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A B S T R A C T

The temporal and spatial characteristics of landscape pattern change can reflect the spatial impact of urbani-
zation on the ecological environment. Studying the relationship between urbanization and landscape patterns
can provide supports for urban ecological management. Previous studies have examined the quantitative re-
lationship between the social economy and landscape patterns of an entire region, but have not considered the
spatial non-stability of this relationship. In this study, we characterized the landscape patterns in Beijing City,
China during 2000 and 2010 using four landscape metrics, i.e. patch density (PD), edge density (ED), Shannon’s
diversity index (SHDI) and the aggregation index (AI). Geographically weighted regression (GWR) was employed
to identify the spatial heterogeneity and evolution characteristics of the relationship between the urbanization of
population density (POP), gross domestic production (GDP) and nighttime lighting (NTL), and landscape pat-
terns. The evolution of urban landscape patterns indicated a decentralized, aggregated, and fragmented change
from the downtown to the suburb and outer suburb. During the 10-year period, the average PD in the downtown
increased by 100.6%, and the increase of AI in the suburb was the largest. The PD, ED and SHDI increased by
different degrees in the outer suburb. The influences of different urbanization modes on landscape patterns were
also different. Infilling mode made the landscape patterns more regular and integrated. The landscape was more
broken and complicated under the edge-expanding mode, and the leapfrog mode made PD and SHDI increase
slightly. In the relationship interpretation, GWR effectively identified the spatial heterogeneity, and improved
the explanatory ability compared to ordinary least squares (OLS). The most intense response to urbanization was
the forest landscape and the forest-cultivated land ecotone in the northwest of Beijing City, indicating that this
region was ecologically fragile. The population density in the urbanization index had a direct effect on landscape
patterns, while the PD affected by urbanization was greater than the shape, aggregation and diversity index.
Affected by development policy, urban planning and other factors, the explanation degree of social economy to
landscape patterns decreased in 2010. GWR is an effective method for quantifying the spatial differentiation
characteristics of urbanization impacts on landscape patterns, which can provide more spatial information and
decision criteria for the green development of a compact city.

1. Introduction

Issued by the Habitat III conference of cities on 20 October 2016,
the New Urban Agenda pointed out by the middle of the century the
world’s urban population was expected to nearly double. This means
that four of every five people will be living in towns or cities, making
urbanization one of the most transformative trends in 21st century.
Populations and socioeconomic activities are increasingly concentrated
in cities, posing huge sustainability challenges in terms of housing,
infrastructure, food security and natural resources management.
Urbanization includes the changes of population, industrial structure
and landscape types (Zhang and Su, 2016). The change of landscape

types and proportions has been characterized by the conversion of
ecological land such as forest land and grassland into agricultural land
and construction land, and in some areas the agricultural land has been
largely transformed into construction land (Weng, 2007; Liu et al.,
2011). At the same time, the landscape patterns in rapidly urbanizing
areas have presented a remarkable, highly fragmented feature. The
single, continuous natural patches have become a complex, hetero-
geneous and discontinuous mosaics (Liu et al., 2014). The fragmented
landscape hinders the spread of material and energy flow (Kreuter
et al., 2001), and changes the regional energy, material and nutrient
cycling process (McDonnell and Pickett, 1990). Thus, a fragmented
landscape will affect the function and services of regional ecosystems
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(Alberti, 2005; Estoque and Murayama, 2012; Peng et al., 2016b), re-
sulting in a series of ecological and environmental problems (Li et al.,
2010a; Jacobs, 2011), such as biodiversity loss, urban heat island effect,
environmental pollution, soil erosion and so on (Wu, 2010; Schneiders
et al., 2012; He et al., 2014; Zhou et al., 2014).

Understanding and solving the urbanization problems from the
perspective of landscape pattern is one of the research hotpots in
ecology and geography (Zhou et al., 2011; Shrestha et al., 2012;
Estoque and Murayama, 2016). Landscape patterns can be quantified
by landscape metrics, which are one of key tools to monitor, assess and
manage the landscape (Li and Wu, 2004). The ecological consequences
of urbanization can be understood by applying landscape metrics to
describe and analyze the dynamic changes of regional landscape (Li
et al., 2010b; Peng et al., 2016c; Schwoertzig et al., 2016). Landscape
metrics have been extensively used for quantifying landscape patterns
and their change. For example, Liu and Yang (2015) used landscape
metrics to examine the size, pattern and nature of land use changes,
demonstrating that landscape metrics could reveal the spatial char-
acteristics and underlying processes of urban expansion. Kane et al.
(2014) analyzed urban expansion based on landscape area, fragmen-
tation, shape complexity and diversity. Su et al. (2014) analyzed the
different responses of agricultural landscapes to urbanization by using
urbanization indicators and landscape metrics. However, the changes of
landscape patterns are spatially heterogeneous, and the evolution do
not always move towards scattered and irregular forms. Different urban
expansion modes and land use types will lead to different changes of
landscape patterns.

Considerable studies have explored the relationship between land-
scape patterns and urbanization. The factors driving landscape change
are mainly classified as biophysical and socioeconomic ones (Serra
et al., 2008; Du et al., 2014; Maimaitijiang et al., 2015). Generally
speaking, human activity can be reflected by socioeconomic factors,
and nighttime light is the major factor in shaping the landscape. The
soils, climate and other biophysical factors can also significantly affect
the land use. However, because socioeconomic data are limited by
statistical units, most of the studies have been conducted at city or
county scale, and could not accurately reveal the spatial differentiation
of the impact of socio-economic factors on landscape patterns (Ma
et al., 2008). Many statistical models have been applied to describe the
relationship between urbanization and landscape patterns, such as
multiple regression and stepwise regression based on ordinary least
squares (OLS) (Bagan and Yamagata, 2012). OLS model is a global
parameter estimation technique (Zhang et al., 2009), based on two
assumptions: (1) the model residuals do not exhibit spatial auto-
correlation, and (2) the random disturbances have equal variance.
When OLS model is applied to spatial data, these two laws are violated
because of the non-stationary spatial distribution of natural data (land
cover, and landscape metrics) and socioeconomic data (GDP and po-
pulation density). Thus, OLS model only reflects global information and
lacks the ability to explain the local relations. Relationships at different
positions will be hidden. In addition, because of the similar geo-
graphical environment and the human disturbance, the landscape fea-
tures of adjacent areas are more consistent than distant areas, and the
landscape metrics will also exhibit spatial autocorrelation. Therefore,
when exploring the relationship between landscape patterns and ur-
banization, the performance and interpretation power of OLS model is
restricted. For the above reasons, OLS is no longer considered applic-
able to the study of relationships between landscape evolution and its
driving forces.

Geographically weighted regression (GWR) reflects the spatial
characteristics of relationships by constructing local regression equa-
tions at each grid in the study area, thereby avoiding the problems of
spatial autocorrelation, heterogeneity, and non-stationarity (Brunsdon
et al., 1996; Su et al., 2012; Hu et al., 2015; Tenerelli et al., 2016). The
GWR model can compute the regression coefficients for each location to
describe a spatial relationship precisely, and the distribution of

residuals of GWR is more random in space than that of OLS (Foody,
2003). GWR has been widely used in spatial correlation studies (Su
et al., 2016, 2017). For example, Tu and Xia (2008) used GWR to ex-
plore the spatial relationship between land use and water quality under
the background of urbanization. Gao and Li (2011) applied GWR to
explore the spatial non-stationary relationship between urban surface
temperature and environmental variables, and demonstrated that GWR
was an effective method for solving the geo-spatial non-stationarity
problem. Pribadi and Pauleit (2016) studied the relationship between
peri-urban agriculture and urban socioeconomic system at village and
sub-district scales, and showed that GWR could identify the different
impacts of economic activity, poverty and food security in various re-
gions.

In the first decade of the 21st century, Beijing City experienced
rapid urbanization (Peng et al., 2016a), and landscape patterns changed
significantly. Land use in Beijing City is diverse, including highly ur-
banized areas, suburbs experiencing rapid urbanization, and well-pre-
served forest lands in the northwest of the city. The differences in urban
development levels and terrain factors will inevitably cause spatial
differences in the driving forces, so GWR is well-suited to examining the
relationships between landscape changes and urbanization. The pur-
pose of this paper is to explore the spatial heterogeneity of urbanization
impact on landscape patterns in Beijing City using GWR. In particular,
the main research objectives are as follows: (1) to use landscape metrics
to identify the characteristics of landscape patterns in Beijing City
during 2000 and 2010; (2) to explore the spatial non-stationarity of
urbanization impact on landscape patterns; and (3) to compare the
impacts of different urbanization factors on landscape patterns.

2. Methodology

2.1. Study area and data source

Beijing City is located in the north of the North China Plain at
longitudes from 115°25′E to 117°30′E, and latitudes from 39°28′N to
41°05′N, with a total area of approximately 16,400 km2. The elevation
of terrain in Beijing City is high in the northwest and low in the
southeast. Mountain area accounts for about 62% of the total area at
elevations between 1000 m and 1500 m, and plain area is flat and open,
accounting for about 38% of the total area at elevations between 20 m
and 60 m. Beijing City is in a typical northern temperature zone, with
sub-humid continental monsoon climate. The annual average tem-
perature in Beijing City is 12.3 °C, and annual precipitation is 572 mm.
Beijing City has 16 districts including Dongcheng, Xicheng, Haidian,
Chaoyang, Fengtai, Shijingshan, Mentougou, Fangshan, Tongzhou,
Shunyi, Changping, Daxing, Huairou, Pinggu, Yanqing and Miyun.
According to urban and rural differences and topographical features,
Beijing City can be divided into five urban development zones (Fig. 1):
(1) Downtown, i.e. the inner city, including Dongcheng and Xicheng
District; (2) Suburb, including Haidian, Chaoyang, Fengtai and Shi-
jingshan District; (3) Outer suburb (in the plain), including Tongzhou,
Shunyi and Daxing District; (4) Outer suburb (in semi-mountainous
areas), including Pinggu, Changping and Fangshan District; and (5)
Outer suburb (in mountainous areas), including Huairou, Mentougou,
Yanqing and Miyun District.

Beijing city has a mosaic of complex landscape types. Under the
comprehensive influence of the natural environment and social
economy, urban construction land, suburban cultivated land and outer
suburban ecological land in Beijing City exhibit a circular structure
with the downtown as the core, and this structure is also consistent with
the terrain of Beijing City. Construction land accounts for 20.92% of the
total area in Beijing City. The suburb plain areas are dominated by
cultivated land, and most of the mountainous areas in the northwest
outer suburb are forest land, accounting for 13.93% and 46.18% of the
total area of Beijing City, respectively in 2010.

Beijing City is the center of China's political activity, culture, science
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and education. The first decade of the 21st century was an important
period for Beijing City to implement modernization. In 2010, the re-
sident population in Beijing City was 19.619 million, and the regional
GDP reached 1377.79 billion yuan, an increase of 10.2% over 2009
according to the Beijing Statistical Yearbook. During 2000–2010, urban
and rural construction land increased from 16.38% to 20.92% of the
total area in Beijing City. Based on these significant changes, the period
of our study was chosen in 2000–2010, which witnessed the typical
stage of urbanization in Beijing City.

Land use and land cover (LULC) data for Beijing City in 2000 and
2010 were retrieved from the database of global surface coverage at a
spatial resolution of 30 m (http://www.globeland30.org). Land use
types are divided into eight categories: cultivated land, forest land,
grassland, shrubland, wetland, water body, construction land, and bare
land (Fig. 2).

The socio-economic data was obtained from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn). The values of each raster are GDP and popu-
lation per km2, which are based on the county-wide GDP and demo-
graphic data, taking into account the geographical differentiation of the
natural elements, and are generated at a point using spatial interpola-
tion. The data set provides a finer resolution than administrative data
sets for units-based geographical research. Human activity intensity
was measured using the US government’s Defense Meteorological
Satellite Program Operational Linescan System Nighttime Lights remote
sensing imagery (http://ngdc.noaa.gov/eog/dmsp.html). The data set
had a 1 × 1 km spatial resolution and was corrected for inter-calibra-
tion and intra-annual composition according to the method of Liu et al.
(2012).

2.2. Landscape metrics selection

Guided by previous study (Su et al., 2011), four landscape metrics
with low correlation at landscape level were selected: patch density
(PD), edge density (ED), Shannon's diversity index (SHDI), and ag-
gregation index (AI). The ecological connotations of these landscape
metrics are given by Peng et al. (2010) and Cushman et al. (2008).
These metrics can reflect the composition, shape of the patches and
aggregation of landscape in Beijing City. Among them, PD is the
number of patches per spatial unit, reflecting the degree of landscape
fragmentation. ED is calculated by dividing the total length of the patch
boundaries by the total area, and increases when the patch shapes be-
come irregular in the landscape. SHDI reflects the landscape hetero-
geneity, and is sensitive to the non-equilibrium distribution of patch
types in the landscape. When there is only one patch type in the
landscape, SHDI is equal to 0; and when the number of patch types
increases or the area ratio of various patches is similar, SHDI increases
accordingly. AI refers to the degree of non-randomness or aggregation
of different patch types and the spatial configuration characteristics of
landscape components.

In the analysis, the LULC maps were divided into 3 km × 3 km grids
using the Create Fishnet tool in ArcGIS 10.2. The metrics in landscape
level for each grid were calculated using the Fragstats 4.0 software
(available from http://www.umass.edu/landeco/research/fragstats/
fragstats.html).

2.3. Regression analysis

GWR model is an improvement on OLS model, allowing parameters
to be locally estimated. GWR is able to generate local parameters to
reflect spatial differentiation, including local R2, local model residuals
and local coefficients. Therefore, in the parameter estimation, complex

Fig. 1. Beijing City administrative divisions and five
types of urban development zones.
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spatial differentiation can be identified, mapped and simulated. In
contrast, OLS is a global regression model and parameter estimates are
consistent across the entire study area.

OLS model can be expressed as follows (Dobson, 1990):

∑= + +
=

β β x εy
i

k

i i0
1 (1)

where xi and y are the independent and dependent variables, respec-
tively; β0 and βi represent the intercept and coefficient, respectively; k
indicates the number of independent variables, and Ɛ is the error term.

GWR model is expressed as follows (Fotheringham et al., 2002):

∑= + +
=

y β u v β u v x ε( , ) ( , )j j j
i

k

i j j ij j0
1 (2)

where uj and vj are the spatial coordinates of the sample point j;
β u v( , )j j0 is the intercept at the location j; β u v( , )i j j is the local estimated
coefficient of the independent variable xij; and εj is the error term.

GWR uses a distance-decay function to determine the scope of
spatial dependence. The weights are spatially variable, and the nearer
units produce stronger influence. Gaussian distance decay was used to
express the weight function:

= −w d bexp( / )ij ij
2 2 (3)

where wij is the weight of observation point j relative to its neighbor-
hood point i; dij is the distance between observation points i and j; and b
denotes the kernel function bandwidth. When the distance between the
observation points is greater than the kernel bandwidth, the weight is
close to 0; conversely, the weight value is 1 when the distance between
the observation points is 0. In the GWR model, there are two types of
kernel function: the fixed and the adaptive. Because this study used grid
data, for which the density of sampling points in the space is uniform,
the fixed-kernel bandwidth was chosen. Determination of the optimal
bandwidth was based on minimizing the corrected Akaike Information
Criterion (AIC).

Each of the four landscape metrics was used as the dependent
variable, and POP, GDP and NTL were used as the explanatory vari-
ables. The OLS and GWR analyses were performed using the OLS and
GWR tools in ArcGIS10.2. Before the regressions, the landscape metrics
and socioeconomic data were normalized using the min-max standar-
dized method.

The performance of the OLS and GWR models was compared using
two statistics: adjusted R2 and AIC (Yu, 2006; Clement et al., 2009). The
higher the adjusted R2 is, the stronger the ability of the independent

variables interprets the dependent variables. Likewise, the lower the
AIC value is, the better the model describes the observed data. Fur-
thermore, to compare the ability of OLS and GWR to address the spatial
autocorrelation of variables, the global Moran's I was calculated for the
residuals of the two models. The global Moran's I reflects the spatial
similarity of the spatial adjacency or neighboring units, and can detect
the spatial autocorrelation of the model residuals. Moran's I values
range from −1 to 1; values closer to −1 indicate the existence of ne-
gative spatial autocorrelation, values closer to 1 indicate the existence
of positive spatial autocorrelation, and values closer to 0 indicate that
there is little or no spatial autocorrelation. If the distribution of the
residuals obtained from the regression model has obvious spatial au-
tocorrelation, the assumption that residuals follow a random distribu-
tion is violated. The Moran's I of the two models’ residuals was counted
and compared using the spatial autocorrelation tool in ArcGIS 10.2.

3. Results

3.1. Change of landscape patterns

The change ratios of landscape metrics during 2000 and 2010 were
calculated, using the quantile grading method to map the changes. As
shown in Fig. 3, landscape patterns in Beijing City changed greatly
during the process of urbanization. Spatial differentiation features are
obvious for all landscape metrics: (1) PD significantly decreased in the
suburb and slightly decreased in the outer suburb (both semi-moun-
tainous area and mountainous area). In the downtown and outer suburb
(plain area), PD increased significantly. The significant increase of PD
in the downtown area was due to the increase of the greening degree in
this area. The new green space broke the original single construction
land. As a result, the number of landscape patches increased. In
Tongzhou and Daxing District, the increase of PD was mainly caused by
the transformation from cultivated land to construction land, which
made the whole landscape more fragmented. (2) Although ED change in
the northern outer suburbs was not obvious with the change ratio be-
tween −0.05 and 0.05, the inner city and suburban areas experienced
obvious ED changes. There was a concentric circular increase-decrease-
increase pattern from the center of Beijing City to the outskirts. For
example, ED in the downtown had a small increase, with significant
decreasing in Fengtai, Haidian and Chaoyang District. In Daxing and
Tongzhou District, ED showed a large-scale, high-intensity increase. (3)
Although there was an increase in a small area of the downtown, SHDI
significantly decreased in the surrounding areas. A marked increase
also occurred in Daxing and Tongzhou District. The landscape types in

Fig. 2. Land use and land cover during 2000–2010 in Beijing City.
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Daxing and Tongzhou District remained single cultivated land and
construction land, and the increasing SHDI indicated that the areas of
two landscape types were evenly distributed in these regions. (4) AI
increased significantly in the suburban areas and in the central area of
Yanqing District. The further filling of construction land, and the con-
tinuous filling of cultivated land, replacing the original cultivated land
and grassland, respectively, caused this change. The significant AI de-
crease occurred in the west of Tongzhou District and the north of
Daxing District, while AI in remaining areas did not change observably.

As for the evolutional characteristics, the four landscape metrics
corresponded to each other in space. The most obvious changes oc-
curred in the southeast of Beijing City. At the same time, landscape
change in the central urban and the suburban behaved in opposite di-
rections. Among the four metrics, the change ratio of PD was the lar-
gest, ranging from −90% to 500%. The change ratio of AI was the
smallest, ranging from −9% to 7%.

The direct cause of landscape patterns change in Beijing City is the
urbanization of land use. We can compare the changes of landscape
patterns from five urban development zones. As shown in Table 1, the
downtown's urbanization level was already high in 2000. Along with
the further development of urbanization during 2000–2010, urban
green space such as parks was added and diluted the high coverage of
artificial surface. As a result, PD increased by 100%, and ED increased

by 1.6%, while SHDI and AI decreased slightly in the downtown. In
2000, landscape in the suburban was characterized by construction
land and cultivated land. Driven by the urbanization, grassland and
cultivated land in the suburbs were replaced by construction land, and
the landscape agglomeration degree exhibited the largest increase. In
the outer suburban plain areas, cultivated land accounted for the vast
majority of the total area in 2000, almost reaching 82%. The urban
expansion drove the conversion of cultivated land to construction land,
which made the landscape more fragmented with irregular patch shape.
As a result, PD, ED and SHDI increased by 2.6%, 5.1% and 18.2%, re-
spectively. In the outer suburban semi-mountainous areas, the land use
types were originally dominated by forest land and cultivated land.
During 2000–2010, construction land expanded with the corresponding
loss of cultivated land and grassland, which reduced the PD by 14.5%
and made the whole landscape more agglomerated and regular. In the
outer suburban mountainous area, the forest land was well preserved
during the 10 years and there was no obvious change of landscape
patterns. However, the amount of water body and wetland in Miyun
District and Yanqing District were greatly reduced by the impact of
urbanization (He et al., 2011). Along with the conversion of water body
and wetland to grassland and cultivated land, one big patch was re-
placed by several small patches, leading to the increasing of PD.

As shown in Fig. 4, different urbanization modes also affected the

Fig. 3. Change ratio of four landscape metrics in Beijing City during 2000–2010.
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evolution of landscape patterns in Beijing City. Three urbanization
modes have been widely discussed in previous literature: infilling, edge-
expansion and leapfrog development (Liu et al., 2010; Li et al.,
2013a,b). All three urbanization modes are apparent in Beijing City.
The infilling mode accounted for 8.32% of the new construction land,
while the edge-expansion mode accounted for 78.99%, with the leap-
frog mode for the other 12.69%. Thus, the edge-expansion mode was
dominant in Beijing City. The infilling mode was mainly concentrated
in the inner city, and moved to four districts in the suburbs along with
urban expansion. The urbanization process was characterized by fur-
ther connection of construction land, which made the PD and SHDI
decrease and the landscape patches become more regular and

aggregated. Edge-expansion mainly occurred in the outer suburbs such
as Daxing, Tongzhou, Shunyi and Changping District (Peng et al.,
2016d). The cultivated land was transformed into construction land,
and urbanization led to the increase of landscape diversity, fragmen-
tation and shape complexity. The leapfrog mode was prevalent far away
from the downtown area and located in the semi-mountainous and
mountainous areas. Spatial distributions of these sites were relatively
scattered. In Fangshan and Yanqing District, a small part of this region
was detected to experience the leapfrog mode. New construction land
was found in the original forest land and grassland, leading to a slight
increase of PD and SHDI.

Table 1
Area proportion of main land use types in five urban development zones during 2000–2010.

Land use types Year Downtown Suburb Outer suburb(plain area) Outer suburb(semi-mountainous area) Outer suburb(mountainous area)

Construction land 2000 92.78% 44.51% 14.29% 8.17% 2.04%
2010 93.90% 57.36% 23.98% 11.43% 2.84%

Cultivated land 2000 1.92% 35.29% 81.91% 35.27% 16.37%
2010 0.01% 21.30% 73.58% 34.77% 17.99%

Forest land 2000 2.23% 13.00% 0.46% 46.46% 64.96%
2010 3.31% 16.21% 0.79% 46.62% 65.53%

Water body 2000 3.06% 0.90% 0.78% 0.51% 2.56%
2010 2.78% 0.86% 0.66% 0.45% 1.27%

Fig. 4. Spatial distribution of urbanization modes in Beijing City during 2000–2010.
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3.2. Relationship change between landscape metrics and socioeconomic
driving forces

GWR model produces adjusted R2, coefficient and residual of each
grid, which can clearly express the fitting effect in different locations,
and thus identify spatial heterogeneity. Figs. 5–8 showed spatial dis-
tribution of coefficients between socio-economic factors and landscape

metrics. It could be seen the driving forces of urbanization on landscape
patterns changed with the variation of spatial position.

For PD, socioeconomic factors had significant positive driving ef-
fects on the forest landscape in the northern mountainous areas, and
had somewhat positive driving effects on cultivated land in areas such
as Daxing, Tongzhou and Shunyi District. However, urbanization had
negative impacts on cultivated land in Changping, Miyun, Pinggu and

Fig. 5. Spatial patterns of correlation coefficients between patch density (PD) and socioeconomic driving forces: POP (population density), GDP (gross domestic production) and NTL
(nighttime lighting).

Fig. 6. Spatial patterns of correlation coefficients between edged density (ED) and socioeconomic driving forces: POP (population density), GDP (gross domestic production) and NTL
(nighttime lighting).
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Yanqing District. The positive driving effect on PD in forest land was
mainly caused by urbanization, which transformed some forest land
into grassland and cultivated land, and thus made the forest landscape
more fragmented. The overall pattern of the relationships between so-
cial economy and PD in 2010 was consistent with that in 2000, and the
circular structure was more obvious in 2010. In the study period, spatial
range of the positive influence significantly expanded in Daxing,

Tongzhou and Shunyi District.
For ED, socioeconomic development had a certain degree of nega-

tive impact in the downtown and four suburb districts, and had a strong
negative impact on the forest and cultivated land ecotone. The positive
driving effect on the forest landscape in the north was stronger than
cultivated landscape in the southeast. In 2010, the range of the negative
effects of urbanization on ED further expanded. The socioeconomic

Fig. 7. Spatial patterns of correlation coefficients between Shannon Diversity Index (SHDI) and socioeconomic driving forces: POP (population density), GDP (gross domestic production)
and NTL (nighttime lighting).

Fig. 8. Spatial patterns of correlation coefficients between aggregation index (AI) and socioeconomic driving forces: POP (population density), GDP (gross domestic production) and NTL
(nighttime lighting).
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factors drove the construction land to be further connected in the
downtown and suburbs, making patch shapes more regular.

For SHDI, in the downtown and suburban, the number of landscape
types decreased when the social economy was developed. The popu-
lation density had the greatest range of negative impact on SHDI, and
the degree and range of the impact were further enhanced in 2010.
Although the negative impact of GDP on SHDI was within a small
range, the intensity was the largest, indicating that human activities
(POP and NTL) had a large range of negative impact on SHDI, and
economic activities had a deeper impact. For the forest landscape in the
northwest, urbanization made more landscape types. Mainly due to the
socioeconomic impact, a single forest landscape was broken into more
complex landscapes consisting of forest land, grassland and cultivated
land.

For AI, urbanization had a positive impact in the downtown and
suburbans, and the positive influence on the mosaic landscape of cul-
tivated land and forest land in the outer suburb was great. From
2000–2010, the positive influence of social economy on AI expanded
from the suburb to Tongzhou and Daxing District. With the increased
urbanization in Tongzhou and Daxing District, the socioeconomic im-
pact on AI changed from a negative driving force to a positive one. In
the early stage, the expansion of construction land reduced AI, but in
the later period, individual patches of construction land gradually be-
came connected with the increasing AI.

4. Discussion

4.1. Comparison of OLS and GWR models

The adjusted R2 and AIC comparisons between OLS and GWR
models were shown in Tables 2 and 3. For the adjusted R2, OLS model
was poorly fitted because of the spatial heterogeneity of the driving
mechanism. The adjusted R2 of GWR model ranged from 0.357 to
0.748, all higher than that in corresponding OLS model, indicating that
GWR model could explain the socioeconomic impact on landscape
patterns greatly. The AIC of GWR model was lower than that of OLS
model, indicating that GWR model performed better than OLS model in
quantifying urbanization impact on landscape patterns.

Moran's I indexes for OLS and GWR model residuals were shown in
Table 4. Moran's I index of OLS model varied in the range of
0.577–0.724, showing a certain spatially positive correlation. In con-
trast, Moran's I index of GWR model was smaller than that of the cor-
responding OLS model, showing that GWR model had taking spatial
autocorrelation of variables into consideration.

4.2. Comparison of urbanization impact on landscape metrics

In sum, landscape patterns of the forest land, and forest and culti-
vated land ecotone in the north and northwest of Beijing City was
strongly influenced by socioeconomic factors, but the cultivated land-
scape in southeastern plain was not significantly affected by

urbanization. In the mountainous areas, the scope of human activities
was small, and the degree of urban development was weak. As a result,
the forest landscape was preserved more completely than elsewhere.
Once this area was developed at a large scale, the effect of urbanization
on the forest landscape would be very strong. On the contrary, by 2000
the southeastern plain area had already been affected by human ac-
tivities. Urbanization would result in the expansion of construction
land, making the landscape more fragmented and irregular. In the
forest and cultivated land ecotone, land use types were rich, and the
intensity of human activities was between the former two areas. The
development of social economy promoted the expansion of cultivated
land into forest land and grassland, and the expansion of construction
land into forest land and cultivated land, both resulting in a more ag-
glomerated landscape pattern with more regular shape and less di-
versity.

In this study, POP, GDP and NTL were used to represent urbaniza-
tion, and their explanatory ability and degree of influence were dif-
ferent. In terms of adjusted R2 (Table 2), the ability to explain the
evolution of landscape patterns decreased from POP to GDP, and to NTL
in turn, and it was the same in terms of the influence degree as shown in
Figs. 5–8. As a result, the impact of population density on landscape
patterns was more direct than that of GDP and NTL. As we know, urban
development in China is driven by population growth. The size of the
population reflects the intensity of human activities and interference
directly. Highly correlated with population density, GDP and NTL can
indirectly affect landscape patterns.

Four metrics of PD, ED, SHDI and AI were used to quantify land-
scape patterns in Beijing City, and the degrees they were affected by
urbanization differed. The influence of socioeconomic factors on the
four landscape metrics varied from strong to weak in the order of PD,
AI, ED and SHDI. During the rapid urbanization process, land use
change directly led to the appearance of more patches of construction
land, which affected patch density of the whole landscape. The impact
degree of socioeconomic factors on aggregation and shape complexity
of the landscape was the next strongest, with landscape diversity for the
weakest. All the findings indicated that urbanization had more influ-
ence on the number of patches than on patch shape and spatial

Table 2
Comparison of adjusted R2 from GWR (Adjusted R2

G) and OLS (Adjusted R2
O) models.

2000 2010

POP GDP NTL POP GDP NTL

PD Adjusted R2
O 0.056 0.107 0.14 0.066 0.189 0.219

Adjusted R2
G 0.748 0.725 0.628 0.683 0.663 0.564

ED Adjusted R2
O 0.03 0.067 0.061 0.046 0.093 0.097

Adjusted R2
G 0.681 0.649 0.546 0.611 0.586 0.471

SHDI Adjusted R2
O 0.001 0.005 0.035 0.002 0.010 0.025

Adjusted R2
G 0.595 0.567 0.449 0.533 0.506 0.357

AI Adjusted R2
O 0.030 0.071 0.067 0.046 0.098 0.105

Adjusted R2
G 0.685 0.655 0.555 0.617 0.592 0.480

Table 3
Comparison of AIC from GWR (AICG) and OLS (AICO) models.

2000 2010

POP GDP NTL POP GDP NTL

PD AICO −829.0 −929.7 −998.8 −1059.4 −1318.1 −1386.1
AICG −2993.6 −2930.7 −2470.1 −2903.5 −2840.0 −2422.4

ED AICO −1067.1 −1139.5 −1126.8 −999.8 −1091.3 −1100.7
AICG −2852.1 −2771.8 −2396.8 −2512.5 −2444.6 −2047.3

SHDI AICO −254.4 −264.8 −320.3 −440.0 −454.6 −483.0
AICG −1661.9 −1627.9 −1283.9 −1701.0 −1643.6 −1213.9

AI AICO −966.4 −1044.6 −1036.7 −895.7 −997.1 −1011.9
AICG −2777.5 −2697.2 −2328.5 −2433.9 −2367.2 −1974.9

Table 4
Comparison of Residual Moran's I index for GWR (IG) and OLS (IO) models.

2000 2010

POP GDP NTL POP GDP NTL

PD IO 0.724 0.698 0.697 0.715 0.663 0.661
IG 0.113 0.178 0.328 0.223 0.286 0.411

ED IO 0.665 0.648 0.652 0.654 0.628 0.631
IG 0.086 0.152 0.286 0.182 0.252 0.369

SHDI IO 0.584 0.585 0.577 0.586 0.585 0.580
IG 0.066 0.133 0.263 0.168 0.241 0.362

AI IO 0.670 0.652 0.655 0.659 0.631 0.633
IG 0.083 0.150 0.285 0.180 0.249 0.368
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aggregation, with landscape diversity for the least influence.
From 2000to 2010, the driving effect of social economy on land-

scape patterns changed dramatically. Overall, the influence of socio-
economic factors in 2010 was less than that in 2000, indicating that
landscape patterns in 2010 was also affected by other factors such as
land use policy, urban planning and industrial structure adjustment.
During 2000–2010, the population density increase only led to a sig-
nificant increase of POP influence on landscape patterns in the down-
town and suburbs. In the same period, the positive impact of GDP and
NTL expanded in the downtown and suburbs, and the negative impact
significantly decreased in the northern mountainous areas. The contrast
indicated that the impact of POP on landscape patterns was mainly
concentrated in the downtown and suburbs, while for GDP and NTL the
influencing area could be extended to the outer suburban mountainous
areas.

4.3. Implications for compact green city development

During the process of global urbanization, the United States of
America has experienced a serious suburbanization, and the expansion
of cities has resulted in enormous pressures on the transportation, en-
ergy and natural ecosystems. Unlike urban sprawl in the USA, European
cities have shown a compact development trend. Compact development
is a kind of city development model based on intensified development
within the region (Breheny, 1997). The basic principle of compact de-
velopment is to reduce the need for transportation and energy, and to
reduce environmental pollution by increasing the density of develop-
ment in a relatively compact area, so as to form a better ecological
environment for human living (Jim, 2013).

The concept of compact city has key implications for avoiding un-
orderly urban sprawl in China (Chen et al., 2008). However, unlike the
USA and most European countries, China has both continuous pros-
perity in urban centers and continual expansion of urban construction
land in the suburbs and outer suburbs; thus, the compact city model
must be adapted to local conditions in China. This study showed that
there was spatial heterogeneity in the impact of urbanization on land-
scape patterns in Beijing City. Using GWR to measure correlation
coefficients between socioeconomic factors and landscape patterns,
important decision-making information could be provided for planning
regional compact green city.

Three recommendations could be drawn for planning regional
compact green city in Beijing City. Firstly, the protection of green space
should be strengthened in the downtown and suburbs to restore land-
scape diversity. In 2000, main land use type in this region was the
construction land; furthermore, the natural or semi-natural green space
gradually disappeared during the subsequent ten years. Although parks
and other urban green space were constructed, the negative impact of
urbanization on SHDI during the decade deepened. Thus, decision-
makers should focus on protecting natural or semi-natural green space
and constructing additional green landscapes to increase the diversity
of urban landscape.

Secondly, the expansion of construction land should be planned
rationally in the outer suburb plain area of Beijing City. In the process
of outward urban expansion from 2000 to 2010, a large number of
construction land patches occupied the coverage of cultivated land,
resulting in a more fragmented landscape. Therefore, it is necessary to
implement the compact city concept during the process of new urban
districts development. The growth of construction land in some areas
should be limited, and infilling and recycling development should be
encouraged to inhibit landscape fragmentation.

Thirdly, decision-makers should focus on protecting the forest
landscape in the outer suburb mountainous area, and the forest, grass
and cultivated landscape in the outer suburb semi-mountainous area.
Although landscape patterns in these two regions did not change dra-
matically during the study period, and the socioeconomic development
was slow, there was the strongest response to urbanization. Only a little

human disturbance can lead to obvious change of these landscapes. A
zone in which development is prohibited should be set up in moun-
tainous and semi-mountainous areas to avoid unorderly urban expan-
sion. In the mountainous areas, the integrity of the forest landscape
should be focused. In the semi-mountainous area, the diversity of land
use types should be maintained, improving ecological resilence of the
mixed landscape.

5. Conclusions

Due to rapid urbanization, human activities have drastically
changed landscape patterns in Beijing City. On the basis of quantifying
the evolution of landscape patterns, GWR model was used to identify
the spatial non-stationary relationship between urbanization and
landscape patterns. Landscape patterns were characterized by such four
landscape metrics as PD, ED, SHDI and AI, with urbanization char-
acterized by population density, GDP and nighttime lighting.

The results showed that landscape patterns in Beijing City were
greatly changed along with the process of urbanization during
2000–2010 and showed obvious spatial differentiation. Different ur-
banization modes and development zones influenced the evolution of
landscape patterns variously. GWR was proved to be effectively identify
the spatial non-stationarity of urbanization impact on landscape pat-
terns. In Beijing City, the response of western and northern forest
landscape and the forest and cultivated ecotone to urbanization was the
strongest. Among driving factors, population density directly affected
landscape patterns, while the impacts of GDP and NTL were indirect. In
2010, the factors affecting landscape patterns were more complicated
and the explanatory power was lower than that in 2000. The reason for
the difference may be due to the adjustment of development policy, the
industrial structure and the overall plan in Beijing City. In summary,
there was significant spatial heterogeneity in the relationship between
socioeconomic driving factors and landscape patterns, and the concept
of compact development should be adapted to local conditions in
Beijing City.

Spatial scale is one of the key issues in ecology and geography.
Because landscape patterns are scale-dependent, landscape patterns
change and associated driving forces are also sensitive to observation
grain or extent. The grid size was chosen as 3 km× 3 km in this study,
considering the spatial resolution of available land cover data (30 m)
and socioeconomic data (1 km). In the future, the scale effect of urba-
nization impact on landscape patterns should be fully explored through
transforming grid size in the spatial dimension. As to the temporal
scale, urbanization impact on landscape patterns can be measured more
finely by extending the time series to 30 years or more, and by reducing
the time interval to 5 years, the period of socioeconomic development
plan in China.
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