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a b s t r a c t

The process of human occupation in Brazilian Amazonia is heterogeneous in space and time.

The goal of this paper is to explore intra-regional differences in land-use determining fac-

tors. We built spatial regression models to assess the determining factors of deforestation,

pasture, temporary and permanent agriculture in four space partitions: the whole Ama-

zon; the Densely Populated Arch (southern and eastern parts of the Amazon), where most

deforestation has occurred; Central Amazon, where the new frontiers are located; and Occi-

dental Amazon, still mostly undisturbed. Our land-use data combines deforestation maps

derived from remote sensing and 1996 agricultural census. We compiled a spatially explicit

database with 50 socio-economic and environmental potential factors using 25 km × 25 km

regular cells. Our results show that the concentrated deforestation pattern in the Arch is

related to the diffusive nature of land-use change, proximity to urban centers and roads,

reinforced by the higher connectivity to the more developed parts of Brazil and more favor-

able climatic conditions, expressed as intensity of the dry season. Distance to urban centers

was used as a proxy of accessibility to local markets, and was found to be as important as

distance to roads in most models. However, distance to roads and to urban centers does not

explain intra-regional differences, which were captured by other factors, such as connection

to national markets and more favorable climatic conditions in the Arch. Agrarian structure

results show that areas in which the land structure is dominated by large and medium

farms have a higher impact on deforestation and pasture extent. Temporary and perma-

nent agriculture patterns were concentrated in areas where small farms are dominant. We

conclude that the heterogeneous occupation patterns of the Amazon can only be explained

when combining several factors related to the organization of the productive systems, such

as favorable environmental conditions and access to local and national markets. Agrarian

structure and land-use analysis reinforced this conclusion, indicating the heterogeneity of

land-use systems by type of actor, and the influence of the agrarian structure on land-use

patterns across the region.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The Brazilian Amazonia rain forest covers an area of
4 million km2. Due to the intense human occupation process
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in the last decades, about 16% of the original forest has already
been removed, and the current rates of deforestation are still
very high (INPE, 2005). Growing demand for cattle raising and
the potential expansion of mechanized crops in forest areas
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are the main threats to the forest (Margulis, 2004). The enor-
mous potential impact of deforestation in Amazonia calls
for qualified and comprehensive assessments of the factors
affecting it. Such analysis has to take into account the enor-
mous socio-economic and biophysical diversity of the region,
aiming at understanding intra-regional differences.

The process of human occupation in Brazilian Amazonia
is heterogeneous in space and time. Until the 1950s, human
occupation in the Brazilian Amazonia was concentrated along
the rivers and coastal areas (Costa, 1997; Machado, 1998).
The biggest changes in the region started in the 1960s and
1970s, due to an effort of the Federal Government of popu-
lating the region and integrating it to the rest of the country,
including infrastructure network investments (roads, energy,
telecommunication), colonization and development zones,
and credit policies (Becker, 1997; Costa, 1997; Machado, 1998).
In the last decades, after the mid-1980s, occupation con-
tinues intensively, but more commanded by market forces
(wood extraction, cattle, soybeans) than subsided by the
Federal Government (Becker, 2005). Human occupation fol-
lowed concentrated patterns along the axis of rivers and
roads, kept apart by large forest masses. These forest areas
have scattered population and include indigenous lands and
conservation units. According to Alves (2002), deforestation
tends to occur close to previously deforested areas, showing
a marked spatially dependent pattern. Most of it concen-
trated within 100 km from major roads and 1970s development
zones, but not uniformly. As the occupation process is linked
to agricultural production, deforestation tends also to be con-
centrated along roads that provide an easier connection to the
more prosperous economic areas in the center and south of
Brazil (Alves, 2002). According to Becker (2001), in the Ama-
zon coexist subregions with different speed of change, due
to the diversity of ecological, socio-economic, political and of
accessibility conditions.

Recent estimates indicate that in the average, close to
110,000 km2 of forest were cut in Amazonia in the period
2001–2005 (INPE, 2005). The land cover change has also been
associated to a concentration of land ownership. Farmers with
large properties tend to be the dominant economic actors in
the region, whereas the vast majority of the population lives
on substandard conditions (Becker, 2005). Given the impor-
tance of the Brazilian Amazonia region both at the national
and international scales, it is important to derive sound indi-
cators for public policy making. As stated by Becker (2001),
“understanding the differences is the first step to appropriate pol-
icy actions”. Informed policymaking requires a quantitative
assessment of the factors that bring about change in Ama-
zonia. Quantifying land-use determinant factors is also a
requirement to the development of LUCC models that could
be used to evaluate the potential impact of alternative policy
actions.

For instance, predictions of future deforestation presented
by Laurance et al. (2001) are based on the assumption that
the road infrastructure is the prime factor driving deforesta-
tion. Such predictions are based on a simple and uniform
extrapolation of past patterns of change into the medium
term future (2020), disregarding Amazonia’s biophysical and
socio-economic heterogeneity, and the web of immediate and
subjacent conditions that influence location and different

rates of change in space and time. Predictions based on such
an over-simplified view of reality may even lead to ineffective
policy recommendations, unable to deal with the real factors
affecting the Amazon occupation process (Câmara et al., 2005).

In that context, this paper develops a spatial statistical
analysis of the determinants associated to land-use change in
Amazonia. We use a spatially explicit database (25 km × 25 km
regular cells covering the original forest areas), including 50
environmental and socio-economic variables to support a
spatially explicit statistical analysis. Measures of territorial
connectivity received special attention in our analysis. We use
spatial statistical analysis methods to understand the relative
importance of the immediate factors related to deforestation,
pasture and temporary agriculture patterns, and to explore the
intra-regional differences between these factors. The paper
also compares the results of conventional linear regression
models to spatial regression models, and discusses the use
of the two approaches in LUCC dynamic models and scenario
analysis.

The paper is organized as follows. Section 2 presents a
review of previous work on assessment of factors of deforesta-
tion in tropical forests. Section 3 presents the methods used in
the assessment of determinant factors for land-use patterns in
Amazonia. Section 4 presents the results and discusses them.
We close the paper with final considerations regarding the use
of spatial regression methods in LUCC modeling, and sum-
marizing the main findings regarding the Amazonia human
occupation process.

2. Review of previous work

In this section, we consider previous work on assessment of
factors associated to land-use change in Amazonia, focus-
ing mainly on studies that cover the whole region. Table 1
summarizes results of previous studies in Amazonia, includ-
ing econometric models, and grid-based models as described
below. For other tropical forest areas, Kaimowitz and Angelsen
(1998) present a broad review of deforestation models.

One of the approaches reviewed is the use of econometric
methods based on municipal data. Along this line, Reis and
Guzmán (1994) developed a non-spatial econometric analysis
of deforestation at the region-wide level. They found out that
population density, road network density and extension of cultivated
areas were the most important factors.

Also using econometric methods, Andersen and Reis (1997)
analyzed the determining factors of deforestation from 1975
to 1995, using municipal data at a region-wide level. Results
indicate that deforestation started by a governmental action
associated to road construction and establishment of devel-
opment programs. Later on, local market forces turned out to
be the more important factor, replacing government action as
the main drivers for deforestation. Their model indicates that
land-use change is caused by 11 factors: distance to the federal
capital, road length, earlier deforestation in the area, earlier defor-
estation in neighboring municipalities, rural population density, land
prices, urban GDP growth, size of cattle herd, change in the size of
cattle herd, change in agricultural production and change in land
prices.
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Table 1 – Summary of previous statistical analyses of land-use determinant factors in the Brazilian Amazonia
(basin-wide studies)

Author Goal Approach Most important factors/results

Reis and Guzmán
(1994)

Determining factors of
deforestation

Econometric model/municipal
data

Population density, road network density and
extension of cultivated areas

Andersen and Reis
(1997)

Determining factors of
deforestation

Econometric model/municipal
data from 1975 to 1995

Distance to the federal capital, road length,
earlier deforestation in the area, earlier
deforestation in neighboring municipalities,
rural population density, land prices, urban GDP
growth, size of cattle herd, change in the size of
cattle herd, change in agricultural production,
and change in land prices

Pfaff (1999) Determining factors of
deforestation

Econometric model/municipal
data from 1978 to 1998 combined
with remote sensing data

Biophysical variables (soil quality and vegetation
type), transportation-related variables (road
network density in the area and in its
neighbors), and government-related variables
(development policies). Population density was
only considered a significant factor when the
model used a non-linear (quadratic) formulation

Margulis (2004) Relationships in space and
time of the main
agricultural activities (wood
extraction, pasture and
crops)

Econometric model/municipal
panel data from five agricultural
census, from 1970 to 1996,
complemented by geo-ecological
information and transport costs to
São Paulo by roads

(a) No evidence of precedence between the wood
extraction and pasture activities; (b) rainfall
seems to be the major agro-ecological
determinant; (c) reducing transportation cost
induces intensification, but results were not
conclusive in relation to intensification
increasing or decreasing deforestation

Perz and Skole (2003) Social determinants of
secondary vegetation

Spatial lag analysis/demographic
(1980 and 1991) and agricultural
(1980 and 1985) census data

Factors have a significant spatial variation
among the three subregions considered by the
authors (remote, frontier, consolidated). Social
factors are organized into: (1) settlement history,
(2) agricultural intensification, (3) non-traditional
land use, (4) crop productivity, (5) tenure
insecurity, (6) fuelwood extraction and (7) rural
in-migration

Laurance et al. (2002)
and Kirby et al.
(2006)

Spatial determinants of
deforestation

Statistical analysis to assess the
relative importance of 10 factors at
two spatial resolutions:
50 km × 50 km and 20 km × 20 km
(with sampling to avoid
auto-correlation)

Factors analyzed: paved road, unpaved roads,
urban population size, rural population density,
annual rainfall, soil fertility, soil water logging.
Both at the coarser and finer scales, three factors
are most relevant: urban and rural population
density, distance to paved roads and dry season
extension. Soils were not considered relevant

Soares-Filho et al.
(2006)

Spatial determinants of
deforestation (to feed a
dynamic model)

Logistic regression/regular grid of
1.25 km on sample areas

Distance paved and unpaved roads, distance to
urban areas, relief, existence of protected areas.
Deforestation is not influence by soils quality,
nor necessarily follows rivers

Pfaff (1999) analyzed the determining factors of deforesta-
tion using an econometric model based on municipal data
from 1978 to 1988, associated to deforestation data obtained
from remote sensing surveys, covering the whole region.
His results indicate the relevance of biophysical variables
(soil quality and vegetation type), transportation-related vari-
ables (road network density in the area and in its neighbors) and
government-related variables (development policies). Population
density was only considered a significant factor when the
model used a non-linear (quadratic) formulation. The author
concluded that, in a newly occupied area, earlier migration has
a stronger impact on deforestation than latter settlements.

Margulis (2004) presents an econometric model that ana-
lyzes the Amazon occupation quantifying the relationships
in space and time of the main agricultural activities (wood
extraction, pasture and crops), and their effects in the region
deforestation. He also considers the ecological and economic
factors conditioning these relationships. Models are based

on municipal panel data from five agricultural census, from
1970 to 1996, complemented by geo-ecological information
(vegetation cover, relief, average rainfall and rainfall in June), and
transport costs (transport cost to São Paulo by roads). Results
indicate: (a) no evidence of precedence between the wood
extraction and pasture activities; (b) rainfall seems to be
the major agro-ecological determinant; (c) reducing trans-
portation cost induces intensification, but results were not
conclusive in relation to intensification increasing or decreas-
ing deforestation.

The second type of research on causes of land-use change
in Amazonia studies social factors based on municipal data
and remote sensing. Perz and Skole (2003) developed a spatial
regression model for secondary vegetation using social indi-
cators as determining factors. They used demographic (1980
and 1991) and agricultural (1980 and 1985) census data, aggre-
gated at the municipal level. The results show that the factors
have a significant spatial variation among the three subre-
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gions considered by the authors (remote, frontier, consolidated).
Their study points out that analysis of factors that influence
land-use change in Amazonia should consider regional differ-
ences.

A third line of work use regular cells as analysis units.
Laurance et al. (2002) perform statistical analysis to assess the
relative importance of 10 factors at two spatial resolutions:
50 km × 50 km and 20 km × 20 km. Their main conclusions
were that, both at the coarser and finer scales, three factors are
most relevant for deforestation: population density, distance
to roads and dry season extension. Kirby et al. (2006) refine this
analysis, and reinforce that both paved and non-paved roads
are the main factor determining deforestation.

Soares-Filho et al. (2006) performed a statistical analysis to
define spatial determinants of deforestation to feed a dynamic
model, using a regular grid of 1.25 km2. The dynamic model
allocates deforestation using empirical relationships between
forest conversion in a given period of time and spatial fac-
tors. These factors include proximity to roads, rivers and
towns, land-use zoning and biophysical features. To estab-
lish such relationships, sample regional studies were used,
and calibrated for 12 LandsatTM scenes. Results were then
used in the dynamic model to construct scenarios for the
whole Amazonia. Their results indicate that the most impor-
tant factors to predict deforestation location is proximity to
roads; indigenous reserves are important as a deterrent of
deforestation; proximity to urban centers increases deforesta-
tion; deforestation is related to relief, being smaller in low
wet lands, and also in areas with higher altitude and slope.
According to their results, it is not influenced by soil qual-
ity and vegetation type, and not necessarily follows the river
network.1

Also using regular grids as the unit of analysis, another
line of work are subregional studies that consider specific
areas and localized factors. Soares-Filho et al. (2002) ana-
lyzed a small colonist’s area in north Mato Grosso during two
time periods: 1986–1991 and 1991–1994. He constructed logis-
tic regression models to analyze the determining factors for
the following transitions: forest to deforested, deforested to
secondary vegetation, and secondary vegetation to removal of
secondary vegetation. The factors considered were: vegetation
type, soil fertility, distance to rivers, distance to main roads, distance
to secondary roads, distance to deforestation, distance to secondary
vegetation and urban attractiveness factor.

Mertens et al. (2002) studied the deforestation patterns in
the São Felix do Xingu region (Pará State). He divided the study
area in subregions according to patterns identified by remote
sensing and identified different types of social actors. Then he
applied logistic regression to analyze deforestation determin-
ing factors by type of actor in three time periods (before 1986,
1986–1992, 1992–1999). The factors analyzed were: presence of
colonization areas, presence of protected areas, presence of relief,
distance to cities, distance to villages, distance to dairy industries,

1 Soares-Filho et al. (2006) results are different from the ones
shown in this paper, due to a difference in the scale of analy-
sis. The relationship between land use and determining factors
established at one scale cannot be directly extrapolated to regional
scales (Gibson et al., 2000; Verburg et al., 2004).

distance to main roads, distance to secondary roads and distance to
rivers.

Our work adds to these efforts in four aspects. Most stud-
ies in Amazonia are restricted to deforestation factors, while
we are going a step further, decomposing deforestation pat-
terns into pasture, temporary and permanent agriculture. Our
study investigates intra-regional differences through compar-
ative analyses of alternative space partitions. We use a spatial
regression model, what allow us to investigate the deforesta-
tion spatial dependence. In addition to the socio-economic
and biophysical factors adopted in previous works, the model
includes measures of connectivity to national markets and to
ports, and introduces agrarian structure indicators that have
not been used before. Our approach will be fully described in
the next section of this paper.

3. Methods

3.1. Study area, spatial resolution and spatial
partitions

The study area is the Brazilian Amazonia rain forest (around
4 million km2). To perform a spatially explicit analysis, all vari-
ables representing land-use patterns and potential factors are
decomposed in regular cells of 25 km × 25 km. The model con-
siders two spatial partitions: the whole Brazilian Amazonia
and three macro-zones defined by Becker (2005), namely the
Densely Populated Arch, the Central Amazonia and the Orien-
tal Amazonia. The Densely Populated Arch is associated with
higher demographic densities, roads and the core economic
activities. The Central Amazonia is the area crossed by the
new axes of development, from center of the Pará state to
the eastern part of the Amazonas state. According to Becker
(2004, 2005), it is currently the most vulnerable area, where the
new occupation frontiers are located. The Occidental Amazo-
nia is the more preserved region outside the main road axes
influence, with a unique population concentration in the city
of Manaus. Fig. 1 illustrates the study area, the three macro-
regions, the nine Federative States, and the distribution of
protected areas in the region.

3.2. Land cover/use patterns

The analysis uses the deforestation maps compiled by the
Brazilian National Institute of Space Research (INPE, 2005).
Cells with a major proportion of clouds, non-forest vegetation,
or outside the Brazilian Amazonia were eliminated from our
analysis. Cloud cover in 1997 represents around 13% of forest
area. Using a deforestation map that presents the accumu-
lated deforestation until 1997, we computed the proportion of
deforestation for each valid 25 km × 25 km cell, as illustrated
in Fig. 2.

The deforestation patterns were decomposed into the main
agricultural uses for which area estimates was available from
the IBGE (Brazilian Institute for Geography and Statistics) Agri-
cultural Census of 1996 (IBGE, 1996). In this paper, we focus
on pasture, temporary and permanent agriculture patterns.
Although more recent information would be available for spe-
cific crops (e.g., soya), the 1996 Agricultural Census is the
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Fig. 1 – Study area and space partitions adopted.

last available source for planted pasture area, and, as seen
below, pasture occupies around 70% of deforested area in 1997.
Municipality-based census data was converted from polygon-
based data to the cell space of 25 km × 25 km. Comparison
between agricultural area reported by census data and mea-
sured by remote sensing showed disagreements in total area
(INPE, 2005). The total agricultural area for each municipality
was taken from the remote sensing survey, and the propor-
tion of each agricultural land-use category was taken from the
census. The conversion process assumed that the proportion
of land-use types is uniformly distributed over the deforested
areas of the municipality. Fig. 3 presents the resulting pasture,
temporary agriculture and permanent agriculture patterns.

As Fig. 3 shows, pasture is spread over the whole defor-
ested area, being the major land use in 1996/1997. It covers
approximately 70% of total deforested area, in agreement
with the estimates presented by Margulis (2004). Temporary
crops represent approximately 13% of the deforested area, and
permanent crops approximately 3% of the deforested area.
Agricultural patterns are considerably more concentrated
than pasture. Table 2 presents some quantitative indicators
of the heterogeneity of distribution of the three land-use
patterns across the region, considering different Federative
States.

As shown in Table 2 and Fig. 3, temporary crops are
mostly concentrated the northeastern area of the Pará and in

Fig. 2 – Deforestation pattern in 1997.



Author's personal copy

174 e c o l o g i c a l m o d e l l i n g 2 0 9 ( 2 0 0 7 ) 169–188

Fig. 3 – Decomposition of deforestation patterns in 1997: (a) pasture pattern; (b) temporary agriculture pattern; (c) permanent
agriculture pattern.

Maranhão states. The state of Mato Grosso and the areas along
the main rivers in the Amazonas state also present a signifi-
cant area proportion of the temporary agriculture pattern. The
temporary agriculture class we adopted encompasses around
80 types of temporary crops, and includes both subsistence
and capitalized agriculture. According to the 1996 IBGE census
information (IBGE, 1996), the temporary agriculture pattern
seen in the south border of Mato Grosso is already related to
the capitalized agriculture (especially soybeans) expansion in
forest areas (Becker, 2001). On the other hand, in old occu-
pation areas such as the northeast of Pará and Maranhão, and
also in some municipalities in the north of Mato Grosso, agrar-
ian structure is dominated by small holders. According to IBGE
database (IBGE, 1996), dominant temporary crops were manioc
and corn in 1996. Permanent crops occupy a smaller area than
the other two land uses, concentrated in the old occupation

areas of the northeastern of Pará state and along the Amazon
River, and in Rondônia, where most occupation is related to
official settlement projects (Becker, 2005). These specific char-
acteristics of the distribution of the temporary and permanent
agriculture patterns reinforced the need to include agrarian
structure indicators in our regression analysis, as discussed
in the next section.

3.3. Spatial database of potential determinants

The spatially explicit database is organized as a cellular space
of 25 km × 25 km. It includes 50 environmental and socio-
economic variables that could potentially explain macro and
intra-regional differences in land use. The complete list of
variables is in Appendix A. Dependent variables are those
associated to land use (deforestation, pasture, temporary and

Table 2 – Quantitative indicators of land-use heterogeneity across the region in terms of number of 25 km × 25 km cells
occupied by different land uses

State Number of
valid cells

Number of cells
with more than
10% deforested

Number of cells
with more than

10% pasture

Number of cells with
more than 10%

temporary agriculture

Number of cells with
more than 10%

permanent agriculture

Amazonas 2117 102 25 19 6
Pará 1559 485 407 99 13
Mato Grosso 842 507 450 54 0
Rondônia 348 186 166 1 9
Acre 232 43 36 0 0
Maranhão 170 153 140 104 0
Roraima 156 31 21 0 0
Amapa 99 6 1 0 0
Tocantins 59 56 56 6 0

Total 5582 1569 1302 283 28
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permanent agriculture). The potential explanatory variables
were grouped into seven types:

• Accessibility to markets: distance to roads, rivers and urban
centers, connection to national markets and ports, derived
from IBGE (Brazilian Institute for Geography and Statistics)
cartographic maps.

• Economic attractiveness: capacity to attract new occupation
areas, measured as distance to timber-production facilities
and to mineral deposits. Timber-production facility data
were provided by IBAMA (Brazilian Institute of Environment
and Natural Resources) and mineral deposit data by CPRM
(Brazilian Geological Service).

• Agrarian structure: land distribution indicators, indicating
the proportion (in terms of number of properties and in
terms of area inside the municipality) of small (<200 ha),
medium (200–1000 ha) and large (>1000 ha) farms. These
measures use the IBGE (1996) agricultural census.

• Demographical: population density and recent migration,
based on the 1991 municipal census and the 1996 municipal
population count by IBGE.

• Technology: technological level of farmers, using indicators
such as density of tractors per area and quantity of fertiliz-
ers per area. These measures use the IBGE (1996) agricultural
census.

• Public policies: factors related to governmental actions, such
as indicators associated to planned settlements, and protec-
tion areas. Settlements information is provided by INCRA
(Brazilian Institute of Colonization and Homestead). Pro-
tected areas combine information from IBAMA, regarding
conservation units, and FUNAI (Brazilian National Founda-
tion for Indigenous Peoples), regarding Indigenous Lands.

• Environmental: variables related to land conditions such as
soil fertility and climate. Fertility data is derived from IBGE
natural resources maps, integrating soil type, morphology,
texture, and drainage information. Climate data source is
INMET (Brazilian Institute of Meteorology).

The measures of accessibility to markets include the con-
nections to markets and ports. These variables deserved
special attention. According to Becker (2001), road building has
considerably modified the pattern of connectivity in Amazo-
nia. Until the 1960s, the main connections were the Amazonas
river and its main tributaries; after road building of the last
decades of the 20th century, the importance of such con-
nections were largely supplanted by transversal connections
of roads crossing the valleys of the main tributary rivers.
As Becker (2001) states: “connection distance and time were
reduced from weeks to hours”. For our analysis, we computed
connectivity indicators for each cell. We measured the mini-
mum path distance through the roads network from each cell
to national markets and to ports. The connectivity indicator
for each cell was taken as inversely proportional to this mini-
mum path distance. We distinguished paved from non-paved
roads (non-paved roads are supposed to double the distances).
These measures were computed using the generalized proximity
matrix (GPM), described in Aguiar et al. (2003). The GPM is an
extension of the spatial weights matrix used in many spatial
analysis methods (Bailey and Gattrel, 1995) where the spatial

relations are computed taking into account not only absolute
space relations (such as Euclidean distance), but also relative
space relations (such as topological connection on a network).
Currently, most spatial data structures and spatial analytical
methods used in GIS, and also in LUCC modeling, embody the
notion of space as a set of absolute locations in a Cartesian
coordinate system, thus failing to incorporate spatial relations
dependent on topological connections and fluxes between
physical or virtual networks. Our connection measures are an
attempt to combine both when assessing land-use determin-
ing factors. As pointed by Verburg et al. (2004), understanding
the role of networks is essential to understanding land-use
structure, and is considered a LUCC research priority.

Other measures of accessibility to markets include dis-
tances to roads, rivers and urban centers. The distance to roads
measure uses the minimum Euclidean distance from each cell
to the nearest road. Distances from each cell to urban centers,
and rivers were measured in the same way.

The agrarian structure indicators are based on municipal-
ity level information. The percentage of small, medium and
large farms in area was computed in relation to the total
area of farms inside the municipality. It disregards non-farm
areas inside the municipality such as protected areas, or land
owned by the Federal government. Thus, the small, medium
and large categories sum 100%. Alternative variables were
also computed giving the proportion of the number small,
medium and large farms in relation to the total number of
farms in the municipality. These six variables are indicators
of the dominance of a certain type of actor in a certain region.
As the variables are highly correlated, we choose to use the
small farms area proportion in our analysis. Demographical,
technological and settlements variables are also derived from
municipality level data. Variable values in the 25 km × 25 km
cells were computed taking the average of the corresponding
values in each municipality (e.g., number of settled families)
weighted by the area intersection between the municipalities
and the cell.

The measure of environmental protection areas uses the
percentage of each cell that intercepts a protected area. Soil
variables use a fertility classification based on IBGE soils map
that considers soil type, morphology, texture and drainage
information. Based on this classification, we grouped the soils
into three categories: fertile soils, non-fertile soils and wetland
soils. The soil variables considered in our analysis represent
the proportion of each of these categories in the 25 km × 25 km
cells.

Climate data uses monthly averages of precipitation,
humidity and temperature from 1961 to 1990, on a grid with
a spacing of 0.25◦ of latitude and longitude. Since the three
indices were highly correlated, we choose to work with humid-
ity, which has a higher correlation to deforestation than the
other two climatic variables. The humidity data was converted
into 25 km × 25 km cells by computing the intensity of the dry
season in each cell. The dry season does not occur at the same
period in each cell, and varies from June–July–August in the
state of Mato Grosso region to November–December–January
on the state of Roraima. The climate indicator for each cell
is a measure that accounts for these differences, by taking
the average of the three drier and consecutive months in
each cell.
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3.4. Exploratory analysis and selection of variables

An initial exploratory statistical analysis showed that some
of the relationships between potential explanatory variables
and the land-use variables were not linear. We applied a loga-
rithmic transformation to the land-use variables and to some
explanatory variables. The log transformation improved the
regression results significantly. This improvement suggests
that the explanatory variables are related to the initial choice
of areas to be occupied. After the initial choice, land-use
change behaves as a spatial diffusion process because defor-
estation tends to occur close to previously deforested areas
(Alves, 2002).

There was a high degree of correlation among poten-
tial explanatory factors. When choosing between highly
correlated variables, those related to public policies of infras-
tructure (accessibility) and conservation (protected areas), to
subside the next step of this work that aims at LUCC dynamic
modeling and policy scenario analysis. For the same cate-
gory, alternative possibilities were tested. For instance, out
of the many environmental variables, we chose the average
humidity in the drier months. The final choice of explanatory
variables for regression analysis does not include demograph-
ical or technological factors, which are captured indirectly by
other variables. As a result, the statistical analysis used only
a representative subset of all variables, as shown in Table 3.
This subset was selected to cover the broadest possible range
of categories, while minimizing correlation problems.

Even in the subset of variables presented above, there was
still a high degree of correlation, which varied across the
spatial partitions. We decided to build different spatial regres-
sion models, where each model had potentially explanatory

variables with less than 50% correlation between them. To
build the regression models, we selected as primary variables
those with potentially greater explanatory power in relation to
deforestation: distance to urban centers, distance to roads, climatic
conditions and connection to markets. Then we tested these three
variables for correlation to select the leading variables for each
model. Distance to urban centers and distance to roads were
correlated in all spatial partitions, except in the Occidental
one. Distance to roads and connection to national markets
could not be placed in the same subgroup for the whole Ama-
zon. Climatic conditions and connection to national markets
were also highly correlated, except in the central region. This
cross-correlation analysis between the potentially explana-
tory variables led to the models summarized in Table 4. An
automatic linear forward stepwise regression was applied to
refine the models and discard non-significant variables. Some
variables were found to be significant in some of the mod-
els and non-significant in others, as shown in Table 4. The
resulting models are:

• Amazonia: for the whole region, we considered three models:
one including distance to urban centers and connection to
markets (urban + connection), one including distance to urban
centers and climatic conditions (urban + climate), and a third
one including distance to roads and climatic conditions
(roads + climate).

• Densely Populated Arch: for this region, we considered two
models. The first is lead by distance to urban centers
and connection to markets (urban + connection) and the sec-
ond includes distance to roads and connection to markets
(roads + connection).

Table 3 – Potential explanatory variables of land-use patterns in the Brazilian Amazonia

Category Variable Description Unit Source

Accessibility to markets conn mkt Indicator of strength of connection to national markets
(SP and NE) through roads network

– IBGEa

conn ports Indicator of strength of connection to ports through
roads network

– IBGE

log dist rivers Euclidean distance to large rivers (log) km IBGE
log dist roads Euclidean distance to roads (log) km IBGE
log dist urban Euclidean distance to urban centers (log) km IBGE

Economic attractiveness log dist wood Euclidean distance to wood extraction poles (log) km IBAMAb

log dist mineral Euclidean distance to mineral deposits (log) km CPRMc

Public policies prot area Percentage of protected areas % of cell area IBAMA FUNAId

log settl Number of settled families from 1970 to 1999 (log) Number of
families (log)

INCRAe

Agrarian structure
environmental

agr small Percentage of area of small properties % of cell area IBGE

soil fert Percentage of high and medium to high fertility soils in % of cell area IBGE
soil wet Percentage of wetland soils (“várzea” soils) % of cell area IBGE
clim humid Average humidity in the three drier months of the year mm INMETf

a IBGE—Brazilian Institute of Geography and Statistics.
b IBAMA—Brazilian Institute of Environment and Natural Resources.
c CPRM—Brazilian Geological Service.
d FUNAI—Brazilian National Foundation for Indigenous Peoples.
e INCRA—Brazilian Institute of Colonization and Homestead.
f INMET—Brazilian Institute of Meteorology.
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Table 4 – Groups of non-correlated explanatory variables

Amazonia Arch Central Occidental

Urban +
connection

Urban +
climate

Roads +
climate

Urban +
climate

Roads +
connection

Urban +
climate +
connection

Roads +
climate +
connection

Urban +
roads

log dist urban × × × × ×
log dist roads × × × ×
conn mkt × × × × n/s
clima humid × × × × × n/s
conn ports × × × n/s n/s × × n/s
log dist rivers × × × n/s n/s × × ×
log dist wood × ×
log dist mineral × × × × ×
prot area × × × × × × × ×
agr small × × × × × × n/s n/s
log settl × × × × × × × ×
soil fert × × × × × × × n/s
soil wet × n/s × n/s n/s × × n/s

n/s: non-significant variables discarded in an automatic forward stepwise procedure.

• Central Amazonia: for this region, we considered two mod-
els. The first is lead by distance to urban centers and
connection to markets (urban + connection) and the second
includes distance to roads and connection to markets
(roads + connection).

• Central Amazonia: for this region, we considered a single
model that includes distance to urban centers, distance to
roads, and connection to markets (urban + roads + connection).

3.5. Spatial regression modeling

We used spatial regression models to establish the relative
importance of the determining factors for different land uses.
One of the basic hypotheses in linear regression models is that
observations are not correlated, and consequently the residu-
als of the models are not correlated too. In land-use data, this
hypothesis is frequently not true. Land-use data have the ten-
dency to be spatially autocorrelated. The land-use changes in
one area tend to propagate to neighboring regions. This work
applies a spatial lag regression model (Anselin, 2001) to assess
the relative importance of potential explanatory factors. In
this method, the spatial structure is supposed to be captured
in one parameter.

The linear regression model formulation can be described
as

Y = Xˇ + ε, ε ∼ N(0, �2), or (1)
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(2)

where Y is an (n × 1) vector of observations on a dependent
variable taken at each of n locations, X the (n × k) matrix of
exogenous variables, ˇ the (k × 1) vector of parameters, and ε

is the (n × 1) an vector of disturbances. The spatial lag model
includes a spatial dependence term, through a new term that
incorporates the spatial autocorrelation as part of the explana-
tory component of the model:

Y = �WY + Xˇ + ε (3)

where W is the spatial weights matrix, and the product WY
expresses the spatial dependence on Y, where � is the spatial
autoregressive coefficient. The spatial autoregressive lag model
aims at exploring the global patterns of spatial autocorrela-
tion in the data set. This spatial model considers that the
spatial process whose observations are being analyzed is sta-
tionary. This implies that the spatial autocorrelation patterns
can be captured in a single regression term. This method was
employed by Overmars et al. (2003) in a study in Ecuador. In
the Brazilian Amazon, Perz and Skole (2003) used a spatial lag
model, focusing on social factors related to secondary vegeta-
tion.

In this work, we compare the results of the spatial lag mod-
els with those of a non-spatial linear regression model for the
whole Amazonia. This helps to understand how explanatory
factors contribute to spatial dependence in this case. This is
also the basis for the analysis of how the different methods
could be used in LUCC dynamic modeling.

These results will be presented in the next section. In order
to compare the models, we will present the R2 value (coeffi-
cient of multiple determination) and the Akaike information
criteria (AIC). As stated by Anselin (2001), the R2 value is not
a reliable indicator of goodness of fit when the data is spa-
tially autocorrelated. The Akaike information criteria (Akaike,
1974) is a more suitable performance measure than the R2

value for spatially correlated data. The model with the highest
AIC absolute value is the best. To compare the determining
factors relative importance in each model, the standardized
regression coefficients (beta) and associated significance level
(p-level) for each variable will be presented.
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Table 5 – Linear and spatial lag regression models of (log) deforestation determining factors in the whole Amazon

Subgroup urban + connection Subgroup urban + climate Subgroup roads + climate

Variable beta p-level Variable beta p-level Variable beta p-level

Linear regression
R2: 0.66 R2: 0.65 R2: 0.58
AIC: −39,144.50 AIC: −38,944.9 AIC: −37,928.6
log dist urban −0.45 0.00 log dist urban −0.48 0.00 log dist road −0.39 0.00
conn mkt 0.26 0.00 clim humid −0.18 0.00 clim humid −0.24 0.00
prot area −0.14 0.00 log settl 0.12 0.00 prot area −0.19 0.00
log settl 0.10 0.00 prot area −0.15 0.00 soil fert 0.16 0.00
soil fert 0.09 0.00 soil fert 0.12 0.00 log settl 0.13 0.00
conn ports 0.07 0.00 agr small −0.10 0.00 soil wet 0.10 0.00
agr small −0.09 0.00 conn ports 0.07 0.00 log dist rivers −0.07 0.00
log dist rivers −0.04 0.00 log dist mineral −0.05 0.00 conn ports 0.05 0.00
soil wet −0.02 0.02 log dist rivers −0.03 0.00 agr small −0.06 0.00

Spatial lag
R2: 0.81 R2: 0.81 R2: 0.81
AIC: −41,876.2 AIC: −41,871 AIC: −41,781.5
w log def 0.73 0.00 w log def 0.74 0.00 w log def 0.78 0.00
log dist urban −0.15 0.00 log dist urban −0.16 0.00 log dist road −0.13 0.00
conn mkt 0.05 0.00 clim humid −0.04 0.00 clim humid −0.05 0.00
prot area −0.07 0.00 log settl 0.03 0.00 prot area −0.07 0.00
log settl 0.03 0.00 prot area −0.07 0.00 soil fert 0.04 0.00
soil fert 0.03 0.00 soil fert 0.03 0.00 log settl 0.02 0.01
conn ports 0.02 0.00 agr small −0.03 0.00 soil wet 0.05 0.00
agr small −0.03 0.00 conn ports 0.02 0.00 log dist rivers −0.03 0.00
log dist rivers −0.03 0.00 log dist mineral −0.02 0.01 conn ports 0.01 0.14
soil wet 0.01 0.05 log dist rivers −0.02 0.00 agr small −0.01 0.18

4. Results and discussion

This section summarizes our main findings, organized as
follows. Section 4.1 presents the deforestation determining
factors for whole Amazonia. It compares the results obtained
by linear regression to those of spatial regression. The compar-
ison shows how determinants change their importance when
spatial autocorrelation is considered, and what this indi-
cates in terms of spatial dependence and land-use structure.
Section 4.2 presents a comparison of deforestation factors
across the four spatial partitions (Amazonia, Densely Popu-
lated Arch, Central and Occidental macro-zones), using spatial
regression models. Section 4.3 presents a comparison of the
main land-use (pasture, temporary and permanent agricul-
ture) determinants, also using spatial regression models. The
results of pasture and agriculture determinants are presented
only for the Arch macro-zone, where occupation is more con-
solidated. Appendix B shows the spatial distribution of the
most important factors analyzed in the next sections.

4.1. Deforestation factors in the whole Amazonia

In this section, we present and discuss regression models for
whole Amazonia. A pre-processing step maintained in the
models only variables less than 50% correlated to each other,
and eliminated those non-significant according to an auto-
matic forward stepwise procedure (see Table 4). The three
models we compare are: urban + connection, urban + climate and
roads + climate.

Table 5 presents the statistical analysis results for the three
models and compares the non-spatial linear regression model
with the spatial lag model, where the dependent variable is the
log percentage of deforestation for each 25 km × 25 km cell. The
spatial lag model includes one additional variable (w log def)
that measures the extent of spatial autocorrelation in the
deforestation process. In Table 5, we present the R2 value (coef-
ficient of multiple determination) and the Akaike information
criteria for all models. In both indicators, the spatial regression
models showed a better performance than the non-spatial lin-
ear model. The spatial coefficient of the spatial lag models is
significant and higher than 0.70 in all models. This is a quan-
titative evidence that corroborates of earlier assessments that
deforestation is a diffusive process in the Amazon, and tends
to occur close of previously opened areas (Alves, 2002). The
other variables found to be important (with higher betas) are
distance to urban centers (log), distance to roads (log), connec-
tion to markets, humidity and protected areas.

We also compared the strength of the most important
factors considering the linear regression model and the spa-
tial lag model, as shown in Table 6. It groups the distance
to urban centers and distance to roads variables that are
highly correlated, and then connection to markets and cli-
mate variables, also highly correlated. As expected, using
the spatial lag regression model, all betas get lower, but
not in a uniform way. When considering the intrinsic spa-
tial dependence of deforestation, the ‘connection to markets’
variable (and the climate one) decreases proportionally more
than the others, although it is still one of the main fac-
tors. Therefore, these variables carry a large part of the
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Table 6 – Main deforestation determining factors comparison (whole Amazonia)

Variable Subgroup beta % of decrease

Linear Spatial lag

w log def Urban + connection – 0.73 –
w log def Urban + climate – 0.74 –
w log def Roads + climate – 0.78 –

log dist urban Urban + connection −0.45 −0.15 67
log dist urban Urban + climate −0.48 −0.16 67
log dist roads Roads + climate −0.39 −0.13 67

conn mkt Urban + connection 0.26 0.05 81
clim humid Urban + climate −0.18 −0.04 78
clim humid Roads + climate −0.24 −0.05 79

prot area Urban + connection −0.14 −0.07 50
prot area Urban + climate −0.15 −0.07 53
prot area Roads + climate −0.19 −0.07 63

spatial dependence. This corroborates with earlier assess-
ments (Alves, 2002) that showed that deforestation tends to
occur along roads that provide an easier connection to the
more developed areas in Brazil. These areas also present the
driest climate in Amazon, with more favorable conditions
to agriculture (and also to infra-structure construction and
maintenance) than the more humid areas in the western Ama-
zonia, in accordance with previous results (Schneider et al.,
2000). Our statistical results indicate that these factors (the
diffusive nature of deforestation, distance to roads and to
urban centers, climate and connection to markets), and the
interaction among them, contributed significantly for the pat-
tern of deforestation in 1996/1997. The existence of protected
areas also plays an important role in avoiding deforestation in
high-pressure areas, as will be further discussed in the next
section.

Previous studies of causes of land-use change in Amazonia
tended to emphasize distance to roads as the main deter-
minant (Kirby et al., 2006; Laurance et al., 2002). The results
from this paper indicate that distance to urban centers is as
important as distance to roads as a determinant factor for
land-use change. Distance to urban centers is a population
indicator and also a proxy of local markets. In 1996, 61% of
the approximately 20 million people lived in Amazonian urban
areas; in 2000, 69% of the total population (Becker, 2004). Urban
population growth rates increase faster in Amazonia than in
other parts of Brazil, not only in the larger cities but also in
those with less than 100,000 people (Becker, 2001). Faminow
(1997) showed that the local demand for cattle products such
as beef and milk is an overlooked cause of cattle production
increase, and consequently, deforestation. Our results rein-
force the need to further understand the relationship between
land-use change and this process of urban population growth
in Amazonia.

In summary, our results indicate that strong spatially con-
centrated pattern of deforestation in Amazonia is related to
the diffusive nature of the land-use change process. The con-
centration of this pattern in the southern and eastern parts
of the Amazonia is related to proximity to urban centers
and roads, reinforced by the higher connectivity to the more
developed parts of Brazil, and more favorable climatic con-

ditions in comparison to the rest of the region. Therefore,
more favorable production conditions in terms of climate, con-
nection to national markets, and proximity to local markets
seem to be the key factors in explaining the deforestation
process.

4.2. Comparison of deforestation determining factors
across space partitions

In this section, we present and discuss the regression models
for three spatial partitions: Densely Populated Arch, Central
and Occidental Amazonia. For each space partition, two
alternative models were considered, one including the ‘dis-
tance to urban centers’ variable, and one with the ‘distance
to roads’ variable (except in the Occidental partition where
they were allowed to be in the same model). A pre-processing
step maintained in the models only variables less than 50%
correlated to each other, and eliminated those non-significant
according to an automatic forward stepwise procedure (see
Table 4). The following models are compared: urban + climate
(Arch), roads + connection (Arch), urban + climate + connection
(Central), roads + climate + connection (Central) and urban + roads
(Occidental).

Table 7 presents the statistical analysis results for these
models, including the R2 and the Akaike information criteria.
Both criteria indicate that the Arch models are the best fit. The
spatial autoregressive coefficient (w log def) is significant and
higher than 0.67 in all models of the Arch and Central regions.
In the Occidental region, it is also significant, but presents a
lower value (0.54), indicating a less marked spatial pattern.
The Occidental region is still quite undisturbed, except by the
areas close to the main rivers, and around Manaus. As stated
by Becker (2001) the Amazonia presents regions with differ-
ent speeds of modification. The lower spatial dependence is
an indicator that occupied areas in the Occidental region do
not spread to the neighboring cells at the same pace as the
ones in the main axes of development in the Arch and cen-
tral region. The other variables found to be important (with
higher betas) – or that present some relevant variation among
the spatial partitions – are: distance to urban centers (log), dis-
tance to roads (log), protected areas, connection to markets,



Author's personal copy

180 e c o l o g i c a l m o d e l l i n g 2 0 9 ( 2 0 0 7 ) 169–188

Table 7 – Spatial lag regression models of deforestation determining factors across space partitions

Arch Central Occidental

Variable beta p-level Variable beta p-level Variable beta p-level

Distance to roads models
R2: 0.80 R2: 0.71 R2: 0.50
AIC: −14,783.70 AIC: −12,413.10 AIC: −12,023.00
w log def 0.71 0.00 w log def 0.72 0.00 w log def 0.54 0.00
conn mkts 0.07 0.00 log dist roads −0.16 0.00 log dist urban −0.24 0.00
prot areas −0.19 0.00 conn ports 0.07 0.00 log dist roads −0.15 0.00
log dist roads −0.12 0.00 log dist rivers −0.07 0.00 log dist rivers −0.08 0.00
log dist wood −0.04 0.00 log settl 0.04 0.01 prot area −0.02 0.17
soil fert 0.04 0.00 prot area −0.06 0.00 log settl 0.00 0.81
log settl 0.02 0.05 soil wet 0.07 0.00
agr small −0.03 0.01 log dist mineral −0.05 0.00
log dist mineral −0.01 0.20 conn mkt 0.03 0.06

clim humid −0.07 0.00
soil fert 0.03 0.06

Distance to urban models
R2: 0.80 R2: 0.71
AIC: −13,942.20 AIC: −12,405.10
w log def 0.70 0.00 w log def 0.67 0.00
log dist urban −0.16 0.00 log dist urban −0.17 0.00
prot areas −0.19 0.00 conn ports 0.09 0.00
clim humid −0.05 0.00 conn mkt 0.07 0.00
log settl 0.03 0.00 prot area −0.07 0.00
soil fert 0.03 0.00 log dist mineral −0.05 0.00
log dist mineral −0.03 0.02 log settl 0.04 0.00
agr small −0.03 0.01 soil wet 0.05 0.00
log dist wood −0.02 0.05 clim humid −0.06 0.00

log dist rivers −0.05 0.00
soil fert 0.03 0.04
agr small 0.01 0.68

connection to ports, distance to large rivers, soil fertility,
number of settled families, and agrarian structure. Fig. 4
illustrates graphically the most important differences found
among these eight factors.

The first main difference is the relative higher values of
the protected areas variable (percent of all types of protected
areas in each cell, including Indigenous Lands and Federal and
State Conservation Units). In the Arch, it is the second most
important factor (after the spatial autocorrelation coefficient),

preceding distance to roads and distance to urban centers.
Indigenous lands and conservation units correspond, respec-
tively, to 22 and 6% of the Amazon region (Becker, 2001), spread
over the region (see Fig. 2). Our results indicate quantitatively
that protected areas can be important instruments in avoiding
deforestation in high-pressure areas such as the Arch. This is
in accordance with earlier results that showed that protected
areas are in general effective in refraining deforestation even
if some level of deforestation is found inside of them Ferreira

Fig. 4 – Graphical comparison of main deforestation factors across macro-regions. Values shown are the average of
significant beta coefficients. Empty values are non-significant coefficients in any of the models for that partition.
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and Almeida (2005). Their efficacy depends on the clear demar-
cation of its limits, on the socio-economic context in which
they are created, and on appropriate monitoring and control-
ling measures, as discussed by Ribeiro et al. (2005) and Escada
et al. (2005).

Distance to roads and distance to urban centers are not the
most important determinants in all macro-regions. Also, they
do not explain intra-regional differences, as they are both sim-
ilarly important in all macro-zones, except in the Occidental
macro-zone, where distance to urban centers is considerably
more important. In the Occidental macro-zone, distance to
large rivers also plays an important role. This result is coherent
with the small disturbance of the area, concentrated mostly
in Manaus and close to the rivers.

On the other hand, connection measures (connection
to markets and connection to ports) play different roles
across the partitions. Connection to markets is important in
explaining Arch deforestation patterns, but not in the other
macro-regions. In the central macro-region it looses signifi-
cance in one of the models, when distance to roads is also
used. Connection to ports is important only in the central
region, whose historical occupation process is related to the
rivers. Climate (intensity of dry season) is also important in
explaining deforestation in the Arch and central partitions.
In the central spatial partition, the climate variable did not
present correlation to the connection to markets variable, and
both could be placed in the same regression model. In the
Arch, climate and connection to markets are correlated, and
were analyzed in different models, both presenting signifi-
cant coefficient values. This indicates that both factors created
favorable conditions to occupation in the eastern part of the
Amazon.

The differences between the models for the Arch and the
central regions are important. They point out to an occupation
process in the Arch that uses roads as its main connections.
In the Arch, the existence of protected areas is the main factor
that is statistically significant as an impediment to deforesta-
tion. A second deterrent is unfavorable climatic conditions, in
areas where the dry season is more intense. Since the area on
the south of the Arch (see Fig. 1 and Appendix B) still has a con-
siderable extension of primary forest areas outside protected
areas, close to the mechanized agriculture belt in the south of
Mato Grosso, and also benefits from drier climate, the creation
of protected areas in that region would be an important factor
for deterrence of the deforestation process.

In the central region, due to its historical occupation pro-
cess, connection to national markets is not significant in
one of the models. There is a stronger influence of rivers
connections (variables distance to rivers and connection to
ports). The central region is currently the most vulnerable
region, where new frontiers are located (Becker, 2004). As the
agricultural production systems of the new occupied areas
in the central region became stronger, these statistical rela-
tionships will be modified to reflect the new reality, but not
necessarily replicating the Arch relationships. For instance, con-
nection to ports may continue to be important in the central
region due to the presence of exportation ports in the Ama-
zon River, but road connection to the rest of the country
may also gain importance, linking productive areas to their
markets. In relation to protected areas, the statistical rela-

tionship was not as strong as in the Arch in the period of
analysis. However, the creation of protected areas in the cen-
tral region, in appropriate socio-economic contexts (Escada
et al., 2005), would also be an important instrument for con-
servation of areas that may become threatened by the new
frontiers.

In the next paragraphs, we discuss results related to other
significant variables: soils fertility, number of settled families
and agrarian structure indicators. The soils fertility indicator
(percentage of fertile soils in each cell) has a positive relation-
ship to deforestation in the Arch and in the whole Amazonia
models. Comparing the deforestation patterns and the pat-
terns of medium and high fertility soils in the 25 km × 25 km
cell space shown in Appendix B, one can notice the existence
of better quality soils in Rondônia and the Transamazônica,
where most colonization programs were placed. Better soils
are also found in Mato Grosso. Federal Government took into
consideration existing soil surveys when planning the devel-
opment projects and colonization settlements of the 1970s
and 1980s (the RADAM project in the 1970s mapped vegetation,
soils, geology and geomorphology).

As expected, the number of settled families by official col-
onization programs (accumulated from 1970 to 1999) has a
positive and significant relationship in the Arch and central
regions (and also in the whole Amazonia, as Table 5 shows).
On the other hand, the agrarian structure indicator (percent-
age in area of farms smaller than 200 ha) is also significant
in the Arch, but presents a negative signal, indicating that
deforestation is more associated with areas with a greater pro-
portion of medium and large farms, than areas occupied by
small farms. This relationship is also significant in the whole
Amazonia.

Many authors have presented diverse estimates of the
share of small and large farmers in relation to deforesta-
tion (for instance, Fearnside, 1993; Walker et al., 2000). As
stated by Walker et al. (2000) and Margulis (2004), the relative
importance of small, medium and large farms on deforesta-
tion varies from one region to the other, as the dynamics of
deforestation are very distinct at different localities. However,
most of previous works show that when considering the overall
deforestation extent in the Amazon a more significant impact is
caused by large farms (Margulis, 2004). Our results provide fur-
ther evidence that areas occupied by large and medium farms
have a higher impact on deforestation than areas occupied by
small farms, when the whole Arch macro-zone is analyzed.
This can be explained by the relative contribution of Pará,
Tocantins and Mato Grosso states. As Fig. 5 illustrates, small
farm areas are concentrated in Rondônia, northeast of Pará
and Maranhão. In most of the Arch area, the agrarian structure
is predominantly of medium and large farms. For instance, in
Mato Grosso the mean value for the agrarian structure indica-
tor is 0.07 (0.07 standard deviation), meaning that in average
only 7% of the farm lands are occupied by properties with less
than 200 ha.

4.3. Comparison of land-use determining factors in
the Arch partition

This section presents and discusses the results of the spa-
tial lag models for the Arch partition, in which the dependent
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Fig. 5 – Agrarian structure and deforestation patterns in the Arch. (a) Deforestation (percentage of deforested areas in each
cell) and (b) agrarian structure (percentage of small farms in each cell).

variables are the log percentage of pasture, temporary agricul-
ture and permanent agriculture in each 25 km × 25 km cell. For
each of these three types of land use, we consider two alter-
native models, one including the ‘distance to urban centers’
variable (urban + climate model), and one with the ‘distance to
roads’ (roads + connection), as summarized in Table 4.

Table 8 presents the statistical analysis results for the six
models. The R2 and the Akaike information criteria are pre-
sented as measures of goodness of fit to compare the models.
All indices are similar, but temporary agriculture models per-
form slightly better according to the log likelihood. The spatial
auto-regressive coefficient of the spatial lag models is signifi-
cant and higher than 0.70 in all models, presenting the higher
values in the permanent agriculture models (above 0.80), indi-
cating a stronger clustering of such use (see Fig. 2). The other
relevant factors that will be analyzed in this section are: dis-
tance to urban centers (log), distance to roads (log), protected
areas, connection to markets and agrarian structure. Fig. 6
illustrates graphically the most important differences found
among these eight factors.

As with deforestation in the Arch macro-region, protected
areas, distance to roads and distance to urban centers are
the most important variables in explaining the distribution
of land-use patterns. Connection to markets is significant
to temporary agriculture and pasture, but not to permanent
agriculture. The main difference is the signal in relation
to agrarian structure variable (percentage in area of farms
smaller than 200 ha). The beta value for the agrarian struc-
ture has a positive value in both temporary agriculture and
permanent agriculture models. In the pasture model, the beta
is negative.

Pasture is spread over the region (see Fig. 3), and its
determining factors are very similar to deforestation ones, dis-
cussed in previous section. Our results indicate that medium

and large farms have a larger proportion of pasture areas
when considering the whole Arch extent. The relative share of
small, medium and large farms in terms of pasture area varies
according different localities. Rondônia, for instance, have a
significant pasture area (see Table 2), and an agrarian structure
related to small farmers. The negative signal our model cap-
tures is related to the proportionally larger area of Mato Grosso
and Pará States, in which the agrarian structure is predomi-
nantly of large farms.

On the other hand, temporary and permanent agricul-
ture present differentiated and concentrated patterns, as
discussed in Section 3.2. Our results indicate a tendency for
temporary and permanent agriculture to occupy areas associ-
ated to small farms, when considering the whole Arch, in our
period of analysis. Permanent crops are present in northeast-
ern Pará, Rondônia and along the Amazon River. These three
areas have a land structure related mostly to small properties,
what explains the positive signal in the permanent agricul-
ture model. In the temporary agriculture model, the positive
signal can be explained by the fact that the temporary agricul-
ture practiced in Pará and Maranhão by small farmers occupy
a larger area than the mechanized agriculture found in the
south of Mato Grosso (see Table 2). Although this statistical
relationship may change with the expansion of mechanized
agriculture into forest areas (Becker, 2005), that requires large
tracts of plain land, and is practiced by a capitalized type of
actor, our results indicate the existence of a land-use sys-
tem based on temporary agriculture practiced by small farms,
especially in old occupation areas such as Maranhão and
northeast Pará.

This land-use pattern analysis we conducted provide fur-
ther evidence of the heterogeneity of the region, both in terms
of agrarian structure and land-use trajectories adopted in
different localities. For instance, both Rondônia and the north-
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Table 8 – Spatial lag regression models of pasture, temporary and permanent agriculture in the arch

Pasture Temporary agriculture Permanent agriculture

Variable beta p-level Variable beta p-level Variable beta p-level

Distance to roads subgroups
R2: 0.82 R2: 0.85 R2: 0.83
AIC: −14,935.10 AIC: −15,308.40 AIC: −15,069.00
w log past 0.74 0.00 w log temp 0.77 0.00 w log perm 0.82 0.00
conn mkt 0.06 0.00 conn mkt 0.08 0.00 log dist roads −0.09 0.00
prot area −0.18 0.00 prot area −0.14 0.00 agr small 0.07 0.00
log dist roads −0.12 0.00 agr small 0.06 0.00 prot area −0.11 0.00
log dist wood −0.04 0.00 log dist wood −0.04 0.00 log dist wood −0.05 0.00
agr small −0.06 0.00 log dist roads −0.07 0.00 soil fert 0.04 0.00
log settl 0.03 0.00 soil fert 0.02 0.03 conn ports 0.01 0.57
soild fert 0.03 0.01 log settl 0.03 0.01 conn mkt −0.02 0.14
log dist mineral −0.03 0.01 conn ports 0.01 0.50 log dist mineral −0.01 0.31
log dist rivers 0.03 0.00 log dist rivers 0.03 0.01

log dist mineral 0.01 0.37

Distance to urban centers subgroups
R2: 0.82 R2: 0.85 R2: 0.83
AIC: −14,933.20 AIC: −15,366.40 AIC: −15,066.80
w log past 0.74 0.00 w log temp 0.76 0.00 w log perm 0.82 0.00
log dist urban −0.14 0.00 log dist urban −0.13 0.00 log dist urban −0.10 0.00
prot area −0.18 0.00 prot area −0.14 0.00 agr small 0.06 0.00
clima humid −0.03 0.01 clima humid −0.05 0.00 prot area −0.11 0.00
log dist mineral −0.04 0.00 agr small 0.06 0.00 log dist wood −0.05 0.00
log settl 0.04 0.00 soil fert 0.01 0.12 soil fert 0.02 0.03
agr small −0.06 0.00 log settl 0.03 0.00 conn ports 0.02 0.09
soild fert 0.02 0.05 conn ports 0.01 0.38 log dist rivers 0.02 0.03
log dist wood −0.02 0.04 log dist rivers 0.03 0.01 clima humid 0.02 0.05
log dist rivers 0.03 0.00 log dist wood −0.03 0.01 soil wet 0.00 0.79

log settl 0.02 0.08

Fig. 6 – Graphical comparison of main land-use factors in the Arch macro-region. Values shown are the average of
significant beta coefficients. Empty values are non-significant coefficients in any of the models for that partition.

eastern part of Pará State have a dominance of small farms.
However, in Rondônia temporary crops are not as significant
as in northeastern Pará. On the other hand, there is a sig-
nificant pattern of permanent crops in Rondônia. Soybean
expansion may change the statistical relationship with the
agrarian structure as we obtained for temporary crops, but
not the fact that these other land-use systems exist, and that
effective policy action may take this heterogeneity into con-
sideration.

5. Conclusions

5.1. Spatial regression and dynamic modeling

One of the basic hypotheses in linear regression models is that
observations are not correlated, and consequently the residu-
als of the models are not correlated as well. In land-use data,
this hypothesis is usually not true. Land-use data have the
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tendency to be spatially autocorrelated, as land-use changes
in one area tend to propagate to neighboring regions. Spatial
dependence could be seen as a methodological disadvantage,
as it interferes on linear regression results, but on the other
hand is exactly what gives us information on spatial pattern
and structure and process (Overmars et al., 2003).

In Section 4.1, we compared the results of the spatial
lag models with those of a non-spatial linear regression
model for the whole Amazonia to understand how explana-
tory factors contribute to spatial dependence. Results show
that the spatial coefficient of the spatial lag models is sig-
nificant and higher than 0.70 in all models, a quantitative
evidence that corroborates of earlier assessments that defor-
estation is a diffusive process in the Amazon, and tends
to occur close of previously opened areas (Alves, 2002).
Results also show that when using the spatial lag regression
model, the determining factors coefficients in the regression
equation get lower, but not in a uniform way. Connectiv-
ity to markets and climate factors carry a larger part of the
spatial dependence, and reinforce the diffusive pattern of
deforestation.

One of the goals of quantifying empirically the relation-
ships of land-use patterns and determining factors is to
feed dynamical LUCC models. Our results indicate that, in
areas similar to the Amazonia, with such spatially marked
patterns, there is however a risk of using the spatial lag
model for dynamical LUCC modeling. For instance, in the
case of deforestation, the spatial autocorrelation parameter
is related to the previous deforestation in the neighborhood.
The resulting model using the spatial lag coefficients would
have a tendency to concentrate changes in previously occu-
pied areas, not allowing new patterns to emerge. Thus, we
considered more appropriate to tie the diffusive aspect of
deforestation to scenario-dependent variables such as con-
nectivity to markets and distance to roads. New patterns
could emerge as connectivity characteristics are changed.
Similar considerations are presented by Overmars et al.
(2003).

5.2. Amazonia intra-regional heterogeneity

We conducted the spatial lag regression analysis to explore
intra-regional differences in the relative importance of land-
use determining factors in the Amazon, based on a cellular
database including several environmental, socio-economic
and political potential factors.

The quantitative results we obtained using this method-
ology corroborates with the hypothesis of intra-regional
heterogeneity as stated Becker (2001): in the Amazon coex-
ist subregions with different speed of change, due to the
diversity of ecological, socio-economic, political and of acces-
sibility conditions. The use of spatial regression models also
corroborated earlier assessments about the diffusive nature
of land-use change in the Amazon (Alves, 2002) as showed
by the high values of the autocorrelation coefficient in all
models. Only in the Occidental region values were slightly
lower, indicating a less intense diffusive pattern and speed of
change.

Our models show the significance of several of the potential
determining factors, demonstrating that focusing on single

factor analysis can be misleading. It is the interaction of many
factors that can explain the land-use patterns in the Amazon.
And the relative importance of such factors varies from one
region to another, and unravels the region heterogeneity in
terms of patterns and speed of change. For instance, when
only the Arch is analyzed, protected areas becomes the second
most important factor, after the deforestation spatial depen-
dence coefficient, preceding distance to roads and to urban
centers, indicating how they play an important role in avoiding
deforestation in high-pressure areas. On the other hand, dis-
tance to roads is an important factor in all space partitions. But
our multi-factor analysis shows that the heterogeneous occu-
pation patterns of the Amazon can only be explained when
combining roads to other factors related to the organization
of the productive systems in different regions, such as favorable
environmental conditions and access to local and national
markets. This provides further evidence that the implanta-
tion of roads and development poles in the 1970s was a first
incentive to deforestation, but it continued more elevated in
regions that established productive systems linked to the cen-
ter, south and northeast of Brazil (Alves, 2001; Alves, 2002). The
municipality of São Felix do Xingu, a current deforestation
hot-spot, is exemplary of this: it has been the lead in defor-
estation rates in the last years (INPE, 2005), although it is not
served by a paved road. Land market plays an important role
there, and also lack of State presence, but it also has a very well
organized beef market chain (Escada et al., 2005). Our agrar-
ian structure and specific land-use analysis results reinforce
the conclusions in relation to the importance of the produc-
tive systems, as they point out the heterogeneity of land-use
systems adopted by different actors, and the influence of the
agrarian structure on land-use pattern distribution across the
region.

We conclude that incorporating this heterogeneity of fac-
tors, actors, land-use and productive systems are essential
to a sound understanding of the land-use change process in
the region, especially to subside policy decisions appropri-
ated for each subregion in a non-uniform and non-misleading
way.
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Appendix A. Complete list of potential determining factors organized in the cellular database

Category Cellular database
variable

Description Selected variable
(adopted name for

regression analysis)

Source

Accessibility to
markets

dist non paved road Euclidean distance to nearest
non-paved road

IBGEa

dist paved roads Euclidean distance to nearest
paved road

IBGE

dist roads Euclidean distance to nearest
road

log dist roads IBGE

dist large rivers Euclidean distance to nearest
large river

log dist rivers IBGE

dist urban areas Euclidean distance to nearest
urban center

IBGE

conn sp Connection to SP (national
market) though the road
network

conn sp p Connection to SP (national
market) though the road
network considering the type
pf road

IBGE

conn ne Connection to northeast
(national market) though the
road network

IBGE

conn ne p Connection to the northeast
(national market) though the
road network considering the
type of road

IBGE

conn max Maximum connection to one of
the two markets: SP or
northeast

IBGE

conn max p Maximum connection to one of
the two markets: SP or
northeast, considering the type
of road

conn mkt IBGE

conn ports Maximum connection a port IBGE
conn ports p Maximum connection a port

considering the type of road
conn ports IBGE

Economic
attractiveness

dist wood extr poles log dist wood IBAMAb

dist min deposits Euclidean distance to all types
of mineral deposits

log dist mineral CPRMc

Agrarian
structure

agr area small Percentage of small, medium and
large properties in terms of
municipalities area

agr small IBGE

agr area medium IBGE
agr area large IBGE
agr nr small Percentage of small, medium and

large properties in terms of number of
properties in the municipalities

IBGE
agr nr medium IBGE
agr nr large IBGE

Demographic dens pop 91 Populational density in 1991 IBGE
dens pop 96 Populational density in 1996 IBGE
migr 91 Percentage of migrants in 1991 IBGE
migr 96 Percentage of migrants in 1996 IBGE
tx urban 96 Proportion of urban population

in 1996
IBGE

Technology tx trat prop Number of tractor per number
of property owners

IBGE

tx trat area plant Number of tractor per total
planted area in the
municipality

IBGE

tx ass prop Number of properties that
receive technical assistance per
number of property owners

IBGE
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Appendix A (Continued )

Category Cellular database
variable

Description Selected variable
(adopted name for

regression analysis)

Source

tx ass area plant Number of properties that
receive technical assistance per
total planted area in the
municipality

IBGE

Political setl nfamilies 70 99 Number of settled families
until 1999

log settl INCRAd

setl area 70 99 Area of settlements until 1999 INCRA
prot all Percentage of protected area

(any type of CU or IL)
prot all IBAMA FUNAIe

prot il Percentage of indigenous lands
area

prot cu Percentage of conservation
units

Environmental fert high Percentage of soils of high and
medium fertility

soils fert IBGE

fert low Percentage of soils of low
fertility

soils wet IBGE

fert wet Percentage of soils of “varzea” IBGE
q1 temp media First quadrimester temperature

average
INMETf

q2 temp media Second quadrimester
temperature average

INMET

q3 temp media Third quadrimester
temperature average

INMET

q1 umidade media First quadrimester humidity
average

INMET

q2 umidade media Second quadrimester humidity
average

INMET

q3 umidade media Third quadrimester humidity
average

INMET

q1 precip tot First quadrimester
precipitation total

INMET

q2 precip tot Second quadrimester
precipitation total

INMET

q3 precip tot Third quadrimester
precipitation total

INMET

precip min3 months Average precipitation in the
three drier subsequent months
of the year

INMET

humid min3 months Average humidity in the three
drier subsequent months of the
year

clima humid INMET

temp min3 months Average humidity in the three
lowest temperature subsequent
months of the year

INMET

a IBGE—Brazilian Institute of Geography and Statistics.
b IBAMA—Brazilian Institute of Environment and Natural Resources.
c CPRM—Brazilian Geological Service.
d INCRA—Brazilian Institute of Colonization and Homestead.
e FUNAI—Brazilian National Foundation for Indigenous Peoples.
f INMET—Brazilian Institute of Meteorology.
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Appendix B. Main determining factor maps
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Becker, B., 2004. Amazônia: geopolı́tica na virada do III milênio
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