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Abstract Through the PRODESDIGITAL Project, the

National Institute for Space Research (INPE) has been

mapping vegetal coverage in the Brazilian Legal Amazon

using Landsat satellite images. INPE not only identifies

deforested areas but also releases a daily map of burning

areas. These fires often get out of control and end up

accidentally invading areas of forest exploited by the

lumber industry, agricultural plantations, and pastures.

However, the deforestation and burning maps alone are

insufficient for monitoring and control on a regional scale.

The current study performs a dynamic analysis of the

characteristics of burning occurrences in the state of Pará,

considering not only a possible spatial influence, but also

the temporal dependence during the period 1999–2004. In

the distribution analysis of burnings and deforestation in

Pará throughout this time, it can be observed that burnings

mainly take place near the main highways in the state.

Therefore, the currently deforested areas correspond to the

mesoregions with good infrastructure access. These regions

should be targets for farming technological investments. It

can be shown that burning occurrences do not happen in a

random way. Furthermore, the spatial diffusion process is

faster for burnings than for deforestation. The spatio-tem-

poral study showed that there was a change in the pattern

records of burnings mainly in 2004, where the greatest

quantity of records were located in the northeastern

mesoregion of Pará and great concentrations were also

observed in southeastern and southwestern mesoregions.

Keywords Moran’s index � Spatio-temporal regression

models � Burnings � Deforestations

Introduction

The monitoring of the forest area of the Legal Amazon

performed by the National Institute for Space Research

(INPE 2001) revealed deforestation rates that varied

between 1 and 3 9 106 ha/year in the period 1991–1999

and a loss of about 6 9 107 ha (more than half a million

km2) of forest by 2000. This deforestation results from an

Amazon occupation process occurring from the second half

of the twentieth century and is associated with the expan-

sion of the agriculture margin, the construction of highway

transportation systems and development poles. Environ-

mental damage caused by this deforestation has led to

significant social problems, such as unequal land distribu-

tion concentration, the low stability of farmers in the

agricultural field, precarious urbanization, and social con-

flicts followed by greater or lesser degrees of violence. The

expansion of the agricultural margin and deforestation in

the Legal Amazon are closely connected to the context of
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the reorganization of Brazilian agriculture, followed by

accelerated industrialization starting in the 1950s and,

more recently, by attempts to adapt Brazil to the global-

izing economy. In this context, many factors may have

contributed to the high rates of deforestation, among which

are the public and private funds availability, the population

dynamics, the organization of the production systems and

various physical conditions.

Due to public politics, the deforestation analysis carried

out by the PRODES Project (analogical or digital) is not

sufficient to provide a basis for governmental action

because the results are obtained yearly and are often

derived from informative action, that is, after actions have

already taken place. Because the data are grouped by state

and published a year after a deforestation event occurs, the

federal and state governments cannot anticipate dynamic

changes in the use of Amazonian soil. Likewise, it is

necessary to supplement the PRODES data with other

initiatives that allow the Brazilian State to develop pre-

ventive actions to combat illegal deforestation activities.

Among previous research, Paiva’s (2003) used spatial

statistics to identify clusters and outliers of the aggregate

data in areas, by means of choropleth maps and by Moran’s

spatial dependency measures in the study of population

mobility in São Paulo. Lima et al. (2005) investigated the

association between socioeconomic variables and homicide

rates of the male population aged from 15 to 49 years, in

the cities of the state of Pernambuco, from 1995 to 1998,

taking into consideration the indicator’s spatial location

and using the spatial correlation test determined by Mor-

an’s index, multiple regression, Conditional Auto Regres-

sive (CAR) and the Loess Function, as a special detection

tendency model.

In the current work, a spatio-temporal analysis is con-

ducted of burning occurrences in the state of Pará during

the period 1996–2004. This study will take into consider-

ation, in addition to the burnings registered in this period,

variables such as vegetation, deforestation, climate, and the

distance along the roads. In this way, it is intended to

contribute to assisting the formulation of public policies in

monitoring the control of burnings in the state.

Study area

The Legal Amazon of Brazil is defined by law to include the

states of Acre, Amapa, Amazonas, Pará, Rondonia, Roraima,

Mato Grosso, Maranhao and Tocantins (Fundação Instituto

Brasileiro de Geografia e Estatı́stica-IBGE, 1991). It encom-

passes around 5 million square kilometers. The state of Pará

(Fig. 1) with 6.2 million inhabitants occupies an area of

1,247,703 km2, mostly covered with rain forest with hot and

humid regions drained by the Amazon river and its numerous

tributaries. The state includes the island of Marajo as well as

several other islands of the Amazon delta. The constant

rainfall has eroded the soil to the point that where it used to be

for conventional agriculture, the land has been taken by cattle

production. The state of Pará is connected to the rest of the

country by important highways: the BR010, a radial highway

that connects the national capital Brasilia to the city of Belem

and the rest of the state; the PA150, which divides the

southeast and northeast areas of the state; and the PA256 and

BR230,which cross the state fromeast towest. TheBR163 is a

very important highway connecting the south soybean pro-

duction areas to Santarem city’s export port (Fig. 1).

Methodology

According to Bailey and Gatrell (1995), a spatial data

analysis may be done whenever the information is spatially

located and when there is a need to taken into consideration

the importance of the spatial arrangement of the phenom-

ena under analysis or the desired result interpretations. The

objective of spatial analysis is to expand the process of

comprehension, to evaluate evidences related to the

hypothesis, or to try to predict values in areas where

observations are not available (Bailey and Gatrell 1995).

Several methods may be distinguished: those that are

essentially related to spatial data visualization; those that

are exploratory, investigating and summarizing relations

and mapped patterns and those that include specification of

a statistical model and parameters estimation.

Fig. 1 The main highways in the State of Pará
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With the use of graphic visualization, it is possible to

identify spatial patterns in the data, generating a

testable hypothesis, as well as evaluating the adjustment of

suggested models, or the legitimacy of the resulting pre-

dictions. The techniques employed, known as exploratory

analysis of spatial data, may be univariate or multivariate,

making use of tools like histograms, maps, density esti-

mates and boxplots, graphs, etc.

One of the most used techniques in the study of spatial

phenomena is analysis of spatial auto-correlation. This

technique allows for the identification of the structure of

the spatial correlation that best describes the data distri-

bution pattern. The basic idea is to estimate the magnitude

of the spatial auto-correlation among the areas, evidencing

how the values are correlated in space. The global indi-

cators of spatial auto-correlation, like the Moran’s index,

provide a unique value as spatial association measure for

the whole set of data, which is useful in characterizing the

region being studied as a whole. However, when a large

number of areas are being dealt with, it is likely that dif-

ferent regimes of spatial association occur and that places

appear where the spatial dependency is more pronounced.

By ‘‘local analysis’’ or ‘‘local modeling’’, the presence of

spatial differences is sought to be tested, instead of

assuming that they do not exist. These analyses dissociate

the global statistics according to their local components,

focusing more on the local exceptions than on the search

for global regularities (Fotheringham et al. 2000).

Among the graphic techniques to demonstrate local

relations in univariate databases, the Moran scatter plot

stands out. Besides allowing the identification of group

values, also allows the identification of extreme values in a

distribution, other than presenting a view of the existing

level of spatial auto-correlation.

The I univariate Moran’s statistic is formally defined as

(Anselin 1996),

Ikl ¼
z0kWz0l
z0kzk

or Ikl ¼
z0kWz0l
n

ð1Þ

where zk ¼ Yk � lk½ �=rk is the standard study variable

(with average, l = 0, and standard deviation, rk = 1), in a

particular location k and zl ¼ Yl � ll½ �=rl is, in the same

way, the variable in another location l (where k = l). The

moderation variable of W is a matrix of continuity. If the

zone k is adjacent to (touches) zone l, the interaction

receives a weight equal to 1. If not, the interaction receives

a weight equal to zero. Finally, n is the number of

observations.

Moran’s statistic I compares the sum of crossed

products of values in different locations, two at a time

and varies between -1 and ?1. When nearby dots have

similar values, the crossed product is high. On the con-

trary, when nearby dots have different values, the crossed

product is low. Consequently, a high value of I indicates

greater spatial auto-correlation than a low value of I. A

positive indication of spatial auto-correlation reveals that

there is a similarity between the studied attribute’s values

and the attribute’s spatial location. A negative spatial

auto-correlation reveals that there is a difference between

the studied attribute’s values and the attribute’s spatial

location. This statistic, when it lacks spatial dependence,

corresponds to a negative number very near zero, given

by

EðIÞ ¼ 1

n� 1
ð2Þ

Values of I higher than the theoretical average, E(I),

indicate positive spatial auto-correlation, while values

lower than the theoretical average, E(I), indicate negative

spatial auto-correlation.

This concept of spatial auto-correlation measures to

what degree the value of an observed variable in a given

geographic unit presents a systematic association (non-

random) with the value of variable observed in nearby

locations. In other words, the existence of linear associa-

tion is tested between the value of the variable in place i,

(zik) and the corresponding ‘‘spatial lag’’ for the same

variable, [Wzz]
i. In this case, standardization by the lines of

the matrix of spatial weight allows an interpretation of the

‘‘spatial lag’’ as an average of the nearby values.

Its multivariate generalization can be defined as,

Iikl ¼ zikWijz
j
l ð3Þ

with the same notations as previously used. This statistic

provides an indication of the degree of linear association

(positive or negative) between the values of a variable in a

given location i and the average of other variables in

nearby locations.

There are four types of spatial association, depending on

the correspondence between zk and the ‘‘spatial lag’’ for zl.

Relative to the average, with the standardized values, two

classes of positive spatial correlation are possible—spatial

clusters [high–high (HH), low–low (LL)]—and two classes

of negative association—spatial outliers [high–low (HL),

low–high (LH)]. The individual contributions of each

observation can be estimated by Eq. (4), as has already

been proposed by Anselin (1996) in his development of a

Local Indicator of Spatial Association (LISA)—the local

version was called Moran’s local index, defined as,

Ii ¼ zi
Xn

j¼1

wijzj ð4Þ

where yi and yj are variables whose sum over j is such that

only the nearby values of j [ Ji are included. The set of Ji

includes the nearby values of observation i, defined

according to a matrix of spatial weights.
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The intuitive interpretation is that the local I provides an

indication of the degree to which a group of similar values,

colleting around the neighborhood of a particular obser-

vation, identifying spatial clusters, are statistically

significant.

For considering the spatio-temporal dimension, Lopez

and Chasco (2004) introduced some tools for analyzing and

viewing spatio-temporal structure, known as Exploratory

Spatio-Temporal Data Analysis (ESTDA). In this case, the

Moran spatio-temporal auto-correlation statistic, the Moran

dispersion spatio-temporal diagram, the Moran function of

spatio-temporal auto-correlation and Moran’s line graph

I are included.

For calculating Moran’s spatio-temporal auto-correla-

tion statistic, the variable is observed at two time instants, t

and t - k, with the restriction that the future values explain

the past values. In this case, Moran’s bivariate statistic I

calculates the relation between the spatial lag Wzt, in the

instant t and the original variable z in the instant t - k,

where k is a temporal lag. In this way, this statistic quan-

tifies the influence that a change in the spatial variable z,

observed in the past zt-k in a specific location i, exerts on

its neighbors in the present time Wzt. Therefore, the

statistic I of Moran’s spatio-temporal auto-correlation is

defined as,

It�k;t ¼
z0t�kWz0t
z0t�kzt�k

ð5Þ

On Moran’s spatio-temporal dispersion diagram, the

spatial lag Wzt is represented on the vertical axis and the

standard lagged variable zt-k is put on the horizontal axis.

The inclination of the regression line of Wzt, over zt-k is

equal to expression (5). In this case, it is also possible to

analyze each individual location associated with the dis-

persion diagram’s four quadrants, which represent the four

types of spatio-temporal association, interpreted similar to

the Local Indicator of Spatial Association (LISA).

Moran’s spatio-temporal auto-correlation function is

simply the result of the graphic representation of Moran’s

spatio-temporal auto-correlation statistic (Eq. 5) for a

determined variable observed during a certain period of

time. In other words, it represents the values of the coef-

ficients of Moran’s spatio-temporal statistic on the vertical

axis and the lags on the horizontal axis. This graph visu-

alizes the influence that a change in the spatial variable z

observed in the past zt-k at a specific location i exerts over

its neighbors in the present time Wzt. It is necessary to

evaluate the significance of the values of It�k;t and, con-

sequently, the presence or absence of spatio-temporal auto-

correlation.

If the values of Moran’s spatio-temporal auto-correla-

tion function are significant and closer to the present

moment (lag 0), it may be an indication that the studied

variable presents a very fast spatial diffusion process.

Otherwise, if the significant values are concentrated far

from the first lags of time, the variable should have a

slower process of spatial diffusion. The line graph I of

Moran allows for visualization of the evolution of spatial

dependence in a particular space of time.

For identifying models of spatio-temporal regression,

initially a model of instantaneous or non-contemporary

spatial dependence will be built, in other words where only

the present values of the variable answer y(yt) can explain

their spatial lag, Wzt. This is intended to capture the spatial

auto-correlation exhibited by the spatial lag of yt, Wyt,

included as an explicative variable in the model. In other

words,

yt ¼ aþ qWyt þ Xbþ e ð6Þ

where q is the parameter of the spatial lag to be evaluated,

X is a matrix of observations of the explicative variable and

e the term of error. This is the known spatial lag model,

where the parameters have to be evaluated by maximum

likelihood.

Then another model is built, where the existence of

spatial dependence in a response variable y(yt) must be

completely captured by the spatio-temporal lag of

y(Wyt-k), as a explicative variable for the model. In other

words,

yt ¼ aþ qWyt�k þ Xbþ e ð7Þ

where q is the spatial parameter to be evaluated, X is a

matrix of observations of the explicative variable and e the
term of error. In this case, the parameters may be evaluated

by minimum squares, provided that the spatial lag is not

correlated with the errors (Lopez and Chasco 2004).

Analysis and discussion of results

In the spatial pattern study of the average distribution of

burnings and deforestation in the cities of the state of Pará,

spatial analysis tools were used that as yet have been used

in literature, such as Moran’s univariate and bivariate

global statistic I, Moran’s local univariate and bivariate

statistic I, and clusters maps.

In Table 1 and Fig. 2, the results of Moran’s global

statistic I are presented with the dispersion graphs of the

Table 1 Moran’s global test I for fire sites

Year 1999 2000 2001 2002 2003 2004

I 0.4986 0.5556 0.4619 0.4993 0.2864 0.4756

Prob 0.001 0.001 0.001 0.001 0.002 0.001

Significance based on resampling with 999 permutations
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Fig. 2 Dispersion graphs for the fire sites in the state of Pará, 1999–2004
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fire sites registered from 1999 to 2004, in the state of Pará.

The evaluation of statistical significance was obtained by

resampling with 999 permutations.

It was observed that there is a global indication of

positive auto-correlation in this period, in other words, in

the state of Pará; cities with high (or low) burning occur-

rence are surrounded, on average, by cities in the same

situation. The graphs of dispersion in Fig. 2 show that,

from 1999 to 2002 the cities of São Felix do Xingu and

Santana do Araguaia in the southeast stood out compared

to the other cities. In 2003, Trairão in the southwest and

Altamira and São Felix do Xingu in the southeast stood out,

as did Ulianópolis and Paragominas in the southeast in

2004. It can be observed that the majority part of the data

were located in the high–high quadrant (cities with high

rates of burnings are also surrounded, on average, by cities

with high rates of burnings). Moran’s statistic I indicates

that there is positive spatial auto-correlation with few

alterations in this period, rejecting the null hypothesis that

the neighboring cities are not influenced by a city with a

high record of burnings to a significance level of 0.01 %

for 1999–2004 and a significance level of 0.02 % for 2003.

Even with the more detailed results, the dispersion

diagram is not yet enough to achieve a satisfactory con-

clusion. For that reason, the clusters map is used, which

illustrates the classification in four categories of spatial

association that are statistically significant. In this case, the

Local Indicator of Spatial Association (LISA) was used—

called Moran’s Local Indicator—defined in (4).

Therefore, with the use of the clusters map it may be

observed that the existence of positive auto-correlation

among the cities is locally confirmed, since among the data

with the greatest significance high–high classification is

mainly found in the period under consideration. This result

means that the most noticeable cities in terms of burning

occurrences are found near other cities that also present

high burning occurrences. This result may be confirmed by

the degree of influence that nearby regions have on each

other. If so, it proves the hypothesis that the cities with high

number of burnings may be influencing neighboring

regions due to the influence of spatial proximity.

In Fig. 3, illustrating burning occurrences in the state of

Pará in 1999, an evident polarization can be observed,

where two large regions are noticeable: one where signif-

icant burning occurrences is predominant in the southeast

and southwest of the mesoregions of the state and the other

in the mesoregion of Marajó and Metropolitan Belém,

whose characteristic is the low occurrence of this event. In

the southwest and southeast regions of the state, the cluster

map shows that the majority of cities with large territorial

extensions are concentrated in the high–high quadrant; that

is, cities with high rates of burnings surrounded by cities

that also present, on average, high rates of burnings. These

cities are bisected by the highways PA 167, BR 235 and

BR 158. On the other hand, the smaller cities in territorial

terms are located in the low–low quadrant, indicating that

cities with lower burning occurrences are surrounded by

cities that also present, in average, low burning occur-

rences. The lower map in Fig. 3 shows the significant rates

for these clusters, which were 0.05 and 0.01. It can also be

observed that, for 1999, in almost all the Low Amazon and

half of the southwest mesoregion of the state burning

occurrence did not present a statistically significant result.

Similar analysis can be done for the other years, so that

it may be possible to verify the evolution of the picture in

terms of this occurrence and other events over time.

For evaluating the relation between the variables burn-

ing and deforestation Moran’s bivariate I coefficient was

used. In Table 2 and Fig. 4, the results for the available

Table 2 Moran’s global I for fire sites (x) versus deforestation (y)

Year 2000 2001 2002 2003

I 0.4663 0.3565 0.2747 0.2063

Prob 0.001 0.001 0.001 0.001

Significance rate based on resampling with 999 permutation

Fig. 3 Cluster map and respective significance map for burning

occurrences in the state of Pará, 1999
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period are presented for the current project from 2000 to

2003. In all the years, there was a highly significant posi-

tive spatial correlation, although a decrease is observed in

spatial auto-correlations over time. The evaluation of the

statistical significance was achieved using resampling with

999 permutations. What is notable is that to the city of São

Felix do Xingu in the southeast of Pará presented in every

year a high positive spatial correlation for the fire sites

compared to the average deforestation of the neighboring

cities.

Similar to the discussion of the measure of univariate

global spatial auto-correlation, the global bivariate Moran’s

I statistic can mask patterns of linear association different

from the indicated by the bivariate global auto-correlation.

In order to see this, the map of bivariate clusters, is used

which shows the classification in four categories of spatial

association that are statistically significant in terms of the

local bivariate Moran’s I. Figure 5 presents the results for

the year 2000, including the map of the observed clusters’

significance.

The map of bivariate clusters for burning occurrences

and average deforestation (Fig. 5) clearly shows the local

patterns of auto-correlation as the bivariate high–high

cluster, represented by the majority of cities in the south-

east of Pará and the bivariate low–low cluster, represented

by the mesoregions of Marajó and Metropolitan. It may be

observed that rates of significance of 0.001 are

predominant.

The cities contained in the high–high cluster are crossed

by highways BR235, BR222 and BR158. So, the relation

between the fire sites and the deforestation may be evalu-

ated as stronger in the mesoregion of southeast Pará. This

Fig. 4 Dispersion graphs for fire sites versus average deforestation in the state of Pará, 2000–2003
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region is characterized by an intense lumber market. The

cities of Low Amazon, southwest Pará and northeast Pará

did not present significant spatial correlation. The cities

indicated by the colors low–high (green) are classified as

spatial outliers and may indicate transition regimes.

A studywas made of the analysis of spatio-temporal auto-

correlation for the distribution of fire sites from 1999 to 2004

and deforestation from 2000 to 2003. In Fig. 6, to the left

Moran’s spatio-temporal dispersion diagram is presented,

which shows, on the horizontal axis, the fire sites observed in

the cities in Pará in 1999 (Foco99) and on the vertical axis,

the corresponding spatial lag in 2004 (W_RF04), whereW is

a matrix of standardized continuity (two cities are neighbors

if they share a common border). To the right, Moran’s spa-

tio-temporal diagram is presented, which shows, on the

horizontal axis the deforestation observed in the cities in

Pará in 2000 (DESM2000) and on the vertical axis the cor-

responding spatial lag in 2003 (W_D03).

A high relation between the fire sites in 1999 and their

spatial lag 5 years later may be observed ðI1999; 2004 ¼
0:1425; p\0:001Þ mainly in the cities of São Felix do

Xingu, Marabá and Paragominas, all in the southeast

mesoregion. A stronger spatio-temporal correlation is ver-

ified in relation to deforestation. In this case, deforestations

registered in 2000 shows a strong relation with their spatial

lag 3 years later ðI2000; 2003 ¼ 0:6077; p\0:001Þ. This

shows that the occurrence of these events (fire sites and

deforestation) in particular cities has an influence on

neighboring cities over time.

In Table 3, the results of Moran’s spatio-temporal auto-

correlation I statistics are presented for fire sites and

deforestation for the periods 1999–2004 and 2000–2003,

respectively. In Fig. 7, Moran’s functions of spatio-tem-

poral auto-correlation are presented for fire sites and

deforestation for 2004 and 2003, respectively.

Fig. 5 A cluster map and a comparable map of significant burning

occurrences (x) versus average deforestation (y) in the state of Pará,

2000

Fig. 6 Moran’s spatio-temporal diagram for fire sites, on the left, and deforestation, on the right
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In Fig. 7, clear evidence of spatio-temporal dependence for

the two variables can be observed. For the fire sites, all values

except that for the year 2002 exhibit lagged values with high

statistical significance (p < 0.001,Table 3). In this case, at the

beginning of the period, the values present high lagged values

with decreasing value until 2002. From 2002, the values start

to rise again until they showevidences of stability for 2003and

2004. On the other hand, variable deforestation presents a

rising tendency, where all values are highly significant

(p\ 0.001, Table 3), which shows the influence of this

variable’s past values in particular location over its neigh-

borhood on the present increase rising over time.

Figure 8 shows the records of fire sites for 1999, 2001,

2002 and 2004. Although it is not very clear, there was a

reduction in the records of fire sites from 2002 onward.

There is an alteration in the standard of records of burnings

mainly in 2002 and 2004. In 2002, the greatest density of

records was located in the southeast region of Pará, and

also a line of fire sites across the highway Santarem–

Cuiaba. In 2004, the greatest quantity of records was

located in the northeast mesoregion as well as considerable

concentrations to the south of the Low Amazon and the

north of mesoregions southeast and southwest of Pará.

The occurrence of highly significant values for burnings

near the present moment (lag zero) suggests that the pro-

cess of spatial diffusion for burnings is faster than that for

deforestation, which presents more significant values for

more distant moments from the reference time (2003).

To try to capture the spatial dependence presented by

the deforestation variable in 2003, Eq. (8) was used, which

represents the spatial lag model, in which was established

Table 3 Moran’s spatio-

temporal statistics for burnings

and deforestation in the state of

Pará

Year Fire sites Deforestation

Spatial lag Moran’s index p value Spatial lag Moran’s index p value

2004 0 0.6587 0.001* 0

2003 1 0.2493 0.001* 1 0.5622 0.001*

2002 2 -0.0601 0.167* 2 0.5715 0.001*

2001 3 0.2262 0.001* 3 0.5789 0.001*

2000 4 0.2332 0.001* 4 0.6077 0.001*

1999 5 0.1425 0.001* 5

* Significance (p) of 0.1 %. Inference done with simulations of 999 permutations
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Fig. 7 Moran’s functions of spatio-temporal auto-correlation of fire sites (2004), to the left, and deforestation (2003), to the right, for the state of

Pará

Fig. 8 Records of fire sites in Pará, for 1999, 2001, 2002 and 2004

Environ Earth Sci (2016) 75:274 Page 9 of 12 274

123



as the answer variable, yt, deforestation in 2003 and as the

explanatory variable the outbreaks of fire registered in

2003. In other words,

DESM2003 ¼ aþ qWDESM2003 þ FOCOS2003bþ e ð8Þ

The method of maximum likelihood was used for

approximation of the model’s parameters, whose main

result areas follow:

1. Approximation of the model’s parameters.

Variable Coefficient Standard error Z value Probability

W_DESM2003 0.5427 0.1356 4.0025 0.0000627

CONSTANT 408.2768 212.2693 1.9234 0.0544309

FOCO03 15.14833 4.2952 3.5268 0.0004207

Dependent variable: DESM2003

Dependent var.’ average: 1315.63

Dependent var.’ standard deviation: 1722.38

Lag coefficient (Rho): 0.542739

Number of observations: 144

Number of variables: 3

Degrees of freedom: 141

Log likelihood: -1259.92.

Akaike’s information criterion: 2525.84.

Schwarz criterion: 2534.75.

2. Regression’s diagnosis.

Diagnosis of heteroscedasticity

Random coefficients.

Test GL Value Prob

Breusch-Pagan test 1 24.4187 0.0000008

Diagnosis spatial dependence

Dependence of the spatial lag for the matrix of weights:

D03.GAL.

Test GL Value Prob

Likelihood-ratio test 1 17.2259 0.0000332

GL: Degrees of freedom

The estimate of 0.54, achieved for the spatial auto-corre-

lation coefficient was highly significant (p\ 0.00006). In

the same way, the estimate of 15.14 for the explanatory

variable’s coefficient FOCO03 also presented a quite sig-

nificant result (p\ 0.0004).

The Breusch–Pagan test used for the heteroscedacity

diagnosis presented a value of 24.4187, highly significant,

which indicates a problem, that is, the presence of

heteroscedasticity. As previously mentioned, this can be

due to a very irregular information distribution, where

several clusters stand out, in specified regions, as observed,

for example, in Figs. 3 and 5. The Probability Reason test

compares the null model (reducing classic model) with the

alternative space lag model. The value of 17.2259 obtained

confirms the significance of a 0.1 % level of autoregressive

space coefficient.

Checking the residual is necessary to evaluate if the

values are independent. This can be done by Moran

I statistics, the results of which are presented in Fig. 9. The

I statistic value of -0.0331 with p\ 0.164 (absence of

spatial auto-correlation), indicates that the inclusion of the

unbalanced space variable in the model contributed to the

capture of space auto-correlation, as would have been the

case.

Fig. 9 Moran’s unvaried dispersion diagram for the spatial lag

residuals
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Finally, it must be stated that other explanatory variable

can be included in the model. In this case, to achieve the

comparisons among other adjusted models, selection cri-

teria can be used such as log likelihood, Akaike’s infor-

mation and Schwarz’s criteria, whose values for the current

model were -1259.92, 2525.84 and 2534.75, respectively.

Therefore, it can be considered that the model adjusted

to the data adequately. This confirms the existence of

space–time dependence where the occurrence of defor-

estation in a particular city in 2003 must have been influ-

enced by neighboring cities that presented, on average,

high (or low) deforestation level. Moreover, breakouts of

forest fires in the same year also presented strong corre-

lations, that is, they must also have contributed to the

deforestation increase in 2003.

The model described by Eq. (9) was used for the space–

time dependence evaluation. In this case, the variable

deforestation in 2003, was considered as the response

variable, and as explanatory variables the lag space–time of

y (Wy2000) and the registered forest fires starting in 2000.

That is,

DESM2003 ¼ aþ qWDESM2000 þ FOCOS2000bþ e ð9Þ

Then, another model is built, where the existence of the

spatial dependence in a response variable y(yt) must be

completely captured by a spatio-temporal lag of y(Wyt-k)

as an explanatory variable for the model.

However, the best results for the spatio-temporal

dependence model are as follows:

1. Estimates of the model parameter.

Variable Coefficient Standard error Z value Probability

W_DESM2000 0.2802 0.1393 2.0111 0.0443167

CONSTANT 387.7851 207.2205 1.8714 0.0612945

FOCO00 4.1869 0.6497 6.4439 0.0000000

Dependent variable: DESM2003

Dependent medium var: 1315.63

Dependent detour-standard of var.: 1722.38

Delay coefficient (Rho): 0.542739

Number of observations: 144

Number of variables: 3

Degree of freedom: 141

Log likelihood: -1259.92.

Akaike’s information criterion: 2525.84.

Schwarz’s criterion: 2534.75.

2. Regression diagnoses.

Diagnosis of heteroscedasticity

Random coefficients.

Test GL Value Prob

Test of Breusch-Pagan 1 169.3161 0.0000000

Diagnosis of spatial dependence

Spatial lag dependence for weight matrix: D03.GAL.

Test GL Value Prob

Probability reason test 1 4.2382 0.0395228

The estimate of 0.2802 gotten for the spatial auto-cor-

relation coefficient was significant to a 5 % significance

level (p\ 0.044). On the other hand, an estimate of 4.1869

for the coefficient FOCO00 explanatory variable presented

a quite significant result (p\ 0.0000).

The Breusch-Pagan test used for the diagnosis of

heteroscedacity presented a value of 169.31, highly sig-

nificant, which indicates a problem; that is, the presence of

heteroscedacity. As previously mentioned, this can be due

to a very irregular information distribution, where several

clusters stand out, in specified regions, as observed, for

example, in Figs. 3 and 5. The Probability Reason test

compares the null model (reducing classic model) with the

alternative space lag model. The 4.2382 value achieved

confirms the significance of a 5 % level of autoregressive

space coefficient.

Checking the residuals is necessary to evaluate if they

are independent. This can be done by Moran’s statistics I,

the results of which are presented in Fig. 10. The statistic

I value of -0.0234 with p value of 0.160 (absence of space

auto-correlation), indicates that the inclusion of the

unbalanced space variable in the model contributed for the

capture of the space-temporal auto-correlation, as would

have been the case.

Finally, it must be stated that other explanatory variables

can be included in the model. In this case, for the accom-

plishment of comparisons among other adjusted models,

selection criterion can be used such as log likelihood,

Akaike’s information and Schwarz’s criteria, whose values

for the current model were -1246.94, 2499.87 and

2508.78, respectively. Therefore, it can be considered that

the model adjusted adequately to the information,
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indicating, thereby that the deforestation occurring in 2000

was influenced by particular cities in 2003. In the same

way, the fire locations of burnings in the same year (2000)

can also have influenced the increase in deforestation in

2003.

Salame et al. (2012) mapped the risk of fires using

logistic regression and fuzzy logic. The main advantage of

these models is that they allow the use of qualitative or

categorical explanatory variables, such as climate and

vegetation, as well as quantitative variables such as

deforestation (area in km2). The spatio-temporal models (8)

and (9) used in this study allow only for the use of quan-

titative variables. However, these models allow for the

evaluation of the time and space dependence of the vari-

ables involved. In this sense, each model has its own

characteristics that can contribute to better understanding

of the phenomenon under study and in decision-making.

Conclusion

The deforested areas correspond to the mesoregions with

good infrastructure access. The methodology used in this

study shows that the occurrence of burnings does not

happen randomly. The spatio-temporal study showed that

there was a change in the pattern of burnings registered,

mainly in 2004, such that the greatest quantity of regis-

trations was located in the northeastern mesoregion of Pará,

as well in the southeastern and southwestern mesoregions.

It might also be noted that deforestation occurring in a

given year had an influence on certain municipalities in the

following years.

Similarly, the occurrence of fire outbreaks in past years

may also have had an influence on increased deforestation

in later years. It was observed that the spatial diffusion

process for burnings is faster than in the case of

deforestation.
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