelling (e.g., Fassn-
acht et al., 2003; Neary et al., 2004; Tetzlaff and Uhlen-
brook, 2005). However, despite the high spatial resolution
of radar data there is often a large space–time variable bias
in radar rainfall estimates. To provide optimal input for dis-
tributed hydrological modelling, the best strategy is proba-
bly a combination of all available information on rainfall,
including data from hourly point observations, radar data,
denser daily measurements, physiographic factors like ele-
vation, and applying sophisticated interpolation or merging
methods.

Quite a number of modern interpolation methods have
been proposed for rainfall (Dubois et al., 1998). Besides
geostatistical approaches, such as ordinary kriging, kriging
with external drift and co-kriging (Bárdossy, 1993; Goova-
erts, 2000; Lloyd, 2005), other techniques based on splines
(Hutchinson, 1998a,b) or genetic algorithms (Demyanov
et al., 1998; Huang et al., 1998) have been applied. This pa-
per focuses on multivariate geostatistical approaches with
the ability to incorporate additional information into the
interpolation procedure. Time invariant elevation data are
most frequently used as supplementary information (Goova-
erts, 2000; Hevesi et al., 1992a,b). However, the extra va-
lue of the elevation information depends on the time step
and the type of precipitation considered for interpolation.
Generally, the correlation between elevation and precipita-
tion depends on the precipitation mechanism of the event
and decreases with increasing time resolution. Using time
variant additional information allows the combination of
point measurements from rain gauges with other data
sources like radar (Ehret, 2002; Seo et al., 1990a,b), satel-
lite data (Grimes et al., 1999) or results from numerical
weather prediction models (Haberlandt and Kite, 1998).
Special problems occur with the semi-automatic interpola-
tion of whole precipitation time series of daily, hourly or
shorter time steps considering varying precipitation proper-
ties, such as intensity, spatial dependence structure, corre-
lation with additional information and the fractional spatial
coverage of rainfall occurrence (Seo, 1998).

The main objective of the paper is to contribute to a bet-
ter integration of data from sparsely distributed point rain-
fall measurements, with data from high-resolution radar
patterns, by means of multivariate geostatistical interpola-
tion. It is important to emphasize, that this combination
problem is tackled here from the gauge rainfall interpola-
tion point of view and not from the radar rainfall calibration
point of view as discussed in, for example, Krajewski and
Smith (2002). For the proposed interpolation, the basic
assumption required here is that the gauge precipitation is
correct and that the radar data provide only extra informa-
tion. In addition to incorporating radar observations, data
from a denser daily precipitation network and elevation
data are evaluated as supplementary information.

The paper is organised as follows. After Section ‘Intro-
duction’, a short description of the multivariate geostatisti-
cal methods kriging with external drift and indicator kriging
with external drift is given in Section ‘Methodology’. Sec-
tion ‘Study region and data’ describes the study area and
the data with special reference to the pre-processing of ra-
dar observations. Section ‘Analysis and results’ is divided
into three subsections dealing with the inference and im-
pact of semivariograms, the assessment of indicator semi-
variograms and the comparisons of interpolation methods
using different additional information. Finally, conclusions
are drawn and an outlook is given in Section ‘Conclusions’.

Methodology

In this section, a brief introduction is given to the multivar-
iate geostatistical methods used in this study: kriging with
external drift and indicator kriging with external drift.
The well-known univariate methods, nearest neighbour
(NN) or Thiessen polygons, inverse square distance weighing
(IDW), ordinary kriging (OK) and ordinary indicator Kriging
(IK), which are used as reference, will not be described
here. For a detailed description of univariate and multivar-
iate geostatistical interpolation methods the reader is re-
ferred to geostatistical textbooks (e.g., Goovaerts, 1997;
Isaaks and Srivastava, 1989). The Geostatistical Software Li-
brary (Gslib) (Deutsch and Journel, 1992) has been em-
ployed here for the computational implementation of the
algorithms. Some modifications of the original programs
have been made to allow the incorporation of multiple
external drifts.

Kriging with external drift

Kriging with external drift (KED) (Ahmed and De Marsily,
1987) allows the processing of non-stationary random func-
tions Z(u) taking into account, simultaneously, the spatial
dependence of the variable and its linear relation to one
or more additional variables. The intrinsic hypothesis, that
the expected value of Z(u) is constant within the domain,
is not required anymore. Instead, the expected value of
the primary variable is linearly related to m additional vari-
ables Yk(u), k = 1, . . .,m:

E½ZðuÞjY1ðuÞ;Y2ðuÞ; . . . ;YmðuÞ� ¼ b0 þ
Xm
k¼1

bkYkðuÞ ð1Þ

where b0, b1, . . .,bm are unknown constants. Local search
windows for the estimation of the unknown point u imply
that the parameters b vary in space. The second assump-
tion, that the variance of the increment [Z(u+h) � Z(u)] be-
tween two points depends only on the distance vector h and
not on the locations u and u + h, still holds:

Var½Zðuþ hÞ � ZðuÞ� ¼ E ½Zðuþ hÞ � ZðuÞ�2
n o

¼ 2cðhÞ u 2 D ð2Þ
Here, c(h) is the semivariogram, which will also be referred
to as ‘‘variogram’’ in the following text. The linear estimator
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for the unknown point u0 is a weighted sum of the observa-
tions from the n surrounding points ui:

Z�ðu0Þ ¼
Xn
i¼1

kiZðuiÞ ð3Þ

where ki for i = 1, . . .,n are the weights to be estimated by
solving the kriging system:

Xn

j¼1
kjcðui � ujÞ þ l0 þ

Xm
k¼1

lkYkðuiÞ ¼ cðui � u0Þ

i ¼ 1; . . . ; nXn

j¼1
kj ¼ 1Xn

j¼1
kjYkðujÞ ¼ Yðu0Þ k ¼ 1; . . . ;m

ð4Þ

The kriging system (4) consists of n + m + 1 equations, where
n is the number of neighbours considered, m is the number
of additional variables Yk included and lk are the m + 1 La-
grange parameters. From (4) it can be seen that the coeffi-
cients bk need not to be known explicitly but the additional
variables Yk must be known at all points u.

When kriging with external drift is applied for the spatial
interpolation of a whole time series of precipitation, Eqs.
(1)–(4) are applied independently for each time step of
the series. The coefficients b of (1) will change not only in
space, as mentioned above, but also for each time step.
Thus, with KED, it is possible to consider a space–time var-
iable connection between precipitation as the primary vari-
able and any additional information. This feature is quite
important when radar data are used as an additional variable
since it enables the imitation of a space–time variable Z–R
relationship between rainfall and reflectivity (cp. Eq. (15)).

Theoretically, the variogram for KED needs to be inferred
from the residuals Z(u) �m(u). This is not straightforward,
since neither the residuals nor the trendm(u) is known a pri-
ori. One way would be to estimate the trend, m(u), as
shown in (1), using a slightly modified KED system of (4)
(see Goovaerts, 1997, p. 196), and then calculating the
residuals r(u) = Z(u) �m(u) and the residual variogram. This
would require an iterative process starting, for example,
with an approximate variogram, e.g., from Z(u), and
improving it subsequently. Another simpler approach would
be to select only data pairs that are unaffected by the trend
m(u) = 0, which would then allow Z(u) = r(u) to be used di-
rectly for the inference of the residual variogram. If, for in-
stance, the trend were anisotropic, the semivariogram
would be estimated only from pairs of z-values perpendicu-
lar to the trend direction, assuming isotropic spatial varia-
tions of the residuals. The first iterative approach is very
demanding and will not be employed here, since interpola-
tions are required for each time step. The experimental
variograms will be estimated based on the observed Z(u)
data only:

c�ðhÞ ¼ 1

2nðhÞ
XnðhÞ
i¼1
½ZðuiÞ � Zðui þ hÞ�2 ð5Þ

where n(h) is the number of data points, which are located a
distance vector h apart. Uncertainties, resulting from this
simplifying assumption will be assessed based on the second
approach described above; by comparisons of interpolation
results obtained using an isotropic variogram and a vario-
gram estimated solely perpendicular to the trend direction
(see Section ‘Variogram inference and impact on
interpolation’).

The combination of a nugget effect with the spherical
model is used uniformly for all methods and time steps as
a theoretical variogram model:

cðhÞ ¼ c0 þ
c 3

2
h
a � 1

2
h3

a3

� �
if h 6 a

c otherwise

(
ð6Þ

Considering that time series of the primary variable are
available, the fitting of the theoretical model c(h) to the
experimental one c*(h) has to be done for each time step,
respectively. This can be a very time consuming procedure
if long time series with small time increments are used. In
this study, two different approaches are taken and com-
pared. First, an average experimental variogram is com-
puted as follows:

�c�ðhÞ ¼ 1

2m

Xm
t¼1

1

ntðhÞ � s2t ðZÞ
XntðhÞ
i¼1
½Zðui; tÞ � Zðui þ h; tÞ�2 ð7Þ

where m is the number of time steps t and nt(h) is the num-
ber of data pairs separated by the distance vector h for time
step t. Before averaging, the experimental variograms are
standardized by the variance s2t for each time step. In this
case, only one variogram is finally obtained, for which the
fitting of the theoretical model (6) will be done manually.
Second, an automatic fitting procedure is applied providing
a specific variogram ct(h) for each time step t such that the
weighted sum of squares between the experimental and the
theoretical variogram approaches a minimum (Cressie,
1985):

XK
k¼1

ntðhkÞ
c2t ðhkÞ

� ½c�tðhkÞ � ctðhkÞ�2 ! Min ð8Þ

This gives more importance to the smaller lags and the ones
computed from more data pairs. The minimisation of Eq. (8)
is done using the Nelder and Mead optimisation method (see
e.g., Press et al., 1989) assuming that s2t ¼ c0 þ c. Thus, only
two parameters, the range a and the ratio c0/c, need to be
estimated for the theoretical model represented by Eq. (6)
to provide a sufficiently robust optimisation procedure.

Indicator kriging with external drift

For indicator kriging, the observed variable Z(u) is first
transformed into a binary indicator variable Ia(u) according
to

IaðuÞ ¼
1 if ZðuÞ 6 a

0 otherwise

�
ð9Þ

Using several thresholds ak with k = 1, . . . ,K gives a vector of
indicator variables. The interpolation for indicator kriging
with external drift (IKED) is done for each indicator using
the KED framework, which gives an estimation of the cumu-
lative probability density (cdf) function of Z(u). Order rela-
tion deviations are corrected a posteriori following the
approach of Deutsch and Journel (1992, p. 81). An estimate
of the primary variable Z(u) is obtained using the mean of
the cdf, which can be approximated by the following, so-
called E-type estimate:
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Z�EðuÞ ¼
XKþ1
k¼1

ak þ ak�1

2
� ½I�akðuÞ � I�ak�1ðuÞ� ð10Þ

where ak, k = 1, . . . ,K are the specified thresholds and
a0 = zmin, aK+1 = zmax are the minimum and the maximum val-
ues of the Z-Range.

Theoretical and experimental indicator semivariograms
are calculated using Eqs. (6) and (7), respectively, as for
variogram estimation with untransformed data. However,
variograms have to be inferred separately for all indicator
variables. Automatic variogram fitting is not applied for
indicator variograms, since manual fitting allows easier con-
trol over the parameters. The indicator variogram parame-
ters should gradually change from one threshold to the next
in order to reduce the occurrence of order relation prob-
lems (Deutsch and Journel, 1992, p. 79). Note that when
many elements from a time series are interpolated in space,
the absolute thresholds and thus the required indicator vari-
ograms might differ for each time step. This problem is
solved by calculating a set of average indicator variograms
at a wide range of fixed absolute thresholds considering
the frequency distributions of the primary variable over all
time steps. Interpolation is then carried out at relative
thresholds based on probability levels using each a prede-
fined variogram that is closest to the actual threshold (see
also Section ‘Assessment of indicator variograms’).

The main motivation to apply IKED here is the possibility
to consider a quasi non-linear relationship between the ex-
pected value of the primary variable E[Z(u)] and the addi-
tional information Yk(u) through the stepwise implicit
application of (1) for different indicators Ia.

Performance assessment

Cross-validation is applied to compare the prediction per-
formances of the univariate and multivariate interpolation
methods among one another. In the procedure, the rainfall
is estimated successively for each sampled location using
the known neighbours but always discarding the observed
value for the specific target location (refer to Isaaks and Sri-
vastava, 1989). The observed values Z(u) are then compared
with the interpolated ones Z*(u) using the following perfor-
mance measures:
the bias

Bias ¼ 1

n

Xn
i¼1
½Z�ðuiÞ � ZðuiÞ� ð11Þ

the root mean square error normalised with the observed
average

RMSE ¼ 1
�Z
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1
½Z�ðuiÞ � ZðuiÞ�2

s
ð12Þ

and the coefficient of correlation

Cor ¼ Cov½ZðuÞ; Z�ðuÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ZðuÞ� � Var½Z�ðuÞ�

p ð13Þ

Interpolation usually leads to a smoothing of the observa-
tions and thus to a loss of variance. Considering the model-
ling of floods, erosion or other highly non-linear hydrological
processes, the smoothing effect in the precipitation data
are not wanted. To assess the ability of the interpolation
method to preserve the variance, the ratio of the variance
of estimated values to the variance of observed values is
used as an additional performance criterion:

RVar ¼ Var½Z�ðuÞ�
Var½ZðuÞ� ð14Þ

The closer RVar approaches 1, the better the ability of the
interpolation method to preserve the observed variance.

Study region and data

The study region covers an area of about 25,000 km2 in
South-East-Germany and includes the left tributaries of the
Obere Elbe river, the Mulde and the Weiße Elster river basins
(Fig. 1). Daily precipitation data from 281 non-recording sta-
tions, hourly data from 21 recording stations and radar
observations from three locations have been used.

The geostatistical techniques are illustrated using data
from the storm period of the 10th to the 13th of August
2002, which led to the extreme flood event in the Elbe river
basin in Germany. The trigger of the storm event was a typ-
ical, so-called Vb depression, which provided a strong per-
sistent supply of moist air from the Mediterranean Sea.
Rudolf and Rapp (2003) estimated the contribution of strat-
iform rainfall and convective rainfall in the ratio of 2 to 1
with additional orographic lifting, which has probably dou-
bled the precipitation amount.

Daily precipitation statistics for the 4 days are provided
in Table 1 and hourly precipitation sums for a typical station
are shown in Fig. 2. Most precipitation occurred on the 12th
of August 2002 with maximum observed precipitation of
312 mm/d for the station Zinnwald. Hourly precipitation
was quite variable in space and time comprising several
periods with no precipitation at one or more stations. In
addition, Table 2 shows a comparison of precipitation statis-
tics from recording stations, non-recording stations and ra-
dar cells for the rainfall sum over the total event. It can bee
seen that the event statistics between recording and non-
recording networks are comparable while the statistics from
the radar data show significant underestimations.

Radar observations from three C-band instruments oper-
ating at a wavelength of 5 cm and a frequency of 6 GHz are
used (DWD, 2002). The data are provided as raw reflectivi-
ties Zr with a spatial polar resolution of 1 km · 1� azimuth
and a time discretisation of 5 min. In a first step, the regis-
tration time between radar and gauge data have been syn-
chronised to central European time (CET = UTC + 1 h).
Then the data are transformed into rainfall intensities R
by the following Z–R relationship, which is the standard
equation proposed by the German Weather Service (DWD,
2002):

Zr ¼ 256 � R1:42 ð15Þ

where Zr is the reflectivity in mm6/m3 and R the rainfall
intensity in mm/h. The 5 min time step data for Zr and R
are then averaged each over 12 time steps to obtain mean
hourly reflectivities and intensities. Both, original reflectiv-
ities Zr and transformed rainfall rates R are used later as
additional information in the interpolation process.

No a priori information was available about local obstruc-
tions (ground clutter), which may result in non-meteorolog-
ical echoes. Thus, a simple procedure has been applied to



Figure 1 Study region with precipitation stations, radar locations and main river basins: Weiße Elster (left), Mulde (middle) and
left tributaries to the Obere Elbe (right) (For the radar station Ummendorf located north-west of the region only the relevant range
is shown.).

Table 1 Precipitation statistics of the 281 daily stations for the 4 single days of the event (collection period each from 7.30 h
actual day to 7.30 h the following day)

Day Average (mm/d) Standard deviation (mm/d) Minimum (mm/d) Maximum (mm/d)

10/08/2002 4.8 6.3 0.0 29.0
11/08/2002 28.8 20.3 2.8 106.0
12/08/2002 86.3 62.9 10.0 312.0
13/08/2002 4.4 6.8 0.0 33.6

Figure 2 Time series of hourly precipitation for the station Aue from 10/08/2002, 0.00 h to 13/08/2002, 24.00 h.
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Table 2 Comparison of precipitation statistics from non-recording stations, recording stations and radar cells for the rainfall
sum over the total event from the 10th to the 13th of August 2002 (time periods for non-recording stations from 7.30 to 7.30 h and
for recording stations and radar observations from 0.00 to 24.00 h)

Data source Number of
stations/cell values

Average
(mm/4d)

Coefficient of
variation (–)

Minimum
(mm/4d)

Maximum
(mm/4d)

Recording stations 21 116.4 0.76 29.0 406.2
Non-recording stations 281 124.3 0.53 39.3 406.2
Radar cellsa 14,436 37.8 0.37 11.8 102.4
a Statistics for pre-processed data within the basin boundaries (errors corrected and interpolated on a rectangular raster, for details see

text).
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remove these errors from the data. Ground clutter can be
recognised from timely permanent echoes accumulating
into unusually high quantities of total rainfall. The following
two empirical rules were automatically applied after some
visual and statistical pre-processing. A radar pixel k is re-
moved from the data sets if

Rtot;k > �Rtot þ 5 � sðRtotÞ ¼ 145 mm

with Rtot;k ¼
Xm
t¼1

Rðt; kÞ � Dt ð16Þ

or if

Xm
t¼1

Ik > 85 with Ik ¼
1 for Rt;k > 0

0 otherwise

�
ð17Þ

where Rtot,k is the radar rainfall sum of pixel k, s(Rtot) the
standard deviation of Rtot, Ik an indicator and m = 96 time
steps. The first rule (16) identifies pixels with unusually high
quantities of rainfall and the second rule (17) detects pixels
with unusually long rainfall durations, each compared to the
precipitation statistics of this event in the study area. The
cut-off value of 145 mm in (16) is significantly smaller than
the maximum observed rainfall sum from the station net-
works because of the strong underestimation by radar (cp.
Table 2). Note that this cut-off value was calculated from
statistics of the raw radar data while the information in Ta-
ble 2 is based on corrected and interpolated radar data. All
together about 1% of all radar pixels have been removed by
this procedure. The radar data on polar coordinates were
interpolated to a 1 km · 1 km rectangular grid using inverse
square distance weighing considering two neighbours in
each quadrant. For this procedure all three radar locations
with overlapping ranges were included simultaneously. This
interpolation represents, in fact, an aggregation procedure
here that leads to a reduction of the number of data points
from about 19,000 radar pixels to about 14,400 raster cells
within the basin boundaries. The application of the simple
inverse square distance weighting method was considered
appropriate for that purpose.
Analysis and results

Variogram inference and impact on interpolation

One special problem for geostatistical interpolation of
whole time series is the effective and reliable estimation
of the variograms for each time step. This section discusses
the impact of different approaches for the estimation of the
semivariogram on the interpolation performance for hourly
rainfall data. Hourly and average semivariograms are in-
ferred from daily, hourly and radar data considering either
isotropic or anisotropic behaviour using automatic and man-
ual fitting procedures. Table 3 lists the eight different vari-
ogram estimation approaches and the parameters that are
compared here.

First, as the simplest version without using any data, a
linear isotropic variogram with c(h) = h is assumed (#1).
Next, daily data from 281 non-recording stations are em-
ployed for variogram assessments through the calculation
of an average experimental variogram according to Eq. (7)
and visual fitting. Two cases are distinguished here: one
with assumed isotropy (#2) and the other one where anisot-
ropy is taken into consideration (#3). Fig. 3, #2 shows the
isotropic version of the variogram from daily data. The per-
manent increase of the experimental variogram suggests a
drift, which is confirmed later in the anisotropic case and
for the other variograms. The drift has been ignored when
fitting a theoretical model for this and all the other cases,
but will be taken into account through the interpolation ap-
proaches. Comparing variograms for different directions has
shown zonal anisotropy (i.e., varying sill with direction) of
daily rainfall, which is modelled as the sum of an isotropic
model g1(jhj) and a zonal anisotropic model g2(h/) depend-
ing only on the distance h/ in the direction of greater vari-
ance (see Goovaerts, 1997, pp. 93–95):

gðhÞ ¼ g1ð hj jÞ þ g2ðhuÞ ð18Þ

Here, the direction of greater variance and higher sill has an
azimuth angle of / = 90� (measured clockwise from north),
which is the main wind direction (West–East). The range
in that direction of the model g2(.) is estimated at
au = 140 km (see Table 3). Fig. 3, #3 shows the combined
model g(h) and the isotropic model g1(jhj) with the experi-
mental variograms estimated for / = 90� ± 22.5� and
h = 0� ± 22.5�, respectively. The drift is present only in the
W–E direction. In addition, the experimental and theoreti-
cal variograms for the directions / = 45� ± 22.5� and
h = 135� ± 22.5� are shown confirming the validity of Eq.
(18) with the assumption of major and minor continuity at
directions 0� and 90�, respectively.

Considering hourly station data, only 21 locations for
variogram estimation were available. An average experimen-
tal variogram (#4) is calculated from Eq. (7) and automatic



Table 3 Variogram types and parameters applied for comparisons

No. Data source Fitting method Anisotropy Nested structures Nuggeta Silla,b Rangeb (km)

1 No Assumed No 1 0.0 – –
2 Daily Average No 1 0.1 0.9 90
3 Daily Average Yes 2 0.1 0.6/0.8 80/140
4 Hourly Average No 1 0.4 0.6 80
5 Hourly Automatic No 1 Variable Variable Variable
6 Radar Average No 1 0.2 0.7 50
7 Radar Average Yes 2 0.2 0.45/0.55 40/90
8 Radar Automatic No 1 Variable Variable Variable

#1 Linear model without sill.
#2–#8: Nugget + spherical models (see Eq. (6)).
a Nugget and sill are standardized by the variance of the data.
b The 1st value is the sill/range for the isotropic component g2(jhj); the 2nd value is the sill/range for the zonal structure g2(h/); the

range for the zonal model in the direction of lower sill is set to a very large value.

Figure 3 Average standardised variograms characterising hourly rainfall of the extreme storm event based on different data
sources and assumptions. The numbers at the top of the y-axis indicate the case corresponding to the numbering in Table 3.
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variograms (#5) are fitted according to Eq. (8). In both
cases, only time steps with significant average precipita-
tion, �P P 0:1 mm/h were used, which was the case for 64
out of 96 time steps. The variogram was replaced by the
average one for each time step where automatic fitting
did not converge or resulted in a very large objective func-



Table 4 Standardized root mean square error (RMSE) from
cross-validation of hourly rainfall using different variograms
for time steps with �P P 1:0 mm/h during the period from the
10th to 13th of August 2002

No. Variogram type OK KED (Pev)

1 Assumed linear 1.20 1.02
2 Averaged isotropic daily 1.14 0.99
3 Averaged anisotropic dailya 1.13 0.99
4 Averaged isotropic hourly 1.12 0.98
5 Automatic isotropic hourly 1.11 0.97
6 Averaged isotropic radar 1.12 0.98
7 Averaged anisotropic radara 1.12 0.98
8 Automatic isotropic radar 1.10 0.97
a For KED only the variogram in N–S direction perpendicular to

the trend direction is used.
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tion value. Anisotropy has not been taken into consideration
for hourly data because of the small sample size. Fig. 3, #4
shows the average isotropic experimental variogram and the
fitted theoretical model for hourly data. Compared to the
isotropic daily case, the nugget is higher and the range is
shorter.

Finally, hourly radar rainfall rates were used for vario-
gram assessment. Only a subset of the available radar points
was utilised here in order to facilitate fast computing in par-
ticular with respect to automatic variogram fitting for sev-
eral time steps. Tests with different numbers of points
have revealed that a random sample of 1000 radar cells
drawn from within the basin boundaries (see Fig. 1) repre-
sents the spatial data structure sufficiently. Three cases
with radar data are compared: an average isotropic vario-
gram (#6), an average anisotropic variogram (#7), both cal-
culated from Eq. (7), and an automatic fitting approach (#8)
minimizing Eq. (8). Both the isotropic fitted variogram mod-
el (Fig. 3, #6) and the anisotropic one (Fig. 3, #7) are similar
to the daily variograms, also showing a drift but with higher
nugget and smaller range parameters. Compared to the
hourly variogram, based on surface observations, both nug-
get and range parameters are smaller. For automatic fitting
using radar data the same rules were applied as for the
hourly station data.

In order to assess the impact of the selected variogram
model on the prediction performance a cross-validation
exercise with the two interpolation methods ordinary kri-
ging (OK) and kriging with external drift (KED) has been car-
ried out. For the latter method, the rainfall sum over the
event Pev interpolated from the denser daily network was
used as the external drift variable. A local search has been
used selecting each the nearest 8 stations for OK and the
nearest 16 stations for KED. Using a smaller number of sta-
tions for OK leads to a smaller search neighbourhood and
thus allows for local departures from the required stationa-
rity of the mean over the area. For the non-stationary-
method KED this restriction is not necessary. On the con-
trary, considering a robust implicit assessment of Eq. (1)
and the larger number of constraints on the kriging weights
in (4), the number of stations involved should be larger than
for univariate kriging methods. The above decision was also
supported by some prior tests based on cross-validation
using OK and KED with different numbers of neighbours.
Table 4 shows the results of the cross-validations applied
for all time steps with average precipitation of �P P 0:1
mm/h using the normalised root mean square error RMSE
(12) as the performance criterion.

The semivariogram model has a small impact on predic-
tion performance. However, the use of an assumed linear
variogram is not recommended, because this shows by
far the largest RMSE values for both interpolation methods.
Using variograms from hourly data leads to smaller errors
than using variograms from daily data, which is plausible
considering the hourly target time step. Although anisot-
ropy is clearly present in the data, no significant differ-
ences in prediction performance between isotropic and
anisotropic variograms could be found. For KED, in the
anisotropic case, only the variogram in the North–South
direction without trend is applied, which corresponds to
the variogram based on the residuals r(u). This gave no dif-
ference in interpolation performance compared to using
the isotropic variogram based on Z(u). It can, therefore,
be confirmed that the simplifying assumption from Section
‘Kriging with external drift’ on the use of the original Z
data instead of the residuals for variogram inference is
applicable. The use of time-specific variograms that are
fitted automatically improves little over the use of an
averaged semivariogram. The same trend is displayed by
the two interpolation methods OK and KED. However, the
KED method produces smaller absolute errors and seems
generally less sensitive to the choice of the variogram ap-
proach. It is obviously sufficient to use an averaged vario-
gram for the rainfall interpolation of this event considering
the small absolute error differences. This may, however,
not be advisable for longer time series involving different
meteorological conditions like frontal systems and convec-
tive storms. Nevertheless, even in this event, the vario-
gram parameters automatically fitted over all time steps
vary considerably (see Fig. 4). In the following comparisons
of different interpolation methods, the averaged isotropic
hourly variogram (#4) is used for all OK and KED interpola-
tion approaches.

Assessment of indicator variograms

Hourly indicator variograms are required for indicator kri-
ging of the rainfall time series. Following from the results
and the decision made in Section ‘Variogram inference
and impact on interpolation’, average isotropic indicator
variograms are calculated using hourly station data based
on Eq. (7). Again, only time steps with significant precipita-
tion �P P 0:1 mm/h were used (64 out of 96 time steps).
Absolute thresholds at rainfall rates s = 0.1, 0.5, 1.0, 2.0,
3.0, 4.0, 6.0, 8.0, 10.0 mm/h were defined for the estima-
tion of nine average experimental indicator variograms.
Theoretical variogram models of type (6) have been fitted
visually considering a gradually change of the variogram
parameters from one threshold value to the next one.

Table 5 lists the estimated parameters and Fig. 5 shows
the experimental and fitted theoretical indicator vario-
grams. On comparing the indicator variograms, a decrease
in range values and an increase in relative nugget values
with rising thresholds can be observed. This indicates a



Figure 4 Frequency distributions of the two automatically fitted variogram parameters range and ratio of nugget to sill for time
steps with �P P 0:1 mm/h during the period from the 10th to the 13th of August 2002 (for n = 33 h).
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smaller spatial persistence of extreme values, which is a
quite typical behaviour for environmental variables (e.g.,
Goovaerts, 1997, p. 323). For interpolation these nine
predefined indicator variograms are applied considering
the variable frequency of rainfall rates. Relative thresh-
olds from 13 quantiles with non-exceedance probabilities
of p = 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.99 were used to obtain variable absolute
thresholds ap for each time step. Interpolation is always
done for 13 indicator variables based on these thresholds
ap. For each interpolation an indicator variogram is se-
lected for which the distance between interpolation
threshold ap and the threshold s used for variogram infer-
ence, is minimal.

Interpolation using different additional information

Interpolation of hourly precipitation is evaluated focusing
on the two multivariate methods kriging with external drift
(KED) and indicator kriging with external drift (IKED). As ref-
erence, the univariate methods nearest neighbour (NN) or
Thiessen polygons, inverse square distance weighing
(IDW), ordinary kriging (OK) and ordinary indicator kriging
(IK) were also applied. Cross-validations were carried out
for performance comparisons based on the criteria defined
in Section ‘Performance assessment’. Only time steps with
average precipitation of �P P 0:1 mm/h were considered
from the whole storm period (33 out of 96 time steps).
Table 5 Parameters of the fitted theoretical indicator
variogram models

No. Threshold
(mm/h)

Nugget Sill Range
(km)

1 0.1 0.20 0.90 140
2 0.5 0.30 0.80 130
3 1.0 0.40 0.70 130
4 2.0 0.40 0.65 130
5 3.0 0.40 0.60 110
6 4.0 0.40 0.50 100
7 6.0 0.40 0.30 80
8 8.0 0.30 0.30 60
9 10.0 0.20 0.30 40
The number of neighbours involved for interpolation has
been restricted to the nearest 4, 8 and 16 for IDW, with
one station in each quadrant, univariate kriging and multi-
variate kriging, respectively. For the kriging methods a local
search radius without restrictions in direction is used (for
discussion see Section ‘Variogram inference and impact on
interpolation’).

First, interpolation methods were compared without
using radar information. Table 6 lists the cross-validation
results. For the univariate methods, the errors decrease
in the order NN, IDW, OK, IK. However, IK is weakest in
terms of variance preservation and bias. The multivariate
methods KED and IKED show better interpolation perfor-
mance than the univariate ones. The most important addi-
tional information is the rainfall sum over the event Pev
interpolated from the denser daily network. This demon-
strates a simple but effective way to combine hourly,
small time increment data (only available for a few points
in space i.e., 21 stations), with daily, time step data
(observed at many more locations i.e., 281 stations).
Elevation data, El, only provide improvements for interpo-
lation performance if Pev is not available. The reason
could be that the rainfall sum calculated from the dense
daily network contains sufficient information about the
topography of the region. Applying the indicator approach
IKED instead of KED does not lead to smaller errors here
and shows again the largest loss of variance. Disadvantage
of the KED methods is the occurrence of a few negative
estimates for some time steps. Those unrealistic values
have been simply set to zero before the performance is
evaluated (see Deutsch and Journel, 1992, p. 106).

In the second step, radar data were utilised. A direct
comparison between radar rainfall and station rainfall was
carried out prior to the evaluation of the interpolation ap-
proaches. Note, that point rainfall data from surface obser-
vations are compared here with block rainfall converted
from radar volume scan reflectivity data above the ground.
This causes a scale compatibility problem, which inserts
additional scatter into the relationship between station
and radar rainfall. Fig. 6 shows a direct comparison of
hourly rainfall rates from surface observations P for se-
lected stations, with rainfall from radar data R. The
strength of the relationship varies with coefficients of
determination between 0.59 and 0.89. From the slope of
the regression lines it is clear that the gauge rainfall is about
3–10 times higher than the radar rainfall. In addition, Fig. 7
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Figure 5 Average standardised indicator variograms for the nine different thresholds characterising hourly rainfall of the extreme
storm event.

Table 6 Cross-validation results for interpolation of hourly
rainfall without radar information for time steps with
�P P 1:0 mm/h during the period from the 10th to the 13th
of August 2002 (averaged over n = 33 h)

Method Bias (mm/h) RMSE (–) Cor (–) RVar (–)

NN �0.40 1.39 0.26 0.80
IDW �0.04 1.20 0.34 0.64
OK 0.13 1.12 0.38 0.51
IK �0.29 1.10 0.41 0.42
KED (El) 0.02 1.11 0.40 0.56
KED (Pev) 0.10 0.98 0.54 0.76
KED (El, Pev) 0.08 0.98 0.53 0.78
IKED (El, Pev) �0.34 0.98 0.54 0.50
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compares the hourly time series of areal precipitation for
the subbasin of the Obere Elbe river estimated from station
data and radar. This confirms the systematic rainfall under-
estimation by radar. It also shows the strong variability of
the ratio between gauge and radar rainfall rates with values
between 2 and 6 within a couple of hours.

Table 7 shows the cross-validation results for interpola-
tion methods with radar as additional information; the first
line of the table contains results from a direct comparison
of radar data with gauge rainfall (which is not a cross-val-
idation). The negative bias reveals again a strong underes-
timation of observed rainfall. The high coefficient of
correlation, on the other hand, points to a significant rela-
tionship between gauge and radar data, which indicates
the high potential of radar information as an external drift
variable. In the following section, cross-validation results
are compared where KED is applied using different addi-
tional information but always including radar data. All ap-
proaches show better performance than the ones without
radar (cp. Table 6). Applying KED with radar rainfall R as
the only additional variable results in slightly better per-
formance to that produced if only the event sum Pev is
used. Applying IKED with R as the external drift shows a
further improvement with respect to the root mean square
error and correlation, but results in a higher bias and a
smaller variance preservation. Note, that all indicator
based methods have a slightly negative bias. This might
come from the simplified E-type estimate (see Eq. (10))
with linear interpolation between the thresholds, which
leads to an underestimation considering positively skewed
distributions. The most significant error reduction is gener-
ated when both R and Pev are included into KED as addi-
tional information. An extra small gain can be reached



Figure 6 Direct comparison of hourly observed gauge precipitation P with radar derived rainfall rates R at the station grid cells for
the total storm period from the 10th to the 13th of August 2002 (r2 = coefficient of determination).

Figure 7 Comparison of hourly areal rainfall for the Obere
Elbe subbasin estimated from gauges using KED (Pev) (light grey
bars), from radar data only (dark grey bars) and ratio of gauge
to radar rainfall (solid line with triangles) for the day 12/08/
2002.

Table 7 Cross-validation results for interpolation of hourly
rainfall with radar as additional information for time steps
with �P P 1:0 mm/h during the period from the 10th to the
13th of August 2002 (averaged over n = 33 h)

Method Bias
(mm/h)

RMSE
(–)

Cor
(–)

RVar
(–)

Radar onlya �2.37 1.33 0.72 –
KED (R) 0.18 1.02 0.61 0.86
IKED (R) �0.34 0.95 0.65 0.55
KED (R, Pev) 0.09 0.86 0.72 0.95
KED (R, Pev, El) 0.11 0.85 0.74 0.96
IKED (R, Pev, El) �0.39 0.87 0.72 0.57
L-KED (Z, Pev, El)

b �0.14 0.79 0.77 0.90
a No cross-validation result, but comparison with observed

gauge rainfall.
b L_KED all variables V involved are log-transformed

V̂ ¼ lnðV þ 1:0Þ.
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when using elevation El as a third external drift variable,
which also provides the approach with the best variance
preservation ability. Using IKED with all three external
drift variables was not found to lead to further improve-
ments compared to KED.

So far only radar rainfall rates R pre-transformed using
Eq. (15) have been utilised as external drift here. It is also
possible to use the original reflectivity data Zr instead. A
logarithmic transformation of both variables would directly
support the assumption made in (1) since rainfall is related
to reflectivity non-linearly as expressed in Eq. (15). The
cross-validation results from this approach are shown in
the last line of Table 7 and after evaluation of the root
mean square error and the coefficient of correlation this ap-
proach seems best. Although for log-transformed data the
estimation is generally biased, the bias here is not very
large. Special problems also arise from potentially high
uncertainties for extreme values and difficulties considering
zero precipitation (Goovaerts, 1997, p. 17; Seo et al.,
1990a).

Fig. 8 depicts the spatial distribution of hourly precipita-
tion for two selected hours of the storm event interpolated
with three different methods: OK, KED with the rainfall sum
Pev as additional information and KED with the three addi-
tional variables elevation El, rainfall event sum Pev and ra-
dar rainfall R. The application of OK for the interpolation
based on the small sample size of only 21 rain gauges clearly
creates quite smooth maps. If KED is employed using Pev as
external drift, a map with a stronger spatial rainfall struc-
ture can be generated, provided the correlation between



Figure 8 Spatial distribution of precipitation in mm/h for 2 h on the 12/08/2002 interpolated with three different methods: OK,
KED with the rainfall sum Pev and KED with the elevation El, the rainfall sum Pev and the radar rainfall rates R as additional
information.
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primary and additional variables is strong enough. This is the
case for the hour from 6:00 to 7:00 a.m. with a correlation
of r = 0.81. However, the correlation is quite weak (r = 0.45)
for the other selected hour from 7:00 to 8:00 a.m., so the
map looks very much like the smooth map generated using
OK. Applying KED with all additional information from radar
data R, event sum Pev and elevation El together improves
the spatial representation of rainfall significantly. The maps
show stronger rainfall variability, higher extremes and typ-
ical anisotropic patterns. The multiple correlations between
gauge precipitation P and the additional three variables for
the first and second selected hour were here 0.91 and 0.68,
respectively.

Conclusions

In this study, different geostatistical approaches were com-
pared for the interpolation of hourly precipitation using
additional information from radar data, a daily station net-
work and topography. The heavy storm period in the Elbe
river basin from the 10th to the 13th of August 2002 was
used to illustrate the methods. The focus was on the opti-
mal combination of gauge and radar data using kriging with
external drift and indicator kriging with external drift. Spe-
cial attention was given to the impact of the variogram esti-
mation approach on the interpolation performance. The
main results can be summarized as follows:

1. The multivariate methods KED and IKED clearly outper-
form the univariate ones. The most important additional
information is radar followed by precipitation from the
denser daily network. The information content of eleva-
tion for interpolation of hourly data plays only a minor
role here. Using all additional information simulta-
neously with KED gives the best performance. For some
approaches IKED provides smaller root mean square
errors than KED, but at the expense of a significant loss
of variance.

2. The impact of the semivariogram on interpolation per-
formance is not very high. Although anisotropy is clearly
present in the data, no significant differences in predic-
tion performance between isotropic and anisotropic vari-
ograms could be found. The best results are obtained
using an automatic fitting procedure with isotropic vari-
ograms either from hourly or radar data. Cross-validation
has shown that the error increases only slightly when
using an averaged variogram instead. However, it is not
recommended to estimate an averaged variogram based
on data with different time steps than those used for
interpolation.
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3. The exclusive use of uncalibrated radar data cannot be
recommended, because this results in a significant under-
estimation of precipitation. This underestimation is very
variable in space and time, which must be taken into
account for a useful application of radar information.

This study was conducted based on data from one large-
scale extreme rainfall event with hourly discretisation in
time. So, it cannot be supposed, that the specific findings
will hold in general for any other event, time discretisation
or region. However, it is assumed that the main results are
valid for a wider range of conditions. With regard to the
enumerated points above, it is likely that the degree of gen-
erality decreases in the order of points 3, 1, and 2. On the
whole it can be concluded that kriging with external drift
is a promising method for the interpolation of hourly precip-
itation using radar data as additional information. Of partic-
ular interest is its capability to allow the relationship
between primary and secondary variables to change across
the study area, since the coefficients of the linear relation-
ship are re-estimated within each local search window.
Thus, KED can consider the high space–time variability of
the Z–R relationship between radar and gauge rainfall. Ef-
forts are under way to extend the investigations using addi-
tional techniques and considering a series of extreme events
for different regions and with different time resolutions.
The validation of interpolated precipitation using hydrolog-
ical modelling is also planned for the future. The proposed
approaches assume that the gauge rainfall reflects the real-
ity and that point station data can be compared directly
with areal radar information. Both assumptions lead to
uncertainties, which are not quantified here. Subsequent
work should also look for approaches that minimise or re-
move these restrictive assumptions.
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Geschäftsfeld Hydrometeorologie.

Ehret, U., 2002. Rainfall and flood nowcasting in small catchments
using weather Radar. Dissertation, Mitteilungen des Instituts für
Wasserbau, Heft 21, Stuttgart.

Fassnacht, S.R., Soulis, E.D., Kouwen, N., 2003. Radar precipitation
for winter hydrological modelling, Weather radar information
and distributed hydrological modelling. IAHS, 35–42, Publica-
tion No. 282.

Goovaerts, P., 1997. Geostatistics for natural resources evaluation.
Oxford University Press, New York, Oxford, p. 483.

Goovaerts, P., 2000. Geostatistical approaches for incorporating
elevation into the spatial interpolation of rainfall. Journal of
Hydrology 228 (1–2), 113–129.

Grimes, D.I.F., Pardo-Iguzquiza, E., Bonifacio, R., 1999. Optimal
areal rainfall estimation using raingauges and satellite data.
Journal of Hydrology 222, 93–108.

Haberlandt, U., Kite, G.W., 1998. Estimation of daily space–time
precipitation series for macro-scale watershed modelling.
Hydrological Processes 12 (9), 1419–1432.

Hevesi, J.A., Flint, A.L., Istok, J.D., 1992a. Precipitation estima-
tion in mountainous terrain using multivariate geostatistics.
Part I: structural analysis. Journal of Applied Meteorology 31,
661–676.

Hevesi, J.A., Flint, A.L., Istok, J.D., 1992b. Precipitation estima-
tion in mountainous terrain using multivariate geostatistics.
Part II: Isohyetal maps. Journal of Applied Meteorology 31,
677–688.

Huang, Y., Wong, P., Gedeon, T., 1998. Spatial interpolation using
fuzzy reasoning and genetic algorithms. Journal of Geographic
Information and Decision Analysis 2 (2), 204–214.

Hutchinson, M.F., 1998a. Interpolation of rainfall data with thin
plate smoothing splines: I Two dimensional smoothing of data
with short range correlation. Journal of Geographic Information
and Decision Analysis 2 (2), 139–151.

Hutchinson, M.F., 1998b. Interpolation of rainfall data with thin
plate smoothing splines: II Analysis of topographic dependence.
Journal of Geographic Information and Decision Analysis 2 (2),
152–167.

Isaaks, E.H., Srivastava, R.M., 1989. Applied Geostatistics. Oxford
University Press, New York.

Krajewski, W.F., Smith, J.A., 2002. Radar Hydrology: rainfall
estimation. Advances in Water Resources 25 (8–12), 1387–1394.

Lloyd, C.D., 2005. Assessing the effect of integrating elevation data
into the estimation of monthly precipitation in Great Britain.
Journal of Hydrology 308 (1–4), 128.

Neary, V.S., Habib, E., Fleming, M., 2004. Hydrologic Modeling with
NEXRAD Precipitation in Middle Tennessee. Journal of Hydro-
logic Engineering 9 (5), 339–349.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.,
1989. Numerical Recipes in Fortran 77: The Art of Scientific
Computing. Cambridge University Press, New York.

Rudolf, B., Rapp, J., 2003. Das Jahrhunderthochwasser der Elbe:
Synoptische Wetterentwicklung und klimatologische Aspekte,
Klimastatusbericht 2002. Selbstverlag des Deutschen Wetterd-
ienstes, Offenbach, pp. 172–187. Available from: <http://
www.ksb.dwd.de>.

Seo, D.-J., 1998. Real-time estimation of rainfall fields using rain
gauge data under fractional coverage conditions. Journal of
Hydrology 208, 25–36.

Seo, D.-J., Krajewski, W.F., Bowles, D.S., 1990a. Stochastic
interpolation of rainfall data from raingauges and radar using
co-kriging: 1. Design of experiments. Water Resources Research
26 (3), 469–477, 89WR02984.

http://www.ksb.dwd.de
http://www.ksb.dwd.de


Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event 157
Seo, D.-J., Krajewski, W.F., Bowles, D.S., 1990b. Stochastic
interpolation of rainfall data from raingauges and radar using
co-kriging: 2. Results. Water Resources Research 26 (5), 915–
924, 89WR02992.
Tetzlaff, D., Uhlenbrook, S., 2005. Effects of spatial variabil-
ity of precipitation for process-orientated hydrological
modelling: results from two nested catchments. HESSD 2,
119–154.


	Geostatistical interpolation of hourly precipitation from rain gauges and radar for a large-scale extreme rainfall event
	Introduction
	Methodology
	Kriging with external drift
	Indicator kriging with external drift
	Performance assessment

	Study region and data
	Analysis and results
	Variogram inference and impact on interpolation
	Assessment of indicator variograms
	Interpolation using different additional information

	Conclusions
	Acknowledgements
	References


