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In this study, we proposed a generic methodology for combining high-dimensional spatial data to identify and
visualize the hidden spatial patterns in a single-layer geo-map. By using the less explored one-dimensional
self-organizing maps, we showed how the high-dimensional data can be transformed into a spectrum of one-di-
mensional ordered numbers. These numbers (codes) can index a high-dimensional space with the important
property that similar indices refer to similar high-dimensional contexts. Thus, the high-dimensional vectors
will be attributed to single numbers, and this one-dimensional output can be easily rendered as a new single
data layer in the original geographic map. As a result, it simultaneously identifies the main spatial clusters and
visualizes the high-dimensional correlations (if any) in a single geographic map. Further, because the output of
the proposed method is a set of ordered indices, there is no need to define a fixed number of clusters in advance.
Because these composite spatial layers are identified on the basis of the selected context (i.e., the selected fea-
tures or aspects of the spatial phenomena), they are called contextual maps.
Finally, we showed the results of applying the proposed methodology to several synthetic and real-world data
sets.

© 2016 Elsevier Ltd. All rights reserved.
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1. Introduction

With the current rapid growth in the amount of digital data, we
must address the challenge offinding appropriate techniques to harness
the power of these data streams. For example, in many cities across the
world, no longer does anyone lack access to digital spatial maps; in-
stead, the current challenge is, considering the amount and diversity
of these digital data regarding different aspects of the cities, how one
can picture his/her own map of the space as a combination of several
factors of interest.

Toward this direction, there have been several interesting cases such
as peoplemaps1 or Livehood projects (Cranshaw, Schwartz, Hong, &
Sadeh, 2012), which are explorations and mapping of activities within
cities based on data available from online social networks. One of the
cases most similar to our work is a project called Whereabout,2 where
by applying the K-means data-clustering algorithm to a collection of
spatial data consisting of N200 different aspects of each ward in the
city of London, a fixed number of groups were created by grouping
based on informational similarities (not physical locations). Then, on
top of the classical map of London, people get an impression of different
regions on the basis of their similarities in all of these categories. In a
similar manner, but only based on demographic information, a new
coding system of London called LOAC was developed (Longley &
Singleton, 2014).

The classical clustering algorithms divide the high-dimensional data
space into a predetermined number of groups, where eachwill be given
a label (usually an arbitrary number). Then, these cluster labels attribut-
ed to each spatial data point can be visualized on the geographic map
with a specified color code. However, despite the fact that standard clus-
teringmethods such as K-means are easy to use, they have some limita-
tions in the domain of spatial pattern recognition. One of the main
problems is that they divide the space into a small number of categories.
Instead, it would be preferred to have a continuous and smooth chang-
ing pattern on top of the high-dimensional data. Further, one needs to
select the number of clusters in advance, which is a critical decision
(Tibshirani, Walther, & Hastie, 2001). In addition, in the context of spa-
tial clustering, because the cluster labels are not ordered according to
their high-dimensional similarities, the colored visualization of clusters
in the geographicmap is not directly helpful. Therefore, similar colors in
a clustered geo-map do not necessarily refer to similar high-dimension-
al patterns. As a result, increasing the number of clusters with different
colors may result in final spatial visualizations that are not helpful, but
having too few clusters produces results that are too aggregated. One
current solution to this problem is to create an RGB (red, green, blue)
pattern after data clustering by reducing the high-dimensional vectors
of the cluster centers to their first three principal components
(Mahinthakumar, Hoffman, Hargrove, & Karonis, 1999). However, in
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addition to losing some information (by selecting only three principal
components), the color interpretations will need an additional step.

The main hypothesis of this study is that if we find a method to sort
the clusters in a way such that similar cluster indices refer to similar
contexts (i.e., similar high-dimensional patterns), we can make a direct
projection from high-dimensional spatial data to a one-dimensional
vector and visualize the high-dimensional patterns in the geographical
maps using a simple color spectrum. In thismanner, by havingmany in-
dices instead of dividing the high-dimensional data into a few distinct
groups, one can create a spectrum of high-dimensional patterns that
are visualized with a colored spectrum on spatial maps. Because the
high-dimensional patterns would change gradually, this would also
solve the problem of distinct cluster borders and the fixed number of
clusters. As we show in Section 2, our proposed approach can be
discussed from the viewpoint of dimensionality reduction andmanifold
learning (Bengio, Courville, & Vincent, 2013), where one of the best
methods that satisfies these requirements is self-organizing maps
(SOMs) (Kohonen, 2013).
2. SOMs in the domain of spatial analysis

SOM is a general-purpose machine-learning method that offers in-
teresting solutions to different data-driven modeling tasks (Kohonen,
2013).

SOM is a nonlinear space transformation method that tries to pre-
serve the topology of high-dimensional data, while transforming them
into a low-dimensional space. This means that SOM projects the high-
dimensional data points to a lower-dimensional space (normally a
two-dimensional grid) in a manner such that neighboring objects in
high-dimensional space remain neighbors in low-dimensional space.
This topology-preserving transformation unfolds the nonlinear and
high-dimensional patterns into a low-dimensional space that can be
easily visualized.

Nevertheless, a major difference between SOM and other data-
unfolding and dimensionality reduction methods such as locally linear
embedding (Roweis & Saul, 2000), complete isometric feature mapping
or ISOMAP (Tenenbaum, De Silva, & Langford, 2000) and t-distributed
stochastic neighbor embedding, known as t-SNE (Van der Maaten &
Hinton, 2008) is that it creates an abstraction of the data into new pro-
totypes, while in typical dimensionality reduction methods, there is al-
ways a one-to-one relationship between all the observed points in the
high- and low-dimensional space. In SOM algorithm, these identified
abstract prototypes (usually called nodes or codebooks) are essential el-
ements for the pattern recognition and data reduction tasks such as
clustering. These nodes have a dual representation, including a low-di-
mensional vector, showing the location of the node in the lower-dimen-
sional space, and a high-dimensional weight vector, which has the same
dimensionality as the original high-dimensional data. Therefore, these
nodes, as distributedmodels of the training data, can be used separately
in different modeling problems. This property of SOMmakes it very at-
tractive for many tasks such as data visualization, function approxima-
tion, and data clustering in general. In the domain of spatial analysis,
SOM has been used in several applications (Delmelle, Thill, Furuseth,
& Ludden, 2013; Frenkel, Bendit, & Kaplan, 2013; Agarwal & Skupin,
2008; Skupin & Esperbé, 2011; Wang, Biggs, & Skupin, 2013 and
Arribas-Bel, Nijkamp, & Scholten, 2011; Spielman & Thill, 2008) and is
well-known as a tool for visual data mining and exploration of high di-
mensional spatial interactions (Yan & Thill, 2009).

Because data clustering is an exploratory activity, the high-dimen-
sional maps resulting from the clustering of high-dimensional vectors
using SOM are commonly visualized on two-dimensional colored
maps known as component planes (see Fig. 3 for an example). However,
in the context of spatial clustering, there is normally an extra constraint
on projecting the final outputs of the pattern recognition algorithms
onto the original spatial map. Considering this requirement, the main
problem of classical SOM is that it loses the spatial index of data that
are not part of the training data (Bação, Lobo, & Painho, 2005).

Therefore, one of the main concerns of spatial clustering is how to
consider the effect of spatial coordinates of data points alongside the
other attributes (Bação et al., 2005 and Hagenauer & Helbich, 2013).

Spatial autocorrelation is one of the underlying concepts in spatial
data modeling, which states that physically nearby objects are more
likely to exhibit similar properties (Tobler, 1970).

To address this issue, there are two modifications to the original
SOM. The first approach is to consider the similarity of spatial objects
as a weighted sum of similarity between high-dimensional attributes
and their physical proximity. However, since spatial coordinates are
not semantically comparable with other attributes, this approach is
not widely accepted (Bação et al., 2005). The second approach leads to
a class of spatial variants of SOM such as GeoSOM (Bação et al., 2005;
Henriques, Bacao, & Lobo, 2012), where, the algorithm forces the train-
ing data that spatially similar observations are placed in similar regions
of the low-dimensional map of SOM. Therefore, spatial coordinates and
spatial attributes are contributing next to each other, but not at the
same time in one single distance measure.

A more recent method in this approach is contextual neural gas
(CNG) (Hagenauer & Helbich, 2013), which is based on similar idea to
GeoSOM, but implemented in the context of the neural gas (NG) algo-
rithm (Martinetz & Schulten, 1991). TheNG algorithm is amodified ver-
sion of SOM that unlike SOM there is no defined low dimensional grid
and the nodes are dynamically distributed in the high-dimensional
input space. In the case of CNG, the geographical map is used as the
lower-dimensional representation.

The main contribution of these two spatial variants of SOM (i.e.,
GeoSOM and CNG) is that, to an extent, they replace the original syn-
thetic topology of SOM with a spatial map with the cost of n based
method discussed above, the final two-dimensional SOM grid can be
used as a bivariate color code (Guo, Gahegan, MacEachren, & Zhou,
2005). Although a two-dimensional SOM performs better than the
PCA-based map coloring method, which is a linear dimensionality re-
duction approach, because we are dealing with high-dimensional data,
we need another diagram to connect these bivariate color codes of clus-
ters on top of the SOM grid to show the characteristics of the clusters in
terms of their high-dimensional vectors. As a result, one needs to select
a small number of clusters for better visualization in most of these
applications.

As an alternative approach to those mentioned above, the princi-
ple idea of this study is to view the problem of spatial clustering from
the perspective of manifold learning and dimensionality reduction
(Bengio et al., 2013). In the context of spatial pattern recognition,
this implies that if there exist some underlying spatial similarities
in high-dimensional data that are not easy to track in the original
spatial maps, there should be an appropriate manner of encoding
the data from high-dimensional space to lower-dimensional codes
(specifically to a one-dimensional vector) while preserving the pat-
terns in the encoded data. These low-dimensional codes should
index a high-dimensional state space with the important property
that similar regions in the high-dimensional state space receive sim-
ilar codes. Specifically, if we could encode the high-dimensional vec-
tors as a single-dimensional code, we can treat these codes as a type
of numerical value, and they can be treated as a single layer of spatial
data in the same way that, for example, we can render the surface
temperature in a geographic map. Therefore, if there are spatial pat-
terns in the high-dimensional data, one can quickly see them visual-
ized in the geographical maps. This will solve the abovementioned
problems of the current spatial clustering approaches.

In addition, because we transform the high-dimensional space into
single-dimensional numbers, these numbers can be seen as abstractions
of those high-dimensional spaces that they refer to. Therefore, as we
will show in the following sections, one can combine the results of sev-
eral clustering steps in a systematic and hierarchical manner.
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Toward this goal, by using the less explored one-dimensional
SOM in a different way than usual, we show in this study how the
high-dimensional data can be transformed into a spectrum of one-
dimensional ordered numbers (codes) called contextual numbers
(Moosavi, 2014).

In Section 3, we present the proposedmethodology; this is followed
by various experimental results, including a synthetic data set and two
real-world data sets from London and New York City. Further, we dis-
cuss the possibility of combining the results of different clustering
steps using their contextual numbers, which is beyond themere visual-
ization function of SOM in spatial applications.

3. One-dimensional SOMs and spatial clustering

In this section,we assume that the reader is familiarwith the original
SOM algorithm. Therefore, we skip its re-explanation here and refer the
reader to Kohonen (2001) for details regarding the training process.

We instead present how one can project high-dimensional spatial
data onto geographical maps while preserving the high-dimensional
correlations by using the less explored one-dimensional SOM.

We consider the training data set X={xi,… ,xM} as a set ofM points
in an n-dimensional space xi∈Rn , i=1,n ,M.

Assuming a low-dimensional grid with K nodes (or cells), we have a
set of indices yj , j={1,… ,K}, each with an attached high-dimensional
weight vector with the same dimensionality as the input data, wj∈Rn.

The goal of the algorithm is for similar data points in the high-di-
mensional space to be given similar indices.

The final output of a trained SOM can be visualized in different
ways. One of the most common ways to represent the nonlinear pat-
terns among different dimensions is through a two-dimensional map
of the trained SOM called a component plane (Vesanto, 1999). A
component plane is similar to a geographical map with fixed coordi-
nates. Because each node in the trained SOM has a fixed coordinate
and a high-dimensional weight vector, one can render different di-
mensions of the weight vectors simultaneously in this new coordi-
nate system. As a result, this map unfolds the interrelationships
between high-dimensional features. For example, suppose that we
have a four-dimensional data set with the following interrelations
between different dimensions: x1 and x4 are independent random
variables with a uniform distribution from 0 to 1, x2 = −2 · x1,
and x3 = (x1)4 + (x1)2.

Fig. 1 shows how a SOM with a two-dimensional grid can visualize
these relationships between four dimensions. Here, the colors indicate
the values of each variable. As we expected, there is a negative and lin-
ear correlation between the first two variables and a nonlinear relation-
ship between the first and third dimensions. Further, as we also
expected, the pattern of change in the values of dimension four is or-
thogonal to those of the other dimensions, which indicates its indepen-
dence of the other dimensions.

This is the generic use of SOM, and the same methodology can be
applied to spatial data points. However, as discussed in Section 2, al-
though these visualized nonlinear patterns between several dimen-
sions are made possible by the SOM algorithm, what is missing in
the domain of spatial analysis is a sense of space. To highlight this
Fig. 1. Typical component plane visualization o
issue, we use an example from a real spatial data set. The data set is
taken from a collection of spatial data in the city of London. In this
specific example, each data point shows the average percentage of
16 different age groups within each spatial region, which is called a
ward. Fig. 2 shows the spatial distribution of these aspects in London.

After training a classical SOM on this data set, Fig. 3 shows the corre-
lations between different age groups. As shown, there are three specific
and logical patterns in these 16dimensions. Thefirst is related to the age
groups b17 years and that of 45–59 years. This group can be families liv-
ing together with their children. The second group consists of regions
with highlighted age groups from 19 to 44 years. This group, which
has an opposite pattern from that of the previous group, can be called
individual young workers with no children. The last group consists of
older groups of age 60 years and above.

An important factor in these high-dimensional graphs (shown in
Fig. 3) is that these three identified age groups are, to a large extent,
nonoverlapping. Therefore, in terms of spatial analysis, this indicates
that the regions corresponding to these three groups might be spa-
tially segregated as well. However, neither of these two types of visu-
alization is completely helpful for spatial analysts and urban
planners. On the one hand, in classical geographical maps, it is not
easy to find high-dimensional patters. On the other hand, SOM visu-
alization shows the high-dimensional patterns with the cost of los-
ing the spatial distributions of each pattern.

The principal idea of this study is to find a way to take advantage of
both spaces (i.e., the lower-dimensional map of SOM and geographical
mapping at the same time) by inverting the usual way of rendering
the SOM using a one-dimensional SOM.

Traditionally, in applications of the SOM algorithm, the final index of
the trained SOM will not be used directly as a numerical value, but in-
stead through its assigned weight vector.

However, in contrast to the current method of using SOM indices,
if we design these indices such that they form a new one-dimension-
al space of indices, they can be used directly as some sort of numer-
ical values (Moosavi, 2014).

If we use a one-dimensional SOM, although we cannot visualize the
component planes as usual (such as Figs. 1 and 3), the final index of an
SOMwith K nodes creates an ordered set such that numerically similar
codes are more similar based on their high-dimensional weight vectors.
More formally, we will have the following condition:

If ‖yi−yj‖b‖yi−yk‖, then ‖wi−wj‖b‖wi−wk‖, where 1≤yi≤K is a
scalar value. While this topology preservation is not mathematically
proven for an SOM with two-dimensional or higher topologies, it is
proved to be valid for one-dimensional SOMs (Erwin, Obermayer, &
Schulten, 1992; Cheng, 1997; Flanagan, 2001).

However, as a limiting factor to this change in the topology of
SOM it should be noted that in general, having higher grid dimen-
sions or a more-connected neighborhood topology in the SOM net-
work can improve the performance and quality of the trained SOM
in terms of quantization error and topology preservation. Therefore,
because we are strictly using a one-dimensional SOM, we could, in
principle, assume a trade-off between dimensionality reduction
and detail preservation. We will discuss this issue further in
Section 6.
f SOM for synthetic four-dimensional data.
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Fig. 2. Spatial percentages of the population in different age groups in London.

Fig. 3. Interrelationship between the percentages of population in different age groups in London.
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Image of Fig. 2
Image of Fig. 3


Fig. 4. One-dimensional SOM with 100 nodes, trained with a three-dimensional data set:
the final weight vectors of the trained SOM are color-coded based on their index numbers
from 1 to 100.

Fig. 5.Radar diagram showing theweight vectors corresponding to the trained SOM in Fig.
4.

Table 1
Different categories of data used for the case of London.

No. Category No. Category

1 Age 12 Passports held
2 Cars 13 Tenure
3 Central heating 14 Qualification
4 Crime 15 Mode of travel to work
5 Distance travelled to

work
16 Flickr photo count

6 Dwelling type 17 Mean of Medians Weighted by Sale Counts
(2009)

7 Establishment type 18 Main language
8 General health 19 Food agency
9 Hours worked 20 Cycle hire locations count
10 Household composition 21 Pubs per square kilometer
11 Occupation 22 NS-SeC (different social classes)

23 Green space
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As an example, Fig. 4 shows a case with synthetic three-dimensional
data (shownwith small dots),where there are 3 distinct clusters. A SOM
with 100 nodes in a one-dimensional topology folds itself in a way to
mimic the training data vectors. In addition to the identification of
three main clusters, there are local distributions of the nodes within
each cluster that account for the internal varieties within each cluster.

Considering the index of these nodes from 1 to K, which are col-
ored in a spectrum, one can encode the high-dimensional data (in
this example, the three-dimensional space) as a set of ordered
numbers.

In this regard, a one-dimensional SOM can be seen as a sequence of
ordered numbers pointing to a high-dimensional space, but compared
to classical numbers such as natural numbers, the main difference
here is that these numbers are ordered according to their similarities
within the selected high-dimensional state space (context). As a result,
they are called contextual numbers (Moosavi, 2014). Regarding the
problemofmultivariatemapping,with this transformation, the high-di-
mensional spatial vectors will be converted into single contextual num-
bers along with their geographic coordinates. Because we expect to
have a smooth changing pattern from node to node, we can color
these spatial maps with one-to-one relationships with standard color
spectrums. From this viewpoint, one can claim that this new single
data layer visualizes the emergent and composite spatial properties
(i.e., clusters) in a quantitative manner. Therefore, in a similar argu-
ment, we call them contextual maps. Further, we can visualize the
high-dimensional weight vectors corresponding to each contextual
number by classical approaches such as a radar diagram. Fig. 5 shows
a selected sample of weight vectors trained for the synthetic three-di-
mensional data set shown in Fig. 4. There are one-to-one relationships
between the color-coded circles in Fig. 4 and each layer in Fig. 5. As
we expected, there are three main clusters, and within each cluster,
we have a spectrum of different combinations with similar color codes.

In Section 4, we will show the result of this approach for two differ-
ent real-world spatial data sets.
4. Experiments with real-world spatial data

In this section, we show the results of the proposed method using
two real-world spatial data sets. One is a collection of 235 attributes of
the so-calledwards in London (Fig. 2). Thedata set is provided by Future
Cities Catapult from the abovementioned project Whereabout. The sec-
ond data set is obtained from US census 2000 and 2010, including the
distribution of different race groups at the census block level, corre-
sponding to five boroughs of New York City.

In the data set from London, there are 23 different categories, each of
which consists of several subcategories, for 235 spatial attributes. Table
1 shows the list of main categories.

The selection of each category or combination of different subcate-
gories depends on the purpose of the study, and therefore, each selec-
tion will result in a different contextual map. However, as we are
mainly interested in showing the potential uses of the methodology

Image of Fig. 4
Image of Fig. 5


Fig. 6. Contextual map of London based on the two categories of qualification and general
health.
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proposed in this study, we show a few specific cases with and without
distinct spatial patterns.

We implemented the proposed methodology in the Python pro-
gramming environment, and the source code is openly available in an
online repository.3

For the first example of London, we considered the combination of
categories qualification and general health. Both variables are categori-
cal, and the values of each subcategory show the percentage of people in
that specific region (i.e., ward) who belong to that subcategory.

We trained a one-dimensional SOMwith 200 nodes on this data set.
After assigning the contextual numbers to each spatial point (i.e., values
from 1 to 200), we project each spatial point to the geographic map of
London using a simple color spectrum. As we expected, Fig. 6 shows
that there is a large and distinct area with high values of red, while
the distribution of other extremes with very low values (blue) are
spread in smaller but distinct patches along the eastern side of London.
Further, there is a clear non-overlapping region in the center, where we
have completely opposite patterns of lifestyles. Compared to classical
spatial clusteringmethods, we can here infer that the opposite colors in-
dicate very opposite lifestyles, while in the classical cluster coloring, the
colors are not comparable at all.

To interpret these colors, Fig. 7 shows a radar diagram. For each con-
textual number, we have a high-dimensional weight vector. Therefore,
each axis shows the values of each dimension. As shown, the clusters
have expanded between two orthogonal extremes. In red clusters, we
have those regions where people have high levels of qualifications and
very good health conditions, and on the other extreme in blue clusters,
we have regions with lower levels of qualification and relatively poor
health conditions. At the same time, there are other clusters between
these two extremes.

An important property of this approach is that because those nodes
with similar values refer to similar high-dimensional patterns, the num-
ber of nodes in the one-dimensional SOM acts as a level of resolution in
the color spectrum used for the geo-map. By adding more nodes, we
will have more individual distinctions, while the general patterns will
remain stable. Fig. 8 shows the effect of the number of nodes on the con-
figuration of clusters in the example shown in Fig. 7. As shown, after al-
most 200 nodes, the final categorization becomes very stable.

In another example, we used the category of crime as the input for
the contextual maps. As shown in Fig. 9, although there is no evident
3 https://github.com/sevamoo/SOMPY.
spatial pattern across London (except in the central part), Fig. 10
shows that different types of crime have formed four main clusters.

Further, as another example with no categorical data, Fig. 11 shows
the results of the proposed method for 4 dimensions of mean values of
working hours for females and males plus the average distance to work
and average age within each ward.

Further, Fig. 12 shows a radar diagram explaining the configuration
of its corresponding contextual map.

In the previous examples,we used data froma single cross-section in
time, but it is possible to implement the samemethod on the spatiotem-
poral data to examine places that have changed similarly with time. In
this regard, as another experiment, we applied thismethod to the distri-
bution of different races in New York City for the years of 2000 and
2010. The data are obtained from USA census 2000 and 2010, and the
resolution of the data is at the census block level. In this case, after
data preprocessing, we had approximately 30,000 spatial points with
5 dimensions, each representing the percentage of people in any of
the groups of White, Asian, Black/African American, Latino, and others.
Here, we have two goals. First, we are interested to know how integrat-
ed or segregated different regions are and how different regions have
changed from 2000 to 2010. We trained a one-dimensional SOM with
1500 nodes using both data sets from 2000 and 2010. As a result, we
have the same referencing system to show levels of aggregation/segre-
gation. Figs. 13 and 14 show how segregated or integrated NYC was in
different regions in 2000 and 2010. While there are mainly regions
with unique races, some mixed regions also exist in transition from
one cluster to another.

Further, Fig. 15 depicts the distribution of each racewithin each con-
textual color.

The additional benefit that we obtain from using contextual num-
bers is that we can treat them like normal numbers even though they
refer to high-dimensional vectors. For example, in the case of New
York City's racialmixture, we can visually observe the degrees of change
in the racial mixtures from 2000 to 2010. To do so, we normalized the
contextual numbers to a range of 0–1, and we then simply mapped
the absolute degrees of change in the corresponding contextual num-
bers for 2000 and 2010. Fig. 16 shows that while most blocks have
been stable (regardless of their mixture), there are some regions that
have changed radically, either from being integrated to very segregated
or vice versa.

While this case was limited to only 10 years, it would be interesting
if one could examine this methodology over several decades to see, for
example, how those regions that were segregated (integrated) have
changed gradually over time.

As a final note in this section, it isworthmentioning that since in this
paper we only use static figures to visualize the radar diagrams, some-
times it becomes hard to see all the underlying layers in a diagram.
Therefore, the ideal visualization for these radar diagrams would be to
have web based interactive diagrams, where the user can easily explore
the geo-maps in parallel.

5. Discussions and future research

In this section, we will discuss two main technical issues related to
the proposed methodology plus one potential application in the field
of urban planning and zoning.

The first point is about the chosen one-dimensional topology of
SOM. As we briefly mentioned before, it is known that having higher
grid dimensions or a more-connected neighborhood topology in the
SOM network can improve the performance and quality of the trained
SOM in terms of quantization error and topology preservation. There-
fore, since in the proposed method we are strictly using a SOM with
one-dimensional grid structure, we should, assume a trade-off between
dimensionality reduction and detail preservation.

On the basis of our experiments in this study, we observed that by
appropriate selection of the number of training cycles both topologies

https://github.com/sevamoo/SOMPY
Image of Fig. 6


Fig. 7. Radar diagram for the contextual map of London shown in Fig. 6.
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(i.e. one-dimensional and two-dimensional grid structures) can end up
to very similar quantization errors. In order to test this issue, we com-
pared the quantization errors in SOMs with the same size of nodes,
but different topologies of 1 × 400 grid and 20 × 20 grid respectively.
Fig. 8. Effect of the number of nodes in a one-dimension
Except the number of iterations for rough training and fine-tuning, all
the other factors such as learning rates and initialization methods
were always chosen the same based on the recommended setting in
Vesanto, Himberg, Alhoniemi, and Parhankangas (2000). Further, in
al SOM on the configuration of identified patterns.

Image of Fig. 7
Image of Fig. 8


Fig. 9. Contextual map of London based on the category of crime. Fig. 11. Contextual map of London based on the average working hours, the average
distance travelled to work, and the average age within each ward.
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order to see the effect of dimensionality of training data on the quanti-
zation errors, we ran several tests with different data dimensions (from
2 to 20 dimensions). The data sets were randomly chosen from London
data set, which was introduced in Section 4. As expected Fig. 17 shows
that by increasing the data dimension the quantization errors will in-
crease regardless of the chosen grid topology. Further, in comparison a
one-dimensional SOM with the same training iterations as a two-di-
mensional SOM has always relatively higher quantization errors. How-
ever, it can be seen that by doubling the training iterations, both
topologies achieve very similar quantization errors.
Fig. 10. Radar diagram for the contextu
In addition to quantitativemeasures, on the basis of our experiments
with spatial data sets, the radar diagrams visualizing the identified high-
dimensional patterns always show logical patterns from one cluster to
another, with no twisted or disordered clusters.

The second important technical issue of the proposed methodology
is that while the distances between indices of the trained one-dimen-
sional SOM are equal (i.e., from 1 to K equal to the number of nodes),
their similarity does not change linearly or in another words, their
al map of London shown in Fig. 9.

Image of Fig. 9
Image of Fig. 10
Image of Fig. 11


Fig. 12. Radar diagram for the contextual map of London shown in Fig. 11.
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distance in high dimensional space is uneven. However, as shown in Fig.
4, if there is a gap between high-dimensional clusters, they will be usu-
ally identified in the corresponding radar diagrams (e.g. Fig. 5) with a
clear gap between the identified clusters. Nevertheless, we should high-
light that the color-coded geo-maps should not be interpreted individ-
ually and only with a reference to the radar diagrams. The same
problem exists in those cases such as the example in NYC (Figs. 13, 14
and 15) that contextual numbers have been used computationally.

As an initial solutionwe propose the following steps in order to solve
this problem.

Assume CNj= j, for j=1,… ,K is the originally proposed contextual
numbers. If we define HDistj=wj−wj−1 for j=2,… ,K as the
Fig. 13. Contextual map of the racial mixture in New York City in 2000.
sequential distances between high dimensional vectors of the original
contextual numbers, we introduce an adjusted contextual number
ACNj for j=1,… ,K that can be calculated as follows:

ACN1 ¼ 0
for j in 2;…Kf g
ACN j ¼ ACN j−1 þ HDist j= min

j
HDist j

With this simple procedure, we define the minimum distance as a
unit of contextual numbers and shift the indices to the right in a way
that the adjusted values preserve the distances between nodes in high
Fig. 14. Contextual map of the racial mixture in New York City in 2010.

Image of Fig. 12
Image of Fig. 13
Image of Fig. 14


Fig. 15. Radar diagram for the contextual map of racial mixture in New York City.

Fig. 16. Qualitative degrees of change in the racial mixture of NYC from 2000 to 2010.
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Image of Fig. 15
Image of Fig. 16


Fig. 17. Comparison of the quantization errors of two different SOMgrid topologies for the
same data sets with different dimensions.
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dimensional space. Fig. 18 shows the result of this procedure on the ex-
ample shown in Fig. 4. As expected, there are two clear leaps between
the adjusted contextual numbers that indicate the discontinuity in the
higher dimensional space. Finally, we should mention that although
the proposed adjustment works well in this example, we would like
to leave further investigations in this problem to the future research.

In this paper, we only showed some basic applications of the pro-
posed method. In addition to these examples, we showed in Moosavi
(2014) that the contextual numbers could be used in combination
with other contextual numbers or other features in a hierarchical
manner.

As a possible application of this idea, we think that in the domain of
urban planning and zoning, as an alternative to the traditional zoning
approaches based on a fixed set of aspects of a city, it is possible to de-
velop collaborative images of the city by using the proposed contextual
mapping in a participative manner, where the final map is produced
frommany individualizedmaps (each of which is based on different as-
pects of a city).

This problem can be considered a type of spatial clustering problem,
where the entire region of a city is normally divided into a set of homog-
enous regions because of administrative requirements such as elections,
public transportation, policy analysis, or similar requirements. The
criteria for this spatial clustering, such as the one recently done for Lon-
don (known as LOAC), are typically combinations of census variables
(Longley & Singleton, 2014). Nevertheless, the output of this clustering
Fig. 18. The adjusted contextual numbers in comparison to node indices (initial contextual
numbers) for the example shown in Fig. 4.
problem, which is only based on a few categorical aspects, will later
have political power in further decisions about that city.

Alternatively, in a collaborative planning scenario, by providing a
user-friendly web-based platform, one can develop a type of digital sur-
vey,where citizens (including experts and non-experts) are asked to se-
lect their main aspects of interest through which they see the city they
live in. Considering the selected aspects for each user, there will be a
corresponding contextual map of that city (i.e., a unique emergent
image of the city per person). Next, on another level, it is possible to
take each of these emergent images of the city as a new spatial dimen-
sion and produce another contextual map that can be considered a col-
laborative image of the city. The problem of identifying the image of a
city has been an important issue for urban planners both in the past
(Lynch, 1960) and present through the use of social media (Salesses,
Schechtner, & Hidalgo, 2013). Nevertheless, we think that none of the
previous works have developed a method to combine these high-di-
mensional individualized images of the city in a collaborative manner.
Therefore, as a future work, we would like to test this idea in a realistic
scenario.

6. Conclusions

With the ever-growing availability of digital data inmany spatial do-
mains, we need to develop appropriate methods to explore high-di-
mensional and complex spatial patterns. Compared to classical data
clustering problems, one of the main issues of spatial pattern recogni-
tion and spatial clustering is that in spatial clustering, in addition tofind-
ing high-dimensional patterns, one needs to keep the spatial
coordinates in parallel to other features. Finally, it is always desired to
project the high-dimensional patterns onto the geographic maps.

In this study, we developed a methodology for mapping high-di-
mensional spatial data onto a single geographical map, through which
we can visualize the high-dimensional spatial patterns in an intuitive
way.

We also showed how the less explored one-dimensional SOM could
transform high-dimensional data points into a set of one-dimensional
ordered indexes called contextual numbers. The main property of
these contextual numbers is that similar numbers refer to similar
high-dimensional contexts. As a result, the high-dimensional spatial
data points that are normally considered several spatial layers in parallel
can be visualized based on their corresponding contextual numbers in a
single-layer geographical map. Because these output maps can be
interpreted in relation to the selected context (i.e., the selected high-di-
mensional space), they are called contextual maps.

We showed applications of the proposed method based on one syn-
thetic and two real-world data sets. Finally, we discussed two main
technical issues related to the proposed method and one potential ap-
plication in the field of urban planning that need to be investigated in
future research.
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