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In coastal and estuarine environments, near-surface salinity varies significantly in space and time. As absolute
salinity and salinity gradients are central to many physical and ecological processes in these environments,
reliable and consistent salinity estimates are a priority for marine research and application communities. Sat-
ellite remote sensing has a great potential to meet this need, yet sensors and algorithms designed to monitor
open ocean salinity are typically ill-suited for high resolution applications to coastlines and estuaries. Here
we present results of multiple statistical models that predict daily, gridded surface salinity at 1 km resolution
across Chesapeake Bay as a function of level 2 surface reflectance estimates from the NASA Moderate Reso-
lution Imaging Spectroradiometer (MODIS), onboard the Aqua platform. Eight statistical methods were test-
ed and it was found that sea surface salinity can be accurately predicted via remote sensed products with an
accuracy that is more than sufficient for many physical and ecological applications. For the best-performing
statistical model, mean absolute error was 1.82 relative to mean Chesapeake Bay salinity of 16.5.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Sea surface salinity plays a vital role in circulation patterns, influ-
ences the spatial distribution of many marine organisms, and affects
seawater density in both coastal systems and open oceans. In coastal
and estuarine environments, even small changes in salinity can great-
ly alter the transportation course and lifecycle of organisms and the
status of the ecosystems they comprise (Baird and Ulanowicz,
1989). For this reason, salinity is a core input to ecological analyses
and to operational models designed to monitor physical and biologi-
cal processes in coastal environments. Advances in coastal remote
sensing and computer modeling technology have led to several suc-
cessful operational products that employ sea surface salinity. The
National Atmospheric and Ocean (NOAA) CoastWatch Program pro-
vides a near real-time product for forecasting harmful algal blooms
and predicting the likelihood of where sea nettles exist in the Chesa-
peake Bay. NOAA's forecasting models are accomplished by applying
surface salinity and temperature estimated from a numerical hydro-
graphic model (ChesROMS) to species-specific habitat models for
the Bay (National Oceanic and Atmospheric Administration (NOAA),
2010).
y, 3400 N. Charles Street, 301
7135.
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These applications point to the critical need for reliable, continuous,
and spatially distributed estimates of salinity in coastal environments.
In situ salinity measurements are a critical component of suchmonitor-
ing efforts, but cost and logistics limit the temporal and spatial coverage
of such measurements. The Chesapeake Bay Monitoring Program con-
ducts routine bi-monthly water quality monitoring along the main-
stem sections of Maryland and Virginia Bay waters. The monitoring
program measures key components of the Bay ecosystem: habitat, liv-
ing resources, pollutant inputs, and water quality. These monitoring ef-
forts are used in both research and modeling of the Chesapeake Bay
ecosystem (Maryland Department of Natural Resources, 2011). Both
physical and biological processes in coastal systems can occur on spatial
and temporal scales that are not observed through monthly environ-
mental sampling at designated sites and transects.

Satellite remote sensing offers the potential to estimate salinity
across entire water bodies at the frequency of satellite overpass, dra-
matically enhancing our monitoring capabilities relative to in situ ob-
servation networks. To date, however, satellite missions targeting
salinity have focused on open ocean rather than coastal applications.
NASA's Aquarius mission, launched in June 2011, and the European
Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission
launched in November 2009, are capable of measuring sea surface sa-
linity from space across the world's oceans, but the 150 km spatial
and 7-day temporal resolution of Aquarius and the 250 km spatial
and 10–30 day average temporal resolution of SMOS are too coarse
for coastal and estuarine environments. The Chesapeake Bay, for
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Fig. 1. The a) Mid-Atlantic coast and the b) inset of the Chesapeake Bay Estuary with 67
Chesapeake Bay Monitoring Program stations.
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example has a maximum width of only 48 km (National Aeronautical
Space Administration, NASA, 2011). The coarse resolution of these sa-
linity missions stands in contrast to the 1 km spatial resolution esti-
mates of sea surface temperature (SST) that are produced with near
global coverage on a daily basis by MODIS and other sensors. Estimat-
ing high-resolution coastal and estuarine surface salinity from satel-
lite is known to be a valuable tool, yet no proven or operational
salinity algorithm exists for the Chesapeake Bay.

Attempts to successfully map sea surface salinity via remote sensing
have ranged from Skylab photography (Lerner and Hollinger, 1977) to
microwave radiometer measurements (Blume and Fedors, 1978), deca-
metric wave ranges (Kachan and Pimenov, 1997), ESTAR measure-
ments, and Landsat TM data (McKeon and Rogers, 1976). The use of
satellite imagery to map sea surface salinity in an estuary was first per-
formed in the San Francisco Bay by Khorram (1982). This pioneer study
found correlations between Landsat TM color bands and sea surface sa-
linity in an estuarine environment. Other studies (Del Vecchio and
Blough, 2004; Bowers and Brett, 2008; Maisonet et al., 2009) explore
the empirical relationships between colored dissolved organic matter
(CDOM) and salinity using remotely sensed ocean color in a coastal set-
ting. These studies showed that a straight-line relationship between
CDOM and salinity is expected dependent on the ratio of the flushing
time of an estuary and the timescale of the source variation.

The empirical relationship between colored dissolved organicmat-
ter (CDOM) and salinity is important in that CDOM serves as an inter-
mediary function between remote sensing reflectance bands and sea
surface salinity. This relationship assumes that fresh-high CDOM
river waters mix conservatively with salty-low CDOM seawater, and
therefore an inversely correlated relationship between CDOM and sa-
linity (D'Sa andMiller, 2003). Sincewe canmeasure CDOM from space,
we can also derive salinity values from remotely sensed observations. It
is important to note that this method only works in systems in which
there is conservative mixing between coastal waters and rivers. Floccu-
lation and photodegradation could invalidate the assumptions of con-
servative mixing in this method, however previous work (Blough et
al., 1993;Del Castillo et al., 1999) has shown that these effects have neg-
ligible impacts on CDOM concentration. Therefore, because sea surface
salinity is a function of colored dissolved organicmatter, it is also a func-
tion of remote sensing reflectance. Thus we are confident in our as-
sumption that sea surface salinity can be expressed directly as a
function of remotely sensed ocean color bands. To minimize the num-
ber of empirical models applied when deriving salinity from satellite
registered radiance, and to capture any additional information on salin-
ity contained inMODIS reflectance bands, we used the standard remote
sensing reflectance bands in a multivariate regression model rather
than a univariate model using solely CDOM.

The purpose of this study is to predict sea surface salinity in the
Chesapeake Bay at 1 km resolution using MODIS-Aqua ocean color
bands (Table 2). This effort is built on work by Geiger et al. (in
press), in which Chesapeake Bay salinity fields were estimated
at 1 km resolution using an artificial neural network (ANN) algorithm
applied to MODIS-Aqua data. Here, we test the hypothesis that salin-
ity predictions with smaller or similar errors can be achieved using
simpler, more transparent statistical models. To explore a range of
statistical modeling options, this study uses eight empirical models
typically used when representing continuous response variable data.
The eight statistical models are: a Categorical and Regression Tree
model (CART), a Generalized LinearModel (GLM), a Generalized Addi-
tiveModel (GAM), a Random ForestModel, aMeanmodel, an Artificial
Neural Network (ANN), a Multivariate Adaptive Regression Spline
(MARS), and a Bayesian Additive Regression Tree (BART). Each of
these models includes the dependent response variable1 sea surface
1 In a statistical experiment, a “dependent response variable” is the observed vari-
able whose changes are determined by the presence of one of more independent vari-
ables (Brownlee, 1960).
salinity and a set of remotely sensed independent predictor variables2

described in the data description section below. To test the generaliz-
ability of model-predicted sea surface salinity across the diverse salin-
ity conditions of the Chesapeake Bay, we run six seasonal and regional
cross validation tests using the top three performing salinity models.
The spatial and temporal cross evaluation lends to a more generaliz-
able salinity product than earlier Chesapeake Bay salinity products.

2. Data description

2.1. Study area

The Chesapeake Bay is the largest estuary in the United States,
extending 332 km (from Havre de Grace, MD to Cape Charles, VA)
along the Atlantic Coast (Fig. 1). The Chesapeake Bay estuary has a
strong north-to-south salinity gradient that includes oligohaline (0–
6), mesohaline (6–18), and polyhaline (18–30) zones (Baird and
Ulanowicz, 1989)3. Sea surface temperatures in the Bay range from
2 An “independent predictor variable” is a manipulated variable whose presence de-
termines the change in the dependent variable (Brownlee, 1960).

3 In situ and estimated salinity values reported in this study use a standard unitless
measure.



Table 1
Data types, spatial resolution, temporal resolution, and sources of data.

Data type, parameters (period of record) Spatial resolution Temporal resolution Source

In situ station data, salinity, surface
temperature (2003–2010)

67 main-stem monitoring stations on
Bay axis, 1 m vertical resolution

~20 surveys/yr, bi-monthly to
monthly cruises

MDDNRa; VA DEQb (Chesapeake
Bay Monitoring Program)

L3-mapped ocean color and thermal
SST satellite productsc (2003–2010)

1 km spatial resolution Daily satellite overpasses Modis AQUA, National Aeronautical
Space Administration

a Maryland Department of Natural Resources.
b Virginia Department of Environmental Quality.
c L2 Modis AQUA standard suite of products (see Table 2).

524 E.A. Urquhart et al. / Remote Sensing of Environment 123 (2012) 522–531
localwintertime lows of−0.5 °C to summertime highs of 31 °C. The oli-
gohaline upper Bay has a mean depth of 4.5 m, the mesohaline middle
Bay 10 m, and the polyhaline lower Bay 9 m, giving the overall Bay an
average depth of 6.5 m (22 ft) (Baird and Ulanowicz, 1989).

The physical transport regime of the Chesapeake Bay estuary
follows the classical estuarine circulation model of partially mixed
estuaries, in that it is characterized by a 2-layer gravitational circula-
tion scheme. As salt water enters the mouth of the Bay along the east-
ern shore, there is a net up-estuary flow of water, which occurs below
the pycnocline, and a complementary net down-estuary flow as the
fresh surface water makes its way from the head to the mouth of
the Chesapeake Bay (Pritchard, 1952).

The drainage area of the Chesapeake Bay watershed encompasses
166,000 km2. Freshwater flows into the Chesapeake Bay estuary from
25 main rivers and tributaries. The Susquehanna River is the largest
tributary in the Chesapeake Bay and accounts for approximately 45%
of freshwater flow into the Bay (Baird and Ulanowicz, 1989).

2.2. In situ measurements

The analysis performed in this paper made use of in situ environ-
mental data collected by the Chesapeake Bay Monitoring Program
(Table 1). Bi-monthly data was collected during various research
cruises organized by the Maryland Department of Natural Resources
(MDDNR) and the Virginia Department of Environmental Quality
(VADEQ). The dataset included in situ salinity measurements from
67 monitoring stations (Fig. 1) along the Bay's axis collected from
2003 through 2010. Using the satellite diffuse attenuation coefficient
for down-welling irradiance at 490 nm, we calculated the optical
depth at each sampling location and found that the mean optical
depth of our samples was 0.89 m. Therefore, sampling measurements
more than 1 m in depth were excluded from this study for reasons of
remotely sensed surface optical depth.

2.3. MODIS satellite measurements

The satellite remotely sensed ocean color products used in this study
were from NASA's Moderate Resolution Imaging Spectroradiometer
Table 2
Variables used in model development.

Variable name Variable description

Salinity (predictor variable) In situ salinity measurement at surface
Lat Latitudinal data coordinate of in situ-satellite match
Lon Longitudinal data coordinate of in situ-satellite mat
Rrs_412 Remote sensing reflectance at 412-nm
Rrs_443 Remote sensing reflectance at 443-nm
Rrs_469 Remote sensing reflectance at 469-nm
Rrs_488 Remote sensing reflectance at 488-nm
Rrs_531 Remote sensing reflectance at 531-nm
Rrs_547 Remote sensing reflectance at 547-nm
Rrs_555 Remote sensing reflectance at 555-nm
Rrs_645 Remote sensing reflectance at 645-nm
Rrs_667 Remote sensing reflectance at 667-nm
Rrs_678 Remote sensing reflectance at 678-nm
(MODIS) Aqua (Tables 1 and 2). Standard ocean color data products
were downloaded from NASA's ocean color website (http://ocean
color.gsfc.nasa.gov/), and then batch processed in the SeaWIFS Data
Analysis System (SeaDAS). Level-2 daytime standard suite ocean color
products at 1 km spatial resolution were mapped directly to a cylindri-
cal coordinate system and then standard quality control flags were ap-
plied. Daily satellite images were acquired for the same time period as
in situ measurements.

For the purposes of in situ-satellite calibration, we matched in situ
station data to the daily satellite measurements within a 1 km radius
of the sampling station. Any remotely sensed measurements that
were within 1 km of the monitoring station were averaged and thus
representative of the unique value of that salinity “pixel”. This sam-
pling procedure yielded 620 satellite and in situ matched measure-
ments for use in statistical analysis.
3. Methods

3.1. Statistical models

This study presented eight different statistical models developed
to predict sea surface salinity via remotely sensed ocean color mea-
surements in the Chesapeake Bay. We chose the eight major types
of empirical models that are typically used to regress continuous re-
sponse variable data. A holdout cross validation was used with the
eight statistical models in which 80% of the matchup data points
was used to train the models and the remaining 20% was used for
validation. Table 2 summarizes the twelve predictor variables that
were used to train the eight empirical models presented below.
Multivariate models were also compared to a univariate model that
used the standard MODIS-Aqua CDOM product (Morel and Gentili,
2009) to predict salinity. The univariate model was found to under-
perform multivariate models, and will not be discussed further. All
statistical computations were carried out in R Statistical Package
2.14 (R Development Core Team, 2011), on an Intel XeonW3580 Pro-
cessor, 3.33 GHzmachine with 12 GB RAM. Computational time for all
statistical models within the holdout validation test was less than one
Mean
(μ)

Standard
deviation

Maximum Minimum

16.49 4.69 31.65 0.00
up 37.68 0.51 39.44 37.00
chup −76.14 0.15 −75.79 −76.46

0.0014 0.0012 0.0058 −0.001
0.0022 0.0011 0.0067 0.0003
0.0029 0.0013 0.0083 0.0006
0.0035 0.0015 0.0094 0.0008
0.0055 0.0020 0.0126 0.0018
0.0060 0.0021 0.0140 0.0018
0.0059 0.0020 0.0139 0.0019
0.0030 0.0015 0.0145 0.0006
0.0022 0.003 0.0137 0.0002
0.0022 0.0012 0.0135 0.0003

http://oceancolor.gsfc.nasa.gov/
http://oceancolor.gsfc.nasa.gov/


Fig. 2. Artificial neural network architecture.
Adapted from Lee and Park (1992).
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hour, with the exception of the BART model which required up to
seven hours of computational time.

3.1.1. Generalized linear model (GLM)
Generalized linear models are an extension of the standard Ordi-

nary Least Squares (OLS) linear model that allows for regression anal-
ysis of both continuous and count data (Nelder and Wedderburn,
1972). An OLS standard model works to minimize the sum of vertical
distances between the observed and the predicted response, com-
monly called the sum of squared residuals (Hastie et al., 1998). An
OLS model is composed of two key elements: 1) the random compo-
nent, which is the probability distribution of the response variable, y,
given the predictor variables xi and 2), the linear predictor, which is
an equation that incorporates the data from the predictor variables.
A generalized linear model generalizes the standard OLS model by
Fig. 3. Mean monthly (1970–2000) discharge at USGS 015
Adapted from United States Geological Survey (2012).
adding a link function, which relates the linear predictor to a function
of the predictor variables specifying the conditional mean (Cameron
and Trivedi, 1998). The link function transforms the expectation of
the linear predictor. The salinity measurements in this dataset exhib-
ited a normal Gaussian distribution and therefore we used a normal
identity link function μ=Xβ in the construction of the GLM.

3.1.2. Generalized additive model (GAM)
A GAM is a flexible statistical model that extends the traditional

linear model by allowing for nonlinear relationship between the
dependent response and independent predictor variables (Hastie
and Tibshirani, 1986). This model replaces the Xβ link function of
the generalized linear model with a non-parametric smoothing func-
tion f(X). The smoothing function can provide information about the
relationship between the predictor variables and response variable
that is not revealed using a traditional linear model. Nonlinear effects
of the covariates on the response variable y can be expressed using
GAM. For this study the standard smoothing approach, a cubic regres-
sion spline, was used. A cubic regression spline imposes a smoothness
on the function f(X), with a potential knot point at each of the unique
values of x. Again, an identity link function was used to establish a
relationship between the mean value of the response variable y and
the smoothed function of the x together with a Gaussian conditional
distribution (Hastie and Tibshirani, 1986).

3.1.3. Artificial neural network (ANN)
An artificial neural network (ANN) is commonly defined as a mas-

sive interconnected network composed of processors, which operate
in parallel and learn from experience and training (Lee and Park,
1992). The idea of a neural network comes from the biological neu-
ral system; the processing elements of an ANN serve as the neurons,
while the connections are like synapses from a biological system.
The neurons in the ANN are interconnected by means of various in-
formation channels. A neural network has at least three basic layers:
the inputs, the hidden layer, and the outputs. Input neurons send
data via synapses or connections to the hidden layer then via more
connections send data to the output neurons (Fig. 2). Each synapse
has an unknown parameter called the “weight”; the weighted inputs
78310 Susquehanna River at Conowingo, MD station.
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Table 3
Comparison of holdout mean absolute errors (MAEs) based on 120 random holdout samples.
p-Values in bold represent statistically significant differences between models.

Model MAE p-Value p-Value p-Value p-Value p-Value p-Value p-Value p-Value

GAM CART BCART RF MEAN ANN BART MARS

GLM 1.93 3.4e−06 2.2e−16 2.2e−16 1.5e−05 2.2e−16 0.0006 0.0001 0.1407
GAM 1.82 2.2e−16 2.2e−16 4.8e−15 2.2e−16 0.2575 5.9e−14 2.3e−09
CART 2.39 0.7254 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16
BCART 2.38 2.2e−16 2.2e−16 2.2e−16 2.2e−16 2.2e−16
RF 2.06 2.2e−16 7.7e−12 0.5489 0.0015
MEAN 3.72 2.2e−16 2.2e−16 2.2e−16
ANN 1.85 9.5e−11 2.1e−06
BART 2.04 0.0093
MARS 1.98
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are added together and if the sum exceeds the pre-specified threshold
then the neuron fires, giving an output (Lee and Park, 1992). To max-
imize prediction accuracy, we first tested two different neural net-
works, one with 40 hidden nodes and one with 45 hidden nodes,
with these sizes selected based on Geiger et al. (in press). The neural
network that exhibited the optimum node size for salinity prediction
was then used in the holdout cross validation. In training our ANN
models we did note a dependence on the randomly selected ini-
tiation points for the weights (i.e., the final trained network varied
slightly for different initiation sets).4 As a result, we trained 5 differ-
ent ANNs of each size, with each network starting from a different,
fixed seed numbers for the initial sampling of the weights. We report
the error from the average of these five models below.
3.1.4. Multivariate Adaptive Regression Spline (MARS)
Multivariate adaptive regression spline (MARS) is a non-parametric

regression method that can be seen as an extension of a linear model
allowing for interactions and non-linearities in a dataset (Friedman,
1991). MARS behaves like a generalized linear model, but based on
automatically selected basis functions. MARS builds models in the
same fashion as recursive partitioning trees, but allows for a forward
and backward pass (Hastie et al., 2008).
3.1.5. Tree-based data mining techniques
To further a different class of models for empirically predicting

sea surface salinity in the Chesapeake Bay, the study used four
tree-based data mining methods: classification and regression tree
(CART) (Breiman et al., 1998), Bayesian additive regression trees
(BART) (Chipman et al., 2010), bagged categorical and regression
trees (BCART) (Sutton, 2005), and Random Forest model (RF)
(Breiman et al., 1998). Each of the four tree-based data mining
methods explores the relationship between the predictor variables
and the dependent response variable, sea surface salinity. The data-
set undergoes recursive binary partitioning at the nodes. Tree-based
methods give a flexible description of relationships within the dataset
while also providing a convenient visual for result interpretation.
3.1.6. Mean model
Each of the statistical models outlined in this section was com-

pared to a mean statistical null model. Our mean model was simply
the average value of the response variable salinity. For validation pur-
poses, all nine models including the mean model were input into the
holdout run.
4 This variability persisted well beyond the number of replications of the ANN train-
ing algorithms at which convergence was reported.
3.1.7. Geographic model
Surface salinity, optical depth, and CDOM/salinity relationships

are highly variable and dependent on location in the Chesapeake
Bay. To test the added value of using ocean color bands, as well as
the correlation between salinity and geographic location, a holdout
validation test using only latitude and longitude was run employing
the nine statistical methods outlined above.

3.2. Cross-validation of top statistical models

In order to develop themost effective remotely sensed salinity pre-
diction model, we needed to test the generalizability of the empirical
Fig. 4. One-to-one model regression between in situ salinity and predicted salinity for
a) the GAM and b) the ANN. The mean absolute errors for each statistical model are:
a) 1.83 and b) 1.85.
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Table 4
Comparison of holdout mean squared errors (MSEs) based on 120 random holdout samples.
p-Values in bold represent statistically significant differences between models.

Model MSE p-Value p-Value p-Value p-Value p-Value p-Value p-Value p-Value

GAM CART BCART RF MEAN ANN BART MARS

GLM 6.40 0.0002 2.2e−16 2.2e−16 0.0003 2.2e−16 0.8135 0.0415 0.7253
GAM 5.67 2.2e−16 2.2e−16 1.6e−10 2.2e−16 0.1956 5.3e−08 0.0004
CART 9.17 0.6968 9.7e−15 2.2e−16 1.1e−07 2.2e−16 2.2e−16
BCART 9.08 9.7e−14 2.2e−16 2.6e−07 2.2e−16 2.2e−16
RF 7.14 2.2e−16 0.0800 0.0606 6.9e−05
MEAN 22.07 2.2e−16 2.2e−16 2.2e−16
ANN 6.28 0.3101 0.9162
BART 6.77 0.0137
MARS 6.33
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algorithms in the Chesapeake Bay. To validate the reliability of the sa-
linity predictions throughout the Chesapeake Bay, we split up the in
situ-satellite matchup dataset temporally and geographically. In both
cases, the top three statistical models, determined by lowest mean ab-
solute errors (MAE), were used in a cross-validation on different spa-
tial and temporal periods of the Bay.

There is great seasonal and geographic variability in in situ salinity,
fresh water discharge (Fig. 3), as well as in cloud cover that interferes
with satellite retrieval of surface reflectances in the Bay. Therefore, al-
though we developed and tested the statistical models on year-round
in situ-satellitematchups, it is important to train themodels on one sea-
son and predict for another to reflect the variations in fresh water
inflow into the Chesapeake Bay. To do so, we divided the entire match-
up dataset into two discharge datasets: high (December through May)
and low (June through November). As described above, there are vari-
ous salinity regimes throughout the Bay, which exhibit certain charac-
teristics dependent on geographic location and biophysical processes
in that location. For example, cold saline seawater is characteristic of
water lying along the mid-eastern shore due to estuarine circulation
patterns in the Chesapeake Bay. To cross-check this spatial variability,
we also split in situ-satellite matched datapoints spatially, into North
versus South and East versus West. Geographic divisions were per-
formed separately from seasonal divisions. For both, the top three sta-
tistical models were trained on one database (low/South/East) and
then tested on the other (high/North/West), then vice-versa.

3.3. One-to-one comparison of remotely sensed versus in situ salinity

To assess the functionality of our empirical salinity model, we test-
ed the top-performing model on a separate set of remotely sensed
independent variables. To guarantee a one-to-one comparison with
Table 6
Comparison of mean predicted salinity based on 120 random holdout samples.

Mean
salinity

p-Value p-Value p-Value

GLM GAM ANN

In situ 16.73 0.476 0.495 0.394
GLM 16.31 0.986 0.875
GAM 16.32 0.864
ANN 16.22

Table 5
Comparison of holdout MAE, RMSE, and MSE values.

GAM ANN GLM CART BCART RF MEAN BART MARS

MAE 1.82 1.85 1.93 2.39 2.38 2.06 3.72 2.04 1.98
RMSE 2.38 2.50 2.53 3.03 3.01 2.67 4.69 2.60 2.52
MSE 5.67 6.28 6.40 9.17 9.08 7.14 22.07 6.77 6.33
in situ salinity measurements, we chose a daily MODIS image with
good spatial coverage from a day (September 18, 2006) when the
Chesapeake Bay Monitoring Program conducted in situ salinity mea-
surements. Overlap in MODIS and station measurements from that
day allowed for 13 in situ-satellite comparison points.

4. Results and discussion

4.1. Model comparisons

The in situ-satellite dataset was fit with the eight statistical models
outlined above using a repeated holdout validation test. Each of the
statistical models was compared to the mean prediction model in
the holdout test to determine howwell eachmodel performed assum-
ing the dataset mean salinity value. This results in 36 pair-wise tests
with a mark of statistical significance if the p-value5 on a given test
is less than 0.00014 in accordance with the needed Bonferroni correc-
tion (Devore, 1995). As shown in Table 3, all eight statistical models
outperform the mean model by a statistically significant amount
(pb2.2e−16). The generalized additivemodel has the best prediction
accuracy with the lowest MAE of 1.82 followed by the 45-node ANN
model with a MAE of 1.85, and the GLM with a MAE of 1.93. The one
to one regressions of the matched in situ salinity vs. the model pre-
dicted salinity for the GAM, and the ANN models (Fig. 4) show that
there are approximately ten data points in which the prediction
model clearly under predicts the true salinity value. The locality of
these data accounts for the large error as it was found that each outly-
ing predictor was nearby the mouth of a fresh water tributary. Not
only do we see increased freshwater flow, but also variability in the
discharge of sediments, terrigenous organic matter, detritus, and
chlorophyll concentrations in these regions. These changes can com-
plicate the bio-optical properties of the water due to the absorptive
properties of CDOM, phytoplankton mass, and detritus, which fur-
ther affect the shape of the remote sensing signal at each location. Fur-
ther model development and variable specification need to be carried
out to understand the effects of these environmental conditions on
model prediction.

GAM, followed by ANN, also has the highest predictive accuracy
when judged by mean square error (MSE) and root mean square
error (RMSE) (Table 4). The difference in MSE values between GAM
and ANN is not significant at a 95% confidence level. All empirical
models outperform the mean model with respect to MSE. MSE and
RMSE are useful metrics for identifying outliers in the model fit. A
RMS error of equal or higher value than the MAE (see Table 5) indi-
cates that there are outlier salinity outputs in the top three salinity
5 p-Value indicates the probability that the result obtained in a statistical test is due
to chance rather than a truce relationship between measures (Brownlee, 1960).



Table 7
Approximate significance of GAM smoothed terms.
p-Values in bold represent statistical significance (pb0.05).

Smoothed term p-Value

Lat 2.20e−16
Lon 2.20e−16
Rrs_678 4.95e−05
Rrs_667 4.27e−08
Rrs_645 0.007
Rrs_555 0.118
Rrs_547 0.293
Rrs_531 1.16e−06
Rrs_488 1.11e−11
Rrs_469 0.289
Rrs_443 2.94e−14
Rrs_412 3.18e−11

Table 8
LAT–LON only model comparison of holdout MAE and RMSE values.
Values in bold represent the models that are significantly different (pb0.05) than the
original eight models.

GAM ANN GLM CART BCART RF BART MARS

MAE 2.36 2.38 2.55 2.41 2.42 2.40 2.36 2.35
RMSE 2.98 2.98 3.21 3.05 3.05 3.01 2.96 2.98

Table 9
MAE and RMSE values for cross-validation tests.
Naming convention for cross-validation is as follows: “East for West” translates to
model trained on East dataset and tested on West dataset.

MAE RMSE

GLM GAM ANN MEAN GLM GAM ANN MEAN

East for West 2.1 1.8 3.7 3.3 2.6 2.3 4.7 4.0
West for East 2.6 2.8 4.0 4.1 3.3 3.5 5.2 5.3
North for South 3.4 2.1 5.9 5.7 4.2 2.8 7.0 6.8
South for North 3.0 6.4 6.1 5.7 4.2 9.9 7.1 6.5
High for Low 2.3 2.3 2.6 4.2 3.0 3.0 3.3 5.3
Low for High 2.5 2.3 2.8 3.9 3.0 2.7 4.3 4.8
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prediction models. It is important to note that there is no statistically
significant difference in the salinity prediction for the GAM, the ANN,
or the GLM (see Table 6).
Fig. 5. Variable plots for GAM model; a) Rrs_678, b) Rrs_667, c) Rrs_443, and d) Rrs_412. y
point.
For GAM, it is also possible to examine the specific importance and
influence of each of the reflectance bands in the prediction of salinity.
Table 7 lists the p-values associated with each smoothed term in the
GAM. Nine of 12 variables included in the GAM are statistically signif-
icant (p-valueb0.05). Though model results show that latitude and
longitude are the most significant predictor variables in the GAM
model, a holdout run using only latitude and longitude shows a signif-
icant (p-valueb0.05) decrease in prediction accuracy (Table 8), and
thus value added in using the remotely sensed reflectance values.
While all but three of the predictor variables are statistically sig-
nificant and thus important in predicting the response variable y, not
all of the variables that have high importance are highly influential
-Axis value is the transformed spline value, x-axis shows Rrs value at each unique data
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Fig. 6. GAM predicted salinity for September 18, 2006 with in situ station locations and actual salinity values marked by color‐filled black circles.
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to the model outcome6. Of the twelve smoothed terms included in the
GAM, half show high influential behavior on the predicted response.
Indicative examples of variable responses are shown in Fig. 5. Remote
sensing reflectance (Rrs) at 488 nm is positively associated with salin-
ity (Fig. 5a), while Rrs at 667 nm and at 443 nm is negatively associat-
ed (Fig. 5b, c). Other predictor variables, such as Rrs at 412 nm, are
statistically significant in the GAM but show no particularly strong in-
dependent influence on salinity (Fig. 5d).

4.2. Cross-validation of models

To test the generalizability of our remotely sensed salinity product
in the Chesapeake Bay, we ran six seasonal and regional cross valida-
tion tests using the top three performing salinity models. In these
cross-validation analyses, the GAM and the GLM perform with better
error accuracy than the ANN in all cases but one (Table 9). The first
two of the six cross-validation tests evaluated the generalizability of
salinity models from east to west in the Bay. In training the three
models on the eastern Bay portion and testing on the West and
6 Variable reduction was performed on both the GAM and the GLM, but this did not
improve the prediction accuracy over the final non-reduced models.
vice-versa, GAM performs the best with a MAE of 1.8 in the first
case, and GLM the best when trained on the West and tested on the
East (note that differences between GAM and GLM were not statis-
tically significant). When the same tests were conducted for low
and high, all three models perform well—when trained on high for
low testing, both GLM and GAM have a MAE of 2.3. While the gener-
alizability of the models for East versusWest and low versus high per-
forms well in terms of lowMAE and RMSE values, the cross-validation
tests for North versus South are not as consistent in their prediction
results. From Table 9, we can see that although the GAM MAE for
“North for South” performs equally as well as the previous tests, the
model trained on the South and tested on the North underperforms
relative to the mean model. This is the only generalizability test for
which either GAM or GLM was outperformed by the mean model.
This result is likely a product of systematic differences between the
relatively fresh North and the saltier South, and is the subject of con-
tinued investigation.

4.3. One-to-one daily GAM predicted, in situ comparison

The comparison of in situ salinity to GAM predicted salinity for
September 18, 2006 results in improved prediction accuracy over
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Fig. 7. Regression between in situ salinity and GAM prediction salinity for September
18, 2006. The RMSE is 1.22.
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the holdout validation data sets. Five of the 18 in situ stations were
removed from the one-to-one comparison because they fell outside
remote sensing coverage for the given day. Fig. 6 shows the predicted
GAM salinity for the entire Bay, as well as the actual in situ salinity at
the stations marked by filled circles. The RMS error improved from
2.38 in the holdout validation tests to 1.22 for the daily prediction
versus in situ. Fig. 7 shows the regression of the in situ versus GAM
predicted salinity with a slope of 0.89. In addition to the improved
RMS error between actual and predicted salinity, predicted salinity
from the GAM follows a believable salinity regime for the Bay. Not
only do the predicted values fall within the natural range for the
Bay, but also the prediction actually exhibits the spatial gradients ex-
plained earlier in this paper.

5. Conclusions

The eight statistical models presented above show that remotely
sensed products can be used to accurately estimate sea surface salin-
ity in the Chesapeake Bay. While predicting salinity via remote sens-
ing for the Bay is still in its beginning stages, the results of applying
these models to remotely sensed measurements can provide the im-
perative missing block to many biological and physical marine appli-
cations. Three models that perform particularly well in estimating
salinity were the generalized additive model, the generalized linear
model, and the artificial neural network.

Additionally, six cross-validation tests were run to evaluate the
generalizability of our salinity estimates across various temporal
and spatial regimes in the Chesapeake Bay. Table 8 summarizes the
MAE and RSME results from the six cross-validation models. From
the prediction results we can conclude that for the Chesapeake Bay,
the GAM and GLM outperform the artificial neural network; further
supporting our original hypothesis that a more transparent model
can estimate sea surface salinity with equal or better accuracy than
an ANN. We can assume that the tendency of the more complicated
neural network was to over fit the data, resulting in the poor predic-
tion accuracy, showing that the transparent models like the GLM and
GAM are more generalizable to the Chesapeake Bay region.

The empirical models presented in this study are particularly good
at estimating sea surface salinity in the Chesapeake Bay. We do note,
however, that salinity estimates were found to be highly dependent
on geographic location. Results show that latitude and longitude are
the most significant predictor variables in the nine surface salinity
estimation models. While this locality issue was anticipated for the
Chesapeake Bay and thus accounted for, it indicates that attention
to mixing processes, fresh water inflow, and seasonality will be
required when applying these statistical salinity models to other
coastal regions. A second limitation of the study is in the data itself.
The in situ salinity measurements presented in the paper were
taken at a water depth of approximately 0.5 m. Satellite remote sens-
ing is useful in detecting sea surface reflectance signals, but the inabil-
ity to penetrate below the ocean's surface and clouds often limits the
availability of data. Therefore lies a discrepancy between the depth of
the in situ measurement and the remotely sensed surface reflectance.
Further work will focus on interpolation methods to understand sa-
linity changes as a function of water column depth. A third limitation
of the model's training data is the temporal and spatial scarcity of in
situ salinity measurements. As presumed, the availability of remotely
sensed reflectance data far exceeds the number of environmental sur-
face measurements.

In order to obtain full temporal and spatial coverage of Chesapeake
Bay, the satellite remote sensing data and in situ observations can be
combined with a fluid dynamical model through data assimilation.
In this way, the observations are utilized when they are available,
but model dynamics will drive accurate forecasts in the absence of ob-
servations. Data merging of in situ and RS observations through the
use of a numerical model will provide a full 3 dimensional coverage
of the Bay that will therefore allow us to propagate the satellite sea
surface information deeper into the water column. Such a data assim-
ilation system is being developed for the Chesapeake Bay (Hoffman
et al., in review) and in future work we hope to leverage that system
and create more complete sea surface salinity estimations for the Bay.
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