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Abstract: This paper reviews existing population estimation methods in the GIS and
remote sensing literatures. The methods can be grouped into two categories: areal
interpolation methods and statistical modeling methods. Areal interpolation methods
can be further separated into two categories depending on whether ancillary infor-
mation is used. Statistical modeling methods can be further grouped into five catego-
ries based on the relationship between populations and urban areas, land uses,
dwelling units, image pixel characteristics, or other physical or socioeconomic char-
acteristics.

INTRODUCTION

Many methods for population estimation have been reported in the GIS and
remote sensing literatures. Depending on the intended goal and the required informa-
tion, these methods can be grouped into two categories: areal interpolation and statis-
tical modeling. Areal interpolation methods are primarily designed for the zone
transformation problem that involves transforming data from one set of spatial units
to another. This approach uses census population data as the input and applies inter-
polation or disaggregation techniques to obtain a refined population surface. In con-
trast, the statistical modeling approach is more interested in inferring the relationship
between population and other variables for the purpose of estimating the total popula-
tion for an area. The statistical modeling approach does not directly use census data as
the input. Rather, it makes use of socioeconomic variables and applies theories in
urban geography for population estimation; census population data only participate in
the model training process. This approach is originally designed to estimate the
intercensal population or population of an area difficult to enumerate, though it can
also be incorporated into the process of interpolating census population. Before
reviewing these two approaches of population estimation, we would like to review the
early population density models from urban geography.

POPULATION DENSITY MODELS FROM URBAN GEOGRAPHY

The simple gravitational population density model from urban geography is the
heart of what has been called social physics (Stewart and Warntz, 1958). Although
many people have noticed the decrease of population density from inner city to outer
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suburbs, it was Clark (1951) who first associated this observation with specific math-
ematical functions (Liu, 2003) in the following negative exponential function:

d (r) = K * e–λ r, (1)

where d(r) is the population density at distance r from the center of the city (r = 0); K
is a constant that equals the central density d(0); λ describes the rate of decline of den-
sity. This relationship has been demonstrated to exist for many cities of the United
States (Weiss, 1961), as well as for many cities outside the U.S. (Newling, 1965).
Although the goodness of fit varies, the model always holds statistically significantly
in every place studied. Kramer (1958) also incorporated a sectoral model of a city and
showed how various models of urban forms interact with each other.

Some studies have explored other mathematical forms to describe the relation-
ship between population density and location. For example, Sutton et al. (1997)
examined the Gaussian and the parabolic forms and found that both are statistically
significant. Some studies have criticized the use of the negative exponential function.
For example, Batty and Longley (1994) stated that the exponential population density
function has been used solely for its convenience and elegance, rather than its appro-
priateness to empirical data. Parr (1985) suggested that an inverse power function is
more appropriate to the urban fringe and hinterland, and the negative exponential
function is more appropriate for describing density in the urban area. A similar sug-
gestion to make a modification at the fringe of the urban area is also found in Tobler’s
(1999) comment on Martin’s (1996) population interpolation algorithm. Tobler
pointed out that “the exponential distance decay function is a relevant approximation
for the whole of an urban area, yet its repeated use farther out from the urban center
hardly seems reasonable. In the periphery, far from the center, the density gradient is
much more nearly linear” (1999,  p. 85). To correct this problem, Tobler proposed a
“tent function” by first decomposing each census unit into triangles, with one vertex
being the geometric centroid of the unit; populations inside triangles are then assigned
based on the coordinates and population of the vertices.

AREAL INTERPOLATION METHODS

The negative exponential function can only be regarded as the empirical results
showing how population is distributed in urban areas. It has not been used, in existing
literatures, for practical population estimation that concerns accuracy. Instead, most
studies used areal interpolation or statistical modeling methods for population estima-
tion. Areal interpolation, as mentioned above, is primarily designed for zone transfor-
mation that involves transforming data from one set of spatial units to another. The
two sets of spatial units could be referred as the source zone and the target zone (Lam,
1983). The general strategy for zone transformation is to apply certain areal inter-
polation operations to transform source zone data to finer-scale raster data and then
aggregate them for target zones. In the context of population interpolation, census
data are the vector-based source zone data and are interpolated to finer-scale raster
data by a certain interpolation method. Areal interpolation is subject to errors from
original areal aggregation. The quality of the interpolation estimates depends largely
on how source zones and target zones are defined, the degree of generalization in
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interpolation process, and the characteristics of the partitioned surface (Lam, 1983).
Areal interpolation methods can be further separated into two categories depending
on whether ancillary information is used.

Areal Interpolation without Ancillary Information

For areal interpolation methods without ancillary information, there are point-
based methods and areal-based methods (Lam, 1983). In point-based interpolation, a
control point is assigned to represent each source zone and a grid map is generated
with grid point values estimated from control points. In contrast, area-based interpola-
tion uses the source zone itself as the unit of operation instead of arbitrarily assigned
control points. Also, area-based interpolation is more concerned with volume preser-
vation; i.e., the summation of population data to the original set of areal units is pre-
served in the transformation to a new set of areal units. Based on theoretical and
limited empirical evidence, volume preservation is an essential requirement for accu-
rate interpolation estimates (Lam, 1983).

Point-Based Methods. There have been many point-based interpolation meth-
ods developed in the past. Some researchers put such methods into two groups, global
and local, depending on whether they consider all of the data values at once or the
values within a pre-defined neighborhood of each point. Here we adopt Lam’s (1983)
approach to group point-based methods into exact methods and approximate methods,
depending on whether they are concerned with preserving the original sample point
values or with determining an overall surface function f(x, y). The reason for this cate-
gorization is that whether interpolation methods preserve original data values on the
inferred surface is fundamental in analyzing their accuracy (Lam, 1983).

The exact methods include interpolating polynomials, most distance-weighting
methods, kriging, spline functions, and finite difference methods, while the approxi-
mate methods include power-series trend models, Fourier series models, distance-
weighted least squares, and least-squares fitting with splines. Each of these methods
has its own advantages and disadvantages, and none of them is superior to all others
for all applications (Lam, 1983). Furthermore, the results from all the methods are
seriously affected by the quality of the original data, especially the density and the
spatial arrangement of data points, and the complexity of the surface. The choice of
an appropriate interpolation method depends largely on the type of data, the degree of
accuracy desired, and the amount of computational effort afforded. In general, exact
methods are more reliable than approximate methods because of the former’s simplic-
ity, flexibility, and reliability (Lam, 1983).

One of the point-based methods widely used in the UK census is a kernel-based
interpolation proposed by Martin (1989) (Bracken, 1991; Martin and Bracken, 1991;
Bracken and Martin, 1989). This method uses a source zone centroid as the control
point. A window is positioned over each control point in turn and the source zone
population is allocated to grid cells falling inside the window using a unique weight-
ing based on the distance decay function between the source zone centroid and the
grid cell.

Point-based areal interpolation methods experience a few problems (Lam, 1983;
Liu, 2003). First, the use of a control point, usually the centroid or the center of an
area, to represent the source zone often introduces errors. The calculation of the
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centroid or center of an area depends on the coordinates of the points defining the
boundary of a source zone. If the source zone is symmetrical and relatively simple,
the center or centroid would be a convenient control point, and the estimated value for
each grid cell would be reliable. However, if the boundaries are not symmetrical or
well generalized, the location of the centroid can be significantly effected, and the
interpolation results may be biased. In reality, census units are rarely symmetrical,
and the non-uniform distribution of population within a census unit further compli-
cates this issue.

Another problem associated with point-based interpolation methods is that all
have some kind of a priori assumption about the surface involved. This rather arbi-
trary assumption rarely fits the complex geographical phenomena in the real world.
Nevertheless, it is worth noting that the task of areal interpolation is to search for the
best method, whose output is as close to the ground truth as possible. Violation of the
assumption of a method only implies that the results obtained may not be optimal, but
does not mean that this method is necessarily inferior to others. For example, in the
context of kriging interpolation, if the source zones can be reduced to control points
and the population distribution can be described by the semi-variogram, kriging is the
best linear unbiased estimation. If the assumption is not satisfied, results from kriging
interpolation are not necessarily inferior to those from others. Comparative studies
using empirical datasets are needed to further research this issue.

The most important problem of point-based methods is that they mostly do not
conserve the total value within each source zone. Volume preservation is important in
that it gives reliability to the approximation of grid values for source zone, and thus
the subsequent estimation for target zone is less subject to error. Besides, in the con-
text of population interpolation, people should not be “destroyed” or “manufactured”
during the redistribution process (Langford and Unwin, 1994). To correct this prob-
lem, Martin (1996) modified the original kernel-based interpolation algorithm (which
is a point-based method) to ensure that the populations reported for target zones are
constrained to match the overall sum of the source units.

Area-Based Methods. In contrast to point-based interpolation, area-based meth-
ods are volume-preserving methods. The simplest method in this category is the over-
lay operation based on the geometric properties of the source and target zones. It
superimposes the target zone on the source zone to obtain the proportion of each
source zone in each target zone. The proportion then serves as a weight and the values
of target zones become a weighted linear function of source zones.

The major problem with the overlay method is that it assumes homogeneity
within each source zone. Source zones having homogeneous distributions, unfortu-
nately, seldom occur in the real world. This may well be true of some phenomena
such as rainfall or agricultural productivity, but is harder to justify for human phe-
nomena such as population. In addition, very often the source zones were originally
delineated for other purposes and may not show the important distribution informa-
tion for the target zones. For these reasons, the reliability of target zone estimates is
controlled mainly by the nature and degree of the homogeneity of the source zone and
by the size of the target zone in relation to the source zone (Lam, 1983).

Tobler’s (1979) pycnophylactic interpolation is probably the most widely quoted
area-based interpolation method. This method assumes a smooth density function that
takes into account the effect of adjacent source zones while preserving its volume.
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The smooth condition intends to minimize the curvature of estimated surface by
requiring the value of any grid point to approach the averages of its four neighbors.
Other smoothing conditions may be used depending on the type of application. The
interpolation process begins by assigning the mean density to each grid cell superim-
posed on the source zones, and then modifies this by a slight amount to bring the den-
sity closer to the value required by the smoothing condition. The volume-preserving
requirement is then enforced by either incrementing or decrementing grid densities
within each source zone after each computation. The result is a smooth population
density surface.

The original pycnophylactic interpolation uses regular lattice grids as its spatial
configuration. Rase (2001) extended it to a surface representation based on an trian-
gular irregular network (TIN). The basic step is to generate a TIN from the boundary
network first, and then to interpolate a smooth surface by an iterative procedure, in
which the two steps of smoothing and difference distribution are repeated until the
threshold for the overall smoothness measured by the relative variance is reached or
the maximum number of iterations is exceeded. Compared to the original grid-based
method, the TIN-based pycnophylactic interpolation is argued to have several advan-
tages (Rase, 2001), including that the error resulting from converting source zone
polygons to a regular grid is avoided, and that the TIN-based method is more suitable
for fast display in real-time applications. On the other hand, the TIN model is more
difficult to implement because it requires more effort and support for the data and pro-
gram structures.

Lam (1983) stated that the overlay methods will yield better estimates if the sur-
face is discontinuous, whereas the pycnophylactic method gives better results when
smoothness is a real property of the surface. In cases where the surface is intermediate
between discontinuous and maximally smooth, different target equations and side
conditions should be imposed for reliable results, but such methods are yet to be
developed.

Areal Interpolation with Ancillary Information

Population is related to other information, e.g., land use and transportation net-
works, that can be used to assist population interpolation. This section will review the
interpolation methods with ancillary information, particularly those can be extracted
from remotely sensed data.

The dasymetric method is the most well-known method in this category. It was
originally developed by Wright (1936) out of a concern that choropleth maps do not
give a valid representation of population distribution within enumeration units.
Wright’s idea was to use knowledge of the locality to identify areas within zones that
have different population densities, thus allowing refinement of the assumption of an
even distribution (Fisher and Langford, 1995). In his population density mapping of
Cape Cod, Wright made binary partitions iteratively to disaggregate general zones to
detailed zones of population density while making certain that the original zone popu-
lation was preserved.

In the past, Wright’s dasymetric mapping of binary partition was difficult to
implement. With the development of digital data and GIS technology, the dasymetric
method became easier through use of the GIS overlay process, which also provides
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the convenience of integrating various types of ancillary spatial data. For example,
Monmonier and Schnell (1984) demonstrated the integration of classified residential
land use classes from Landsat satellite imagery as the ancillary information in the
dasymetric method.

Wright’s dasymetric method relies on knowledge of the local areas to determine
subzone population densities. Flowerdew and Green (1989) proposed using statistical
regression analysis to estimate subzone population densities; yet Langford et al.
(1991) first applied multivariable regression techniques to estimate dasymetric sub-
zone population densities. Their approach is based on the following function:

Pi = Σ Pij = Σ Aij * Dj, (2)

where Pi  is the total population of source zone i; Pij  is the total population of land use
j within source zone i (subzone ij); Aij  is the total area of land use j within source zone
I; and Dj  is the average population density of land use j. Aij  can be obtained by a GIS
overlay operation of a land use map and a source zone map. Since there are multiple
source zones, multivariable regression can be applied to estimate Dj of multiple land
use types. Volume preservation is further maintained by scaling up or down derived
density measures to fit the original total population for each source unit.

Despite the ease of implementation, the dasymetric method is still subject to the
problem of an even distribution assumption within subzones. In other words, while
the difference between subzones is recognized, differences within subzones are
ignored. For example, for single-family land use, there is the difference between low-
density, medium-density, and high-density zones. To incorporate such a consider-
ation, one may conduct a more detailed land use classification, and associate each
land use class with a certain population density. Although this approach could
improve population interpolation accuracy, it requires effective ways to classify
detailed land use types and to estimate their population densities.

The easiest dasymetric mapping approach with remote sensing–derived land use
data is a binary division approach in which land use is classified to “populated” and
“unpopulated” and census populations are simply redistributed to those populated
areas; some example studies included Holt et al. (2004), Fisher and Langford (1996),
and Langford and Unwin (1994). Furthermore, a more specific dasymetric mapping
approach would classify a number of land use classes and redistributed census popu-
lations to these classes; some example studies include Mennis (2003), Eicher and
Brewer (2001), Yuan et al. (1997), and Langford et al. (1991). For the latter group of
studies, some ways of determining the population density ratio between land use
classes must be applied. Some studies used an empirical sampling approach (e.g,
Mennis, 2003), some used pre-defined population density statistics (e.g., Eicher and
Brewer, 2001), whereas some used regression analysis to derive population density
estimates (e.g., Yuan et al., 1997; Langford et al., 1991). The regression analysis
seems to provide a preferred approach because of its objectivity in testing model
accuracies through statistical significance tests.

Harvey (2002b; 2000) adopted an extreme approach to deal with the homogene-
ity assumption within subzones by estimating population density in the spatial unit of
pixels. His method first assigned all residential pixels within a source zone with an
equal share of the total population in the following equation:
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Pij = Pi/n, i  = 1, 2, …, n (3)

where Pij is the population initially assigned to the jth pixel in source zone i whose
total population is Pi, and n is the number of pre-classified residential pixels in source
zone i. Since there were many source zones, each of which had some residential
pixels with different digital values, an ordinary least-squares regression could be con-
ducted between the population and the digital value of the pixels. With the regression
coefficients obtained, the population of each pixel was adjusted by the following
equation:

, (4)

where is the regression estimate, and

. (5)

The result was that the adjusted reference population lay closer to the regression
line than the initially assigned population. If the iteration was run again with the
adjusted value, the R2 would be improved. The process was repeated iteratively, and
R2 continued to increase monotonically with decreasing increments, and stopped
when a predefined threshold was reached. Harvey proved that this iterated regression
procedure is a least-square approximation to the Expectation Maximization (EM)
algorithm that was originally presented by Dempster et al. (1977) and applied by
Flowerdew and Green (1989, 1991) for combining data from two incompatible sets of
spatial zones.

Harvey (2000, 2002b) argued that the pixel-level dasymetric method has several
advantages over zone-level dasymetric methods, including: human habitation by indi-
vidual residences should be better delineated by pixels; the mathematical form of
pixel-based model is simple and relatively robust; and implementation and refinement
of routine pixel-based classifiers are easier.

We separated areal interpolation methods into two categories depending on
whether ancillary information is utilized. The methods using ancillary information,
particularly the dasymetric method, usually yield more accurate results than those
without ancillary information, assuming the ancillary information reflects the spatial
distribution of the variables being mapped. It is worth noting that methods in these
two categories can be incorporated with each other for certain purposes. For example,
Langford and Unwin (1994) applied a kernel-based smoothing function to the result
of a dasymetric method in order to create a cartographically pleasing and informative
map, so that the readers won’t see too many pixel-level details. Also, most methods in
the first category (without ancillary information) can still make use of ancillary
information when it is available. For example, in the case of Tobler’s pycnophylactic
interpolation, if information about residential areas is available, one can first allocate

Pij adj( ) P̂ij r̂+=

P̂ij

r̂

Pij P̂ij–( )
j 1=

n

∑
n

----------------------------------=



POPULATION ESTIMATION METHODS 87

the population of a census unit to residential polygons within it, assuming non-
residential polygons have no population, and then perform the smoothing interpola-
tion operation.

STATISTICAL MODELING METHODS

We will review the second category of population estimation methods, the statis-
tical modeling methods, in this section. As reviewed previously, theories in urban
geography have demonstrated that population distribution in an urban area is affected
by morphological factors such as distance to the central business district (CBD), dis-
tance to roads, etc. Many of the morphological factors can be extracted from remotely
sensed data. Consequently, remote sensing has been actively explored as a means to
study population distribution. Strictly speaking, models from this group are mainly
designed to estimate an overall population count rather than population density that is
relevant to population distribution. However, since population count and population
density can be derived from each other through the size of the area of interest, the
method designed to estimate population counts can also be used to estimate popula-
tion distribution.

Statistical modeling approaches for population estimation started in the 1950s.
The initial motivation was to remedy the shortcomings of the decennial population
census, such as high cost, low frequency, labor intensity, etc. (e.g., Kraus et al., 1974),
but these approaches also have been applied to check the reliability of the census enu-
meration (e.g., Clayton and Estes, 1980), and the inference of socioeconomic charac-
teristics such as housing value and residential quality (e.g., Forster, 1983). The use of
remote sensing in statistical modeling approaches started in the mid-1950s, particu-
larly with the goal of searching for an alternative to a population census. Researchers
have conducted various statistical modeling methods for population estimation on
different scales with different types of remotely sensed imagery. In general, there are
five categories of approaches, based on the relationship between population and
(1) urban areas, (2) land use, (3) dwelling units, (4) image pixel characteristics, and
(5) other physical or socioeconomic characteristics (Lo, 1986; Liu, 2003).

Correlation with Urban Areas

This category of methods is a general approach based on a functional relationship
between urban areas and population size. Inspired by the biological law of allometric
growth (Huxley, 1932), Nordbeck (1965) studied the relationship between urban
areas and population size of many U.S. cities and concluded that the built-up area (A)
of a settlement is proportional to its population (P) raised to some power:

A = a * Pb. (6)

Tobler (1969) was the first to use satellite imagery to study the relationship
between population and urban areas. He used images from the Gemini manned space
flight program to study populations of many cities in the world. Assuming that if
cities can be considered circular in shape, and if shape varies insignificantly with
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time, Tobler found the correlation coefficients between radii and populations of 0.87
or higher in the following function:

r = a * Pb. (7)

The results of his study also indicated that the coefficient (a) and exponent (b) for
cities in the United States was comparable to those for cities in Sweden and Canada;
cities in Japan and in the Nile Delta, however, had coefficients and exponents reflect-
ing the dense and compact structure of settlements in Asia and the Middle East.

The availability of Landsat satellite imagery and advancement in image process-
ing techniques allowed researchers to efficiently study the relationship between popu-
lation and urban areas, although one of the major difficulties involved differentiating
rural/urban boundaries (Lo and Welch, 1977). Using 1972 to 1974 Landsat MSS
imagery of 10 large cities in China with 500,000 to 2,000,000 populations, Lo and
Welch (1977) found correlation coefficients of 0.82 or higher between populations
and classified urban areas in a modified function from (6):

P = a * Ab. (8)

This function can be referred as the allometric growth model (Lee, 1989; Lo,
2003), which describes that the relative growth rate of population is proportional to
the relative growth rate of the residential land area.

Researchers also used urban light as an indicator for population size. Prosperie
and Eyton (2000) found a quite high R2 of 0.974 between light volumes and popula-
tions of 254 Texas counties using DMSP (Defense Meteorological Satellite Program)
imagery. Adopting a similar approach but at a smaller scale using cities, Lo (2002)
found a correlation coefficient of 0.91 between the light volumes of 35 Chinese cities
and their non-agricultural populations. He further evaluated derived population
models using data from other 18 Chinese cities and obtained acceptable accuracies.

Correlation with Land Use

The second approach for population estimation is based on correlating population
counts with different types of land use areas, which should achieve higher precision
than the first approach. The total population for an area can be calculated according to
the following function:

 * , (9)

where P is the total estimated population;  Aj is the area of land use j; and Dj is the
population density for land use j, which is to be determined through regression anal-
ysis. This basic function is similar to that used in the dasymetric method reviewed
previously, only that the former intends to disaggregate census population by
maintaining the original census unit population count, whereas the latter intends to
estimate the total (intercensal) population for an area.

P Aj
j

∑= Dj
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Areas for different types of land use could be extracted from remote sensing
images. The accuracy of population estimation would largely rely on how accurate
different types of land use are classified. In Weber’s (1994) study of population esti-
mation for the City of Strasbourg, France, he classified six types of urban land use
from SPOT HRV XS images with a Kappa coefficient of 0.915. Then he ran a regres-
sion analysis between population counts and land use areas of 2,812 census units
based on function (9) and obtained an R2 of 0.91. After applying his regression model
to estimate the total population for the city, his model estimate was 7.91% below the
census population of the city.

In Lo’s (2003) study of Project ATLANTA, he classified six types of land use
from Landsat TM images and obtained a Kappa coefficient of 0.878. The area of low-
density urban use class was then regressed with population counts of 418 census
tracts using a logarithmic transformed allometric growth model. The result had an R2

of 0.68. He then applied the regression model to estimate populations of 373 census
tracts and the results had a relative error of 14.80% and a overall underestimate of
8.07%.

Population densities for different types of land use could also be determined
from sample surveys or census statistics, in addition to the regression analysis. For
example, in Kraus et al.’s (1974) study of population estimation for four California
cities, four types of urban land use were first classified. Then the authors calculated
the characteristic population densities for each type of land use from sampled census
block-level population data. Finally they estimated city populations based on function
(9). The results ranged from an underestimate of 9.17% to an overestimate of 7.00%
when compared with census populations of the four cities.

Correlation with Dwelling Units

The total population of an area can be estimated by multiplying the total number
of dwelling units with the number of persons normally living in a dwelling unit. It is
also possible to categorize dwelling units and apply a different persons-per-dwelling
unit ratio to each category. This ratio can be derived from sample surveys or calcu-
lated from census data with the assumption that a single household occupies one
dwelling unit. The total number of dwelling units in an area may be estimated from
remote sensing images.

Green (1956) was probably the first researcher to propose using individual dwell-
ing unit counts observed from aerial photographs for population estimation. Porter
(1956), however, was the first to actually apply this methodology (Kraus et al., 1974),
with the persons-per-dwelling unit ratio established from ground observation in their
study of Liberia. Hsu (1971) applied the same methodology for intercensal population
estimation of the Atlanta area, but he derived his persons-per-dwelling unit ratio from
U.S. census tract data. Collins and El-Beik (1971) and Dueker and Horton (1971) fur-
ther identified different types of residential buildings from aerial photographs for pop-
ulation estimation, with their population density statistics calculated from census data.
To obtain a more accurate persons-per-dwelling unit ratio, Lo and Chan (1980) used a
field survey methodology to calculate the average population density for various types
of housing. Furthermore, in an effort to automate the time-consuming procedure of
counting dwelling units, Lo (1989) used a raster approach to extract residential
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building density, on a grid cell by grid cell basis, from high-altitude aerial and space
photographs. He first calculated the maximum possible occurrence of dwelling units
in each grid cell with reference to the dwelling unit size. Then the percentage of occur-
rence of residential buildings in each grid cell was able to be estimated.

In the past, no effective ways of automatically extracting residential buildings
existed. Researchers relied on manually identifying and counting dwelling units from
high-spatial-resolution aerial photographs, even though visual interpretation is labori-
ous and time consuming. With the advance of very high spatial resolution satellite
images, such as IKONOS and QuickBirds, and the improvement of feature extraction
techniques (Haverkamp, 2004), automatic extraction of dwelling units from satellite
images has become possible. Another prospect for automatic building extraction is
the advancement of 3D object extraction techniques from LIDAR data (Rottensteiner,
2003). With these new remote sensing data and building extraction techniques, popu-
lation estimation by dwelling unit counts may become a viable approach.

Correlation with Image Pixel Characteristics

Other than the physical characteristics extractable from remotely sensed imagery,
population density can also be directly correlated to the spectral reflectance value of
image pixels. Hsu (1973) was probably the first to suggest the idea of using imagery
pixel values to develop a multiple regression model for population estimation (Lo,
1986). His idea, however, was not implemented until Iisaka and Hegedus’s (1982)
pioneering work in estimating population distribution of Tokyo, Japan. They reported
that the mean spectral values of Landsat MSS bands 4, 6, and 7 were strongly corre-
lated to population density. Lo (1995) adopted a similar approach while using higher
resolution imagery of SPOT, and reported a correlation coefficient of –0.91 between
population density and the mean spectral values of SPOT band 3 for the Hong Kong
area. Webster (1996) argued that the spectral values alone cannot discriminate areas
of different population densities effectively. Alternatively, he combined numerous
spectral and textural measures from Landsat TM imagery in a regression model and
found textural measures have more significant predictive power for housing densities
than spectral measures. Harvey (2002a, 2002b) also incorporated a variety of spectral
transformation measures, such as the band-to-band ratio and difference-to-sum ratio,
in addition to textural measures, in a series of stepwise regression models for popula-
tion estimation. Further, Harvey (2000; 2002b) developed an innovative iterated
regression procedure (reviewed previously as a dasymetric method) to improve the
predictive power of a regression model based on pixel spectral values. There are also
studies using imagery texture analysis to categorize pixels first and then correlate
pixel counts in different categories with population density, which is similar to the
approach of inferring population through land use. For example, Chen (2002) used a
homogeneity texture measure to categorize pixels of different levels of homogeneity
and correlate the number of pixels in each category to housing densities.

Correlation with Other Physical and Socioeconomic Characteristics

Other than the mentioned physical and pixel characteristics extractable from
remotely sensed imagery, numerous other physical and socioeconomic variables can
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also be incorporated for population estimation. A notable example is the LandScan
Global Population Project (Dobson et al., 2000), in which light volume from night-
time imagery, land cover derived from various types of remotely sensed imagery, and
other information about demography, topography, and transportation networks have
all been combined in a model to estimate population at a 30 × 30 second (approxi-
mately 1 × 1 km) resolution. Many of the variables can be extracted from remotely
sensed imagery. Similar approaches have also been applied in a smaller scale. For
example, Liu and Clarke (2002) found that the total population in urban areas is cor-
related with distance to the CBD, accessibility to the transportation system, slope, and
the time when the residential community was first built. Overall, the accuracy and
robustness are improved with increasing model complexity. It is worth noting that
although multivariable approaches for population estimation tend to improve the
overall accuracy compared to methods using a single variable, the selection of vari-
ables in the model requires guidance from theories in urban geography.

Many physical and socioeconomic variables can assist the estimation of popula-
tion, yet only those attributes that can be directly or indirectly observed and extracted
from remotely sensed imagery are applicable in the remote sensing context. Residen-
tial areas constitute a major component of such analysis. The data are usually of two
types: (1) the structural conditions of individual residential units; and (2) attributes
reflecting the residential or neighborhood environment. Green (1957) and Green and
Monier (1959) pioneered research using aerial photograph to study socioeconomic
and demographic variables. They cited an extensive literature to demonstrate that
social values are attached to housing and residential communities and, by extension,
that observable physical data have meaningful sociological correlations.

Regardless of whether socioeconomic or pixel characteristics are used in statisti-
cal modeling for population estimation, all studies inferring population from remotely
sensed data have reported a consistent finding, i.e., that small-area population estima-
tion is often not as accurate as large-area estimation. It may be explained that over-
estimation and underestimation are canceled out for large-area population estimation
and thus the overall accuracy is high (Lo, 1995). Nonetheless, more studies are
needed before remote sensing can be applied to population estimation on an opera-
tional basis.

SUMMARY

Of all the population estimation methods, the dasymetric method is commonly
regarded as a more accurate approach, provided that the used ancillary information
gives a truthful description of where people actually live. Furthermore, the dasymetric
method is not only more accurate, but also relatively stable. It is robust to the varia-
tion of population density associated with a certain type of land use, as well as the
anomaly of highly urbanized but sparsely inhabited areas (Fisher and Langford,
1996). The reason is because the volume-preserving property preserves the popula-
tion of the source unit in the transformation to raster representation, and thus all asso-
ciated errors are inherently limited to variation within each individual source unit.

The dasymetric method used with remote sensing is also robust to imagery clas-
sification error. Fisher and Langford (1996) reported that errors of up to 40% in the
classified TM image still yield better estimates of the interpolated populations than
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other regression or surface methods they tested. The reason for the relative robustness
of the dasymetric method under classification error is due to the aggregated error
within zones. Specifically, even if the classification error is high, the frequency of
pixels in different land classes may not vary significantly within a zone. As observed
by Donnay and Unwin (2001, p. 220), “even though individual pixels may have a
weak probability of being correctly assigned to a land use category, when aggregated
into a target zone for density estimation, the relative frequencies within these target
zones do not degrade substantially.” Relevant empirical studies by Lo (1995),
Webster (1996), and Harvey (2002b) also indicated that classification errors at the
pixel level can be high without impacting the accuracy of areal population estimates.

In this review, we separated population estimation methods into areal interpola-
tion and statistical modeling. It is worth noting that the statistical modeling approach
can also be incorporated into the dasymetric method. For example, Langford et al.
(1991) described a dasymetric procedure based on five types of land use classified
from TM multispectral imagery, with their average population densities derived from
regression analysis. Yuan et al. (1997) also applied a multivariate regression model to
correlate census block-group populations with different land use areas classified from
Landsat TM images in their dasymetric study.

Studies on population issues generally use census data as the primary data
source. The census, however, may not be applicable to the intended purpose of these
studies. This is because in many counties, including the United States, the census pop-
ulation figure is actually a de jure population, in contrast to a de facto population. A
de jure population reports all usual residents of the given area, whether or not they are
physically present there at the reference date. A de facto population, in contrast,
reports all persons physically present in the area at the reference date. The U.S. cen-
sus is a de jure census because it is based on people’s home address, rather than where
they work or travel during the day, or if people are out of town. The U.S. census is
mainly concerned with residential populations and the daytime population distribu-
tion can be very different from that described by the census. For example, Las Vegas
has a much higher daytime population than that reported by the census because of its
high proportion of tourists. Since some applications (e.g., emergency response)
require knowledge of daytime population whereas others (e.g., urban growth) require
residential population, it is desirable that both types of population be estimated.
Unfortunately, to date little research has attempted to model daytime population. The-
oretically, urban land use information is more related to daytime than nighttime popu-
lation because land uses such as industrial, commercial, and recreational provide
information about where people are during the day. The methodology of relating non-
residential land use to daytime population is yet to be explored; research on people’s
traveling behavior may provide some guidance in this area.

This paper reviewed past GIS and remote sensing literatures on population esti-
mation, particularly those making use of remotely sensed data. It is clear from the
review that remote sensing provides valuable resources for useful ancillary informa-
tion. Past studies of population estimation mainly relied on images of relatively
coarse spatial resolution. With the availability of high-spatial-resolution commercial
images, such as QuickBird and IKONOS, as well as the advancement of image pro-
cessing techniques, improvement in population estimation accuracies is expected.
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