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Abstract

Aims
The pattern and driving factors of forest fires are of interest for fire 
occurrence prediction and forest fire management. The aims of 
the study were: (i) to describe the history of human-caused fires 
by season and size of burned area over time; (ii) to identify the 
spatial patterns of human-caused fires and test for the existence 
of ‘hotspots’ to determine their exact locations in the Daxing’an 
mountains; (iii) to determine the driving factors that determine 
the spatial distribution and the possibility of human-caused fire 
occurrence.

Methods
In this study, K-function and Kernel density estimation were used to 
analyze the spatial pattern of human-caused fires. The analysis was 
conducted in S-plus and ArcGIS environments, respectively. The 
analysis of driving factors was performed in SPSS 19.0 based on a 
logistic regression model. The variables used to identify factors that 
influence fire occurrence included vegetation types, meteorological 
conditions, socioeconomic factors, topography and infrastructure 

factors, which were extracted and collected through the spatial 
analysis mode of ArcGIS and from official statistics, respectively.

Important Findings
The annual number of human-caused fires and the area burnt 
have declined since 1987 due to the implementation of a forest 
fire protection act. There were significant spatial heterogeneity and 
seasonal variations in the distribution of human-caused fires in the 
Daxing’an Mountains. The heterogeneity was caused by eleva-
tion, distance to the nearest railway, forest type and temperature. 
A logistic regression model was developed to predict the likelihood 
of human-caused fire occurrence in the Daxing’an Mountains; its 
global accuracy attained 64.8%. The model was thus comparable 
to other relevant studies.
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Introduction
Forest fires, whether caused by lightning or human activities, 
are an important part of the ecology of the boreal forest. Fire 
is one of the primary agents of forest renewal and succes-
sion (Podur et al. 2003), but it can have devastating effects on 
forest ecosystems including loss of wildlife habitat and forest 
resources, high management costs and losses to communities 

(Chas-Amill et al. 2010). The fire regimes of many forest eco-
systems are largely caused and shaped by human settlement 
and behavior (Bergeron et  al. 2004). Human activities are 
responsible for most wildfire ignitions worldwide (Prestemon 
and Butry 2005). Forest fires are a global issue: ~50 000 fires 
sweep through >700 000 ha of forest and other wooded land 
in the Mediterranean Basin alone each year (Dimitrakopoulos 
and Mitsopoulos 2006). On average, >100 000 wildfires occur 
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annually in the USA, burning 1.6–2 million hectares of land, 
and 10 000 fires burn 2.5 million ha of wildland areas in 
Canada each year (BC Ministry of Forests and Range Wildfire 
Management Branch 2009). In China, >10 000 forest fires 
occur on average every year, burning 820 000 ha annually 
(Zhong et al. 2003).

Chinese boreal forests, geographically distributed in the 
Daxing’an Mountains of northeastern China, are the most 
southern part of the global boreal forest biome. The number 
of human-caused forest fires in this area accounts for 60–80% 
of the total number of fires from all ignition causes. Forest fire 
prevention and protection of forest resources from fires is a 
critical for forestry development in China due to the scarcity 
of forest. The total forest cover in China is only two-thirds 
of the global average value, and the per capita forest area is 
0.145 ha, less than one-fourth of the world average (China 
Forest Resources Report 2009). In order to decrease for-
est degradation by fire effectively, especially human-caused 
fires, understanding the spatial and temporal characteristics 
of human-caused fires and the potential drivers of fire occur-
rence are important. The temporal and spatial distributions 
of forest fires have been studied in different countries and 
regions (Amatulli et al. 2007; Grala and Cooke 2010; Gralewicz 
et al. 2012). There are also some studies of human-caused fires 
and their driving factors (Martínez et  al. 2009; Padilla and 
Vega-Garcia 2011). However, the results from these studies 
vary widely due to differences in fire regimes, vegetation and 
other factors, making generalizations difficult. In China, there 
are few studies of human-caused fires. The studies that exist 
either do not fully consider the influence of socioeconomic 
factors or do not take into account the variation in human 
infrastructure (Liu et al. 2012; Tian et al. 2011).

To fill this knowledge gap, we applied a spatial point pat-
tern (SPP) approach to examine the spatial pattern of human-
caused fires (Cressie 1993). K-function, L-function and 
Kernel intensity estimation are often used to deal with near-
est statistic and intensity estimation within the SPP approach 
(de la Riva et al. 2004; Genton et al. 2006). The logistic regres-
sion was used to test the factors driving the probability of 
fire occurrence in China’s boreal forest. The objectives of the 
study were: (i) to describe the history of human-caused fires 
by season and area burnt over time; (ii) to identify the spatial 
patterns of human-caused fires and test for the existence of 
‘hotspots’ to determine their exact locations in the Daxing’an 
mountains and (iii) to determine the driving factors affecting 
the spatial distribution and the possibility of human-caused 
fires.

MATERIALS AND METHODS
Study site

China’s boreal forests, geographically located in the Daxing’an 
Mountains of northeastern China, are the southernmost part 
of the global boreal forest biome (Jiang et al. 2002). In this 
study, we selected the Daxing’an Mountains of Heilongjiang 
Province as our study area. The study area was located 
50°10–53°33′N and 121°12′–127°00′E, and had a total area 
of 8.46 × 106 ha (Fig. 1). The climate is typical of the cold tem-
perate zone. The dominant species is Dahurian larch (Larix 
gmelinii Rupr.), which is normally accompanied by white 
birch (Betula platyphylla Suk.), Mongolian pine (Pinus sylvestris 
L.  var. mongolica Litv.) and Mongolian oak (Quercus mongol-
ica Fischer ex Ledebour). The mean annual temperature lies 
between −2 and 4°C, with a range extending from −52.3 to 

Figure 1:  location of the study region together with fire points (dots) and meteorological stations (stars).
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39.0°C. The mean total annual precipitation is between 350–
500 mm (Guo et al. 2011). It is the largest natural forest area 
in China, and provided 126 million m3 of timber harvest from 
1964 to 2005. It is exposed to extremely high fire risk and has 
the largest average annually burned area in China. There were 
>1000 forest fires, including >600 human-caused fires, in the 
period between 1980 and 2005, with the total area of burned 
forest amounting to 1 300 000 ha. Dendrochronological stud-
ies have indicated that the historical fire regime was charac-
terized by frequent, low-intensity surface fires and the fire 
return interval ranged from 30 to 120 years (Xu et al. 1997).

Data collection

Fire record

Our analysis used human-caused fire data for the Daxing’an 
Mountains from 1972 to 2005, provided by the Fire Prevention 
Office of Jiagedaqi city (FPOJ). One of FPOJ’s main responsi-
bilities is the collection of fire occurrence information, such as 
fire location, size, causes and date of occurrence of forest fires 
in the Daxing’an Mountains. The definition of human-caused 
fire in this study did not include the controlled prescribed 
burns and other actions taken by government or forest man-
agement agencies, but did contain prescribed burns that had 
got out of control and caused an unexpectedly large burned 
area. Other important causes of ignition included smoking, 
hunting, fireworks, escaped fire from locomotives and resi-
dents’ homes. The data were acquired in a geo-database for-
mat (ESRI [Environmental System Research Institute] data 
storage and management framework) and contained geo-
graphically referenced point locations of all non-structure 
fires in the Daxing’an Mountains. Before 1990, the records 
of fire location were determined by the fire chief, who identi-
fied each fire location through a combined approach of fixed 
observation points in the forest and the Terrain and Forest 
Instruction Map (1:100 000). The location of fires after 1990 
were recorded by GPS [Global Positioning System]. The data-
set from FPOJ was used to determine the spatial patterns of 
human-caused fire occurrence and statistics for burned area 
per fire. This dataset was also used to identify temporal char-
acteristics of the human-caused fires, including annual and 
monthly trends of human-caused fire frequencies and sizes.

Vegetation types

A digital vegetation map of China with 1 km resolution 
was downloaded from The Cold and Arid Regions Science 
Data Center, China (http://westdc.westgis.ac.cn/). The map 
includes 20 vegetation functional types, such as needleleaf 
evergreen tree (temperate), needleleaf deciduous tree, broad-
leaf evergreen tree (temperate), broadleaf deciduous tree 
(tropical), etc. We clipped the digital map using the boundary 
of the Daxing’an mountains region. In addition, we grouped 
the polygons into eight categories, including needleleaf decid-
uous tree (covering 30.6% of the territory of the Daxing’an 
mountains), broadleaf deciduous tree (covering 12.3%), 
needleleaf evergreen tree (covering 11.6%), broadleaf 

deciduous shrub (covering 7.45%), grass (covering 29.3%), 
crop (covering 3.72%), permanent wetlands (covering 4.5%) 
and water bodies (covering 0.52%). The vegetation types for 
each fire point and non-fire point were extracted from the 
vegetation map layer in ArcGIS 10.0.

Meteorological factors

The mean temperature, relative humidity and precipitation 
data with a spatial resolution of 0.085° and monthly tempo-
ral resolution for the period 1972–2005 were generated by 
the International Institute of Earth System Science, Nanjing 
University, China, based on the HADCM2 model, which is a 
coupled ocean atmosphere model produced by the UK Met 
Office Hadley Centre. The process of data generation included 
converting HADCM2 model data to text, extracting China 
region data, combining with a Digital Elevation Model (DEM) 
and interpolating using ANUSPLIN software package. The 
data are available at the Earth System Science Data Sharing 
Platform, China (http://geodata.nju.edu.cn/). In addition, 
other weather-related variables including daily rainfall, mean 
wind speed, mean temperature, minimum temperature, 
maximum temperature, mean humidity, minimum humidity 
were provided by the China Meteorological Data and Sharing 
Network (http://cdc.cma.gov.cn/). There are five national 
level weather stations located in the study area (Fig. 1) (sta-
tion ID: 50246, 50247, 50349, 50353 and 50442), and we 
assigned the values of weather variables for each ignition and 
non-ignition point based on the nearest weather station.

Socioeconomic factors

Socioeconomic factors, including annual funding for forest 
fire prevention, population density, per capita gross domestic 
product (GDP) and the number of fire towers, were obtained 
from secondary sources (see online supplementary Table S1). 
The effect of inflation was eliminated while calculating the 
Annual Funding for Forest Fire Prevention and Capita GDP.

Topographic factors

We collected a 1:250 000 Digital Line Graphic (DLG) map 
from the National Administration of Surveying, Mapping and 
Geoinformation of China. The elevation, aspect and slope 
of each fire point and non-fire point (control point) were 
derived from the DEM layer of the DLG map in an ArcGIS 
10.0 environment, employing spatial analysis.

Infrastructure factors

Infrastructure variables included the interannual variation of 
the infrastructure in the study area, such as the number of 
fixed inspection stations and the length of burned line for fire 
prevention, and also involved the distance of the domain to the 
nearest railway, road, river and area of settlement. The relevant 
information was extracted from the Local Chronicles of Forest 
Fire Prevention of the Daxing’an Mountains and the DLG map.

The information about the independent variables in 
this study has been summarized in online supplementary 
Table S1.
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Data analysis

Spatial statistical methods and logistic regression modeling were 
used to examine the spatial pattern and the driving factors for 
fire ignition in the Daxing’an Mountains, respectively. The ana-
lytical process for the study is shown schematically in Fig. 2.

Analysis of spatial pattern

Ripley’s K r( ) function is a nearest-neighbor statistical method 
and has been widely used to describe the relationships between 
two or more point patterns (Peterson and Squiers 1995; Stoyan 
and Penttinen 2000). The K-function can be simplified to:

	
�
K r
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I dr

i j
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where, dij is the distance between the ith and jth observed 
fires, A is the size of the study area, r is the distance from 
any fire point (in this study r can be considered as measuring 
radius), λ is the intensity or mean number of fires per unit 
area, and Ir(dij) is an indicator function with a value of 1 if dij ≤ 
r and 0 otherwise (Dixon 2002). In practice, transformation of 
the K-function is usually made to increase the intuitive judg-
ment on the point patterns, termed the L-function.
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L̂ r( ) is above this line, the SPP tends to be clustered, and if 
L̂ r( ) is below this line, the SPP is likely to be regular. As a test 
of significance, a random spatial point pattern was simulated 
99 times and the L̂ r( ) function plotted (Podur et al. 2003). The 
L-function was calculated using the spatial module of S-Plus 
(Venables and Ripley 1999).

In this study, we used intervals of 5 years to calculate the pat-
terns of fire occurrence and determine the spatial density. There 
were two reasons to do so: (i) sufficient samples were obtained 
to enable a statistical analysis (Lafon and Grissino-Mayer 2007; 
Nielsen and Wendroth 2003), and (ii) one year’s forest fires 
could interact with a former year’s fire and later years through 
consuming the forest fuel (Collins et al. 2009). In addition, the 
results of fire patterns and spatial density could be affected by the 
chosen length of intervals. The selection of the interval length 
depends on the purpose and the temporal scale of the research. 
Various intervals have been used in previous studies (Lafon 
and Grissino-Mayer 2007; Podur et al. 2003). In this study, we 
attempted various intervals for the spatial analysis, from 1 to 
5 years; however, the results showed significant differences in 
the spatial patterns of human-caused fire at the 5-year scale.

Analysis of spatial density

The spatial intensity of a point process can be calculated using 
a Kernel density estimator (Gavin et al. 1993):
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where, λ ˜ z( )  is the estimated spatial intensity of fires, z zn1...  
are the locations of n observed fires, k(.) is the kernel, a sym-
metric but not necessarily positive function that integrates to 
one, and τ is the bandwidth and determines the radius of a 
disc centered on z within which points Zi will contribute to 
the intensity λ̂ ˜ z( ).

The same time intervals as ‘fire occurrence pattern’ were 
adopted for the spatial density analysis. The spatial analyst 
mode in ArcGIS 10.0 was used to conduct the Kernel estima-
tion of the spatial density of human-caused fires. According to 
function (3), the bandwidth (named ‘search radius’ in ArcGIS 
10.0) τ is a key to kernel estimation. There are several meth-
ods to find the appropriate size of the bandwidth. One is the 
selection of the bandwidth subjectively by eye. This method is 
based on looking at several density estimates over a range of 
bandwidths and selecting the density that is the most suitable in 
some sense (Nazan Kuter et al. 2011). Another method involves 
mean random distance (RD mean) calculations (de la Riva et al. 
2004; Koutsias et al. 2004). The results of the calculations are 
determined by the number of ignition points and the polygon 
size. We tried different bandwidths (i.e. 10, 30, 50 and 70 km) 
for the kernel estimation. However, only the 50 km bandwidth 
showed a smooth spatial density map. On the other hand, we 
obtained a range of bandwidths from 39 to 66 km by RD mean 
calculation. We chose 50 km as the bandwidth in this study 
since it generated a smooth density map and also fell within the 
range of bandwidths obtained by the RD mean method.

Prediction of forest fire occurrence

We predicted fire occurrence using a binary logistic regression 
model that requires both the presence and absence of fire igni-
tion. Presence and absence were represented by 1 and 0 in 
binary logistic regression model, respectively. For presence, we Figure 2:  the analysis process of the study.

 by guest on Septem
ber 29, 2016

http://jpe.oxfordjournals.org/
D

ow
nloaded from

 

http://jpe.oxfordjournals.org/


Guo et al.     |     Distribution and factors of human-caused fires� Page 5 of 11

used the fire record data to generate a point cover based on fire 
ignition locations using ArcGIS 10.0. For absence, we randomly 
generated the same number as ignition points (Catry et al. 2009; 
Chang et  al. 2013) within the study area. The independent 
variables were extracted for each fire ignition and non-ignition 
point except for the daily weather variables. The values of the 
daily weather variables recorded by weather stations close to 
the fire ignition points were assigned to those ignition points. 
For the randomly generated non-ignition points, we chose a 
date for each non-ignition point from the dates of the ignition 
points, and assigned the daily weather variables for each non-
ignition point according to the nearest weather station.

In addition, we randomly selected 70% of ignition points 
(428) and 70% of non-ignition points (418) as the building data-
set to fit the binary logistic regression model, and the remaining 
points (30%) as the validation dataset to perform model valida-
tion. All analyses were performed using SPSS 19.0 software.

We used the Wald test (Legendre and Legendre 1998) to 
assess the significance of each variable (P  <  0.05). The over-
all significance was evaluated according to the Hosmer and 
Lemeshow goodness-of-fit test (Hosmer and Lemeshow 2000). 
In order to assess the predictive ability of the logistic model, 
2 × 2 classification tables of observed vs. predicted values were 
constructed using both the building and validation dataset. 
The Yueden criterion was applied to determine the probabil-
ity threshold (cut-off point) at and above which the occurrence 
of fire ignition is accepted, and below which it is considered 
that no fire occurred (Garcia et al. 1995). This approach has also 
been used in other relevant studies (Catry et al. 2009; Chang 
et al. 2013). In addition, an alternative method called receiver 
operating characteristic (ROC) analysis (Fielding and Bell 1997) 
was applied to assess the predictive ability of the model. The 
ROC curve was obtained by plotting sensitivity vs. specificity for 
various probability thresholds. The area under the curve (AUC) 
can reflect the performance of model (Jiménez-Valverde 2012). 
This method has already been used to assess the performance 
of logistic models in wildfire risk estimation (Chang et al. 2013; 
del Hoyo et al. 2011). An AUC value between 0.5 and 0.69 can 
be considered as poor performance; a value between 0.7 and 
0.79 indicates reasonable performance; a value of 0.8 or higher 
indicates excellent performance (del Hoyo et al. 2011).

Results
Temporal characteristics

On average, there were 25 human-caused fires annually that 
burned 77 193 ha. The largest number of fire occurrences was 
in 1986, with 65 fires, whereas the lowest number was in 
1992, with only two fires (Fig. 3). The largest burnt area was 
in 1987, when 758 701 ha burnt. The smallest burnt area was 
in 1995, with only 0.4 ha burnt. There is no apparent trend 
related to the number of human-caused fires before 1987, but 
the number decreased from 1987 onward until another peak 
event appeared in 2003. The area burnt had a declining trend 
in 1972–86 and 1987–2002; with the exception of peak fire 

events in 1987 and later in 2003 (Fig. 3). On a monthly basis, 
the largest human-caused fires occurred in May, followed by 
April and June (Table 1). Although September and October 
did not account for a large percentage of fire incidences, the 
area burnt in both months was still considerable.

Fire occurrence patterns

Analysis of fire occurrence patterns revealed clusters in 1972–
76, 1977–81, 1982–86 and 1997–2001 at a scale of 200 km 
and in 1997–2001 at a scale of 100 km, while no obvious 
peak clustering was found in 1987–91. However, the pattern 
of fire occurrence was random with the L̂ h( ) values equal to 
h, the 1:1 line in 1992–96 (Fig. 4). The simulation tests also 
revealed that the pattern of fire occurrences was more clus-
tered than random. The analysis of fire occurrence pattern 
further showed regularity at larger spatial scales; i.e. patterns 
of regularity appeared at distance scales of >400 km in 1972–
76 and at >370 km in 1977–81. The distances of fire occur-
rence patterns changed from clustered to regular at ranges 
between 200 and 400 km. The total area of the Daxing’an 
Mountains is 84 600 km2 and treating the area as a circle, the 
radius would be 164 km (below the 200 km threshold); thus 
the major fire pattern would be clustered at a spatial scale of 
164 km in our study area.

Spatial intensity of human-caused fires

Analysis of the spatial intensity of human-caused fires showed 
similar locations of ‘hotspots’ for the periods 1972–76, 1977–81, 
1982–86 and 1987–91 (Fig. 5). The core area for the ‘hotspots’ 
was: 124°10′E, 50°23′N, in the administrative jurisdiction of 
Jiagedaqi. There were no obvious ‘hotspots’ in 1992–96, and 
the patterns of human-caused fire points were random under 
a bandwidth of 200 km. The ‘hotspots’ in 1997–2001 were 
located at 52°09′N, 125°55′, north of Hanjiayuan, and differed 
from other time intervals. The number of ‘hotspots’ in 2002–05 
was more than other time intervals and mainly located in the 
south of the Daxing’an Mountains, with core area coordinates 
of 51°35′N, 125°25′E; 51°13′N, 125°27′E; 51°07′N, 124°38′E; 
50°34′N, 125°26′E and 51°16′N, 123°41′E.

Prediction of forest fire occurrence

A logistic regression model was developed using several explana-
tory variables to predict the likelihood of forest fire occurrence. 
The first modeling attempt involving all explanatory variables 
had a significant overall accuracy (P < 0.001); and elevation, for-
est type, monthly mean temperature and daily mean tempera-
ture had significant impacts on the likelihood of human-caused 
fire occurrence (Table 2). We then removed the non-significant 
independent variables one by one to obtain the best model in 
which all the independent variables were significant at P = 0.05 
level. The best logistic regression model (Table 3) indicated that 
elevation, forest type and distance to the nearest railway were the 
most influential variables explaining the spatial pattern of natural 
fire ignition (P < 0.001), followed by monthly mean temperature 
and daily minimum temperature. The Hosmer and Lemeshow 
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goodness-of-fit test showed sufficient fit of the regression model 
to the data (χ2 = 13.181, df = 8, P = 0.106). The AUC was 0.784 
for the prediction (Fig. 6a) and 0.706 for the validation dataset 
(Fig. 6b). The classification accuracy was also evaluated using the 
validation dataset, and the goodness-of-fit test showed sufficient 
fit of the regression model to the validation data (χ2 = 14.964, 
df = 8, P = 0.05). The contingency matrix showed that the regres-
sion model correctly classified 74.7 and 64.8% of all observations 
in the prediction dataset (cross-validation) and validation data 
(independent test set), respectively (Table  4). The best logistic 
regression model for predicting the likelihood of fire occurrence 
in the Daxing’an Mountains would be:

	
p e

Elev Forest type Mmean
Tem= +

− − − +
−1 1

2 877 0 004 0 055 0 089
0 0/

. . . .
.

_
000012 0 009D railway Dmin Temis _ . _−( )









�
(4)

where, p is the likelihood of fire occurrence, Elev is the ele-
vation, Mmean_Tem is the Daily mean temperature, Dis_
Railway is the distance to the nearest railway and Dmin_Tem 
is the Daily minimum temperature.

Discussion
This study provides evidence that fire occurrence in the 
Daxing’an Mountains is temporally variable, with a major 
peak occurrence in 2003 (Fig. 3). This unusual peak is 
related to fire that escaped from a prescribed burn under 
conditions of dry weather and large amounts of fuel. The 
fire spread very quickly and resulted in a large burnt area. 
However, the overall trend in annual human-caused fires 
has decreased since 1987, with the main cause for this 
declining trend being the implementation of the Forest 
Fire Prevention Acts (FFPA) which were first enacted by 
the State Council of China in March 1988. As can be seen 
in Fig.  3, a remarkable result was achieved through the 
implementation of the FFPA, which resulted in a dramatic 
decline in the number of human-caused fires in the same 
year as the FFPA took effect. The positive effect of forest 
fire management policies on the reduction in fire occur-
rence has also been stressed in other studies (Galiana et al. 
2013; Gianni et al. 2013).

Figure 3:  the annual burnt area and human-caused fire frequency in Daxing’an Mountains during 1972–2005.

Table 1:  summary of monthly wildfire frequency and area burned in Daxing’an mountains

Month Average number of fires per year Percentage of occurrence Average burned area (ha) Percentage of burned area

January 0 0 0 0

February 0 0 0 0

March 1.1 3.51 20.92 0.03

April 7.0 22.36 5113.28 6.32

May 9.0 28.75 62 996.07 77.85

June 5.6 19.89 293.45 0.36

July 1.5 4.79 19.28 0.02

August 1.1 3.51 0.001 0

September 3.0 9.58 8383.39 10.36

October 3.0 9.58 4090.02 5.05

November 0 0 0 0

December 0 0 0 0
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Results from the analysis of the spatial pattern and inten-
sity of fires clearly show the existence of hotspots in China’s 
boreal forest. The main hotspot is located in the southwest of 

the Daxing’an Mountains; consistent with a previous study 
(Liu et al. 2012). The main factors influencing the occurrence of 
human-caused fires in the Daxing’an Mountains are elevation, 

Figure 4:  the pattern of human-caused fire occurrence in Daxing’an Mountains during 1972–2005 with 5-year time interval. Lhat was the 
estimated value of L-function. The upper and lower lines define the 95% confidence interval. The average was calculated from the mean of 
upper and lower lines.

Figure 5:  spatial intensity of human-caused fires in Daxing’an Mountains during 1972–2005 with 5-year time interval. The intensity repre-
sented the number of human-caused fire per square kilometer based on 50 km bandwidth scale.
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forest type, distance to the nearest railway and monthly mean 
temperature. Elevation and forest type were negatively related 
to the likelihood of fire occurrence, while distance to the near-
est railway and the mean monthly temperature were positively 
related to fire occurrence. We found that the hotspots of human-
caused fires are located in low elevation areas with a high den-
sity of railways and in the southwest corner of the Daxing’an 

Mountains, which has relatively higher temperatures compared 
to other places within the study area. Climatic factors could 
contribute to the existence of hotspots (Gralewicz et al. 2012; 
Joanne and Martin 2009; Lafon and Grissino-Mayer 2007; 
Wotton et  al. 2010). Our findings are consistent with recent 
studies that have emphasized the importance of topographic, 
vegetation and climatic factors as drivers of human-caused fire 

Table 2:  results of the multivariate logistic regression model for predicting the likelihood of human-caused fire occurrence in Daxing’an 
mountains (for all variables)

Variables df Coefficients Standard error Wald chi square Pr > |t|

Elevation 1 −0.004 0.001 54.935 <0.0001

Slope 1 −0.001 0.025 0.002 0.969

Forest type 1 −0.060 0.015 16.448 <0.0001

Mmean_Pre 1 0.008 0.119 0.004 0.949

Mmean_RH 1 0.015 0.022 0.471 0.493

Mmean_Tem 1 0.170 0.048 12.486 <0.0001

Dis_Railway 1 0.000 0.000 1.870 0.172

Dis_River 1 0.000 0.000 0.907 0.341

Dis_Road 1 0.000 0.000 0.002 0.962

Dis_Settlement 1 0.000 0.000 1.308 0.253

D_RF 1 0.000 0.001 0.102 0.750

Dmean_WS 1 0.015 0.021 0.488 0.485

Dmean_Tem 1 0.018 0.007 6.274 0.012

Dmean_RH 1 −0.021 0.025 0.715 0.398

Dmin_Tem 1 −0.014 0.017 0.619 0.431

Dmax_Tem 1 −0.013 0.018 0.561 0.454

Capita gross domestic product 1 0.000 0.000 0.012 0.913

Funding 1 0.000 0.000 0.044 0.833

Tower 1 0.003 0.010 0.094 0.759

F_Ins 1 0.001 0.003 0.069 0.793

Len_Bline 1 0.000 0.000 2.188 0.139

Len_Road 1 0.000 0.002 0.002 0.962

Den_Pop 1 −0.295 0.547 0.292 0.589

Constant 1 7.302 15.583 0.220 0.639

Full-model goodness-of-fit statistic = 13.181 (df = 8, P = 0.106); AUC = 0.784 ± 0.018 (P < 0.001). The meaning and description of each variable 
showed in Table 1.

Table 3:  results of the multivariate logistic regression model for predicting the likelihood of human-caused fire occurrence in Daxing’an 
mountains based on selected significant variables

Variables df Coefficients Standard error Wald chi square Pr > |t|

Elevation 1 −0.004 0.001 67.234 <0.0001

Forest type 1 −0.055 0.014 14.753 <0.0001

Monthly mean temperature 1 0.089 0.028 10.056 0.002

Distance to the nearest railway 1 0.000012 0.000 29.031 <0.0001

Daily minimum temperature 1 −0.009 0.003 7.941 0.005

Constant 1 2.877 0.399 51.875 <0.0001

Full-model goodness-of-fit statistic = 14.964 (df = 8, P = 0.05); AUC = 0.706 ± 0.018 (P < 0.001). The meaning and description of each variable 
showed in Table 1.
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(Chang et al. 2013; Liu et al. 2012; Martínez et al. 2009; Syphard 
et al. 2007; Vilar et al. 2010). As a whole, the accuracy of our 
model (64.8%) is similar (Chang et al. 2013) and/or comparable 
to the global accuracy of other logistic regression models devel-
oped to predict fire occurrence (de Vasconcelos et al. 2001; del 
Hoyo et al. 2011; Lozano et al. 2007).

In this study, socioeconomic factors such as the density of popu-
lation and GDP did not show a significant influence on the occur-
rence of human-caused fires in the Daxing’an Mountains. Our 
findings agree with those of Martínez et al. (2009) but disagree 
with others (Chang et al. 2013; Syphard et al. 2007). In our case, 
a possible explanation could be the implementation of a strict fire 
prevention policy, which requested all residents to move out of 
the core zone of the forest and prohibited entry into the forest 
during the fire season. Under these conditions, the influence of 
the density of population on fire occurrence may be limited.

CONCLUSIONS

In this study, the temporal and spatial distributions of human-
caused fires in China’s boreal forests from 1972 to 2005 were 
analyzed and the factors affecting fire occurrence were deter-
mined. There is significant spatial heterogeneity in the occur-
rence of fires, and seasonal variations in the distribution of 
human-caused fires have occurred (April and May appear to 
be the peak fire season). The annual number of human-caused 
fires has trended downward since 1987 due to the implementa-
tion of forest fire protection act. The study also provides evidence 

about the existence of hotspots of human-caused fire in the 
Daxing’an Mountains within a 50 km bandwidth. Elevation, 
distance to the nearest railway, forest type and mean monthly 
temperature play an important role on the spatial distribution 
of human-caused fires in the study area, and the logistic regres-
sion model that was built to predict the possibility of fire occur-
rence has a reasonable performance. We recommend other 
factors such as the normalized difference vegetation index, land 
use, the Pacific Decadal Oscillation and the El Niño—Southern 
Oscillation should also be taken into account to improve the 
predictive ability of the logistic regression model.
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online.
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Table 4:  contingency tables for the prediction and validation datasets of multivariate logistic regression models for human-caused fire, 
with cut-points of 0.3018 according to the Yueden criterion

Predicted

Building dataset Validation dataset

Fire 0 1 Percentage correct Fire 0 1 Percentage correct

Observed 0 260 142 64.7 0 102 92 52.6

1 67 375 84.8 1 39 130 76.9

Overall percentage 74.7 64.8

Figure 6:  The ROC curves for the logistic regression. (a) Prediction dataset; (b) Validation dataset.
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