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a b s t r a c t

Understanding the spatial distribution and driving factors of forest fire facilitates local forest fire man-
agement planning and optimization of resource allocation for fire prevention geographically. In this
study, we analyzed the spatial pattern and drivers of forest fire in Fujian province, southeastern China,
during 2000e2008 using Ripley's K-function and logistic regression (LR) model. The likelihood of fire
occurrence was mapped based on the resultant model. The data regarding fire ignitions, weather con-
ditions, vegetation, topography, infrastructure, and socioeconomic factors were extracted from ArcGIS
environment. The study revealed that fire ignition was mainly clustered in space due to the compre-
hensive influence of different factors. Elevation, daily precipitation, and daily relative humidity were
negatively associated with fire ignitions, whereas distance to settlement, population density, and per
capita gross domestic product (GDP) impacted fire occurrence positively. The spatial distribution of fire
occurrence likelihood was highly variable in Fujian: high fire likelihood was prevalent in the northern
and southeastern parts of Fujian, whereas it was relatively low in the western province. Fire risk may be
underestimated in some areas of Fujian according to the spatial patterns of the model residual, which
should be paid more attention to in the forest fire management practice.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Forest fire is an important ecological factor, which has a signif-
icant impact on forest regeneration and succession (Podur, Martell,
& Csillag, 2003), and from economic and safety perspectives, re-
sults in a loss of forest resources and threatens the safety of human
life and property (Flannigan, Stocks, & Wotton, 2000). Forest fires
mainly fall into two categories: human-ignited or anthropogenic
fires, versus fires that are not a direct consequence of human action
e naturally induced fire. Worldwide, human activities are respon-
sible for most wildfire ignitions e for example, more than 95% of all
fires in southern Europe (San-Miguel-Ayanz & Cami�a, 2009), and
60% in Alaska over the period of 1950e2005 were anthropogenic
(Todd & Jewkes, 2006). The causes of forest fires differ between
463781229@qq.com (Z. Su),
om (L. Sun), 873410288@qq.
South and North China: in Daxing'an Mountains, in the north, fires
were identified as originating equally from humans as by lightning
(Guo et al. 2015), while in southern regions, the majority of fires
were attributable to human activity. In the southeastern province of
Fujian, human-caused forest fires reached 95% in the past decade
(He, Liu, Zhao, & Zhou, 2013).

Understanding spatial distribution and primary factors that in-
fluence fire occurrence is crucial for forest management and allo-
cation of fire prevention and suppression resources. For example,
fire towers, inspection stations, fire patrols and firebreaks should be
allocated around fire-prone zones, which can reduce economic
expense and improve the efficiency of forest fire management. In
the past decades, numerous studies have been conducted to iden-
tify spatial patterns and drivers of fire occurrence (Hu & Zhou,
2014; Martínez, Vega-Garcia, & Chuvieco, 2009; Syphard et al.
2008; Zhang, Zhang, Li, Xu, & Zhou, 2013). This early research
tended to consider primarily meteorological factors. More recent
research has begun to include a comprehensive analysis of vege-
tation, terrain, human activity, socioeconomic influences, and other
biophysical and ecological factors (Chas-Amil, Prestemon, McClean,
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& Touza, 2015; Fry & Stephens, 2006; Romero-Calcerrada, Barrio-
Parra, Millington, & Novillo, 2010). Findings from these studies
have revealed the essentiality of considering different types of
potential influences, in order to identify key variables or driving
factors (Catry, Rego, Baç~ao, & Moreira, 2009; Loboda & Csiszar,
2007; Martínez et al. 2009; Nunes et al. 2005; Syphard et al. 2008).

Forest fire prediction research is a developing field in China, and
has focused mainly on the Chinese boreal forest in northern China.
Fujian, located southeast of China, is one of China's four major
forest management regions, ranking the highest in terms of forest
coverage. It is also an area with a high annual forest fire incidence.
Although increased fire prevention efforts have reduced the num-
ber of annual forest fires in recent years in Fujian, the total area of
forest burned has increased (He et al. 2013). Despite these in-
creases, compared to the northern forest regions in China, studies
focused on forest fire drivers and forecasting in Fujian province are
insufficient to inform forest fire management in this region. For
example, only a few variables have been used so far to perform fire
danger classification and fire forecasting, and methods of analysis
have not been especially sophisticated (He et al. 2013), which may
miss out on important nuances, such as anthropogenic influences
or interactions among variables. Research has shown that forest fire
occurrence, especially anthropogenic forest fire, was affected by
many factors (Oliveira, Oehler, San-Miguel-Ayanz, Camia,& Pereira,
2012; Zhang, Zhang, & Zhou, 2010) in which socioeconomic in-
dicators and human activity were found to be indispensable con-
siderations; nonetheless, these indicators have not been considered
in the fire-prediction studies of Fujian. In the past decades, forest-
related socio-economic activities, including tourism, have become
potentially meaningful influences in Fujian due to the abundance of
forest resources and increasing interest in these types of activities.
This has the potential to increase the complexity of relationships
between fire occurrence and local factors affecting risk of ignition,
as well as the unique spatial distribution of fire occurrence.

The objectives of the present research are to (1) identify the
spatial distribution of fire ignitions in Fujian, China, (2) understand
the comprehensive and individual effects of ignition factors on fire
occurrence, and (3) produce spatially explicit statistical models and
maps predicting patterns of fire ignitions in Fujian, China, using a
combination of biophysical and human variables. Results can pro-
vide the necessary guidance for local forest fire management in
terms of fire resource allocation, reducing the economic burden of
fighting fires, and improving the efficiency of forest management
strategies in the forests of southeastern China. Findings from this
case study also have the potential to be implemented in other areas
of southeastern China, which have many shared variables, such as
fire frequency, climate conditions, forest resources, and socioeco-
nomic factors.

2. Materials and methods

2.1. Study area

Fujian is a province in southeastern China (Fig. 1a). The total
land area of Fujian is 124,000 km2, which accounts for 1.3% of
China's total land area. The climate of Fujian is warm, humid sub-
tropical monsoon, which is affected by themonsoon circulation and
topography. Average annual rainfall is 1400e2000 mm, and
average temperature 17e21 �C. The current forest coverage of
Fujian is around 66%. Dominant tree species include Pinus mas-
soniana Lamb., Cunninghamia lanceolata, Casuarina equisetifolia L.,
Phyllostachys heterocycla, and others.

Fujian has a relatively high forest fire frequency compared to
other regions in China that have high forest coverage such as Chi-
nese boreal forest. The fire season is from approximately September
15 until April 30 of the following calendar year. From 1951 to 1998,
forest fires occurred on average 1385 times annually andmore than
95% fires are caused by human activities (Zheng et al. 2001).

2.2. Spatial distribution analysis

K-function proposed by Ripley (1976) is a useful tool to describe
how the interaction or spatial dependence between events varies
through space. Ripley's K-function is defined as follows:

KðdÞ ¼ 1
l
E ðnumber of other events within d distance of an

arbitrary eventÞ

where l is the density (number per unit area) of events, and E (�) is
the expectation operator. It has been widely used in spatial point
pattern analysis and spatial point process modeling (Dissing &
Verbyla, 2003; Podur et al. 2003). Theoretically, for a homoge-
neous Poisson process, known as “complete spatial randomness”
(CSR), K(d) ¼ pd2. For d � 0, Ripley's K-function can be used as a
formal statistic to test the null hypothesis of CSR. The values of K(d)
less than pd2 indicate regularity, whereas aggregation is indicated
when K(d) is greater than pd2. There are three basic edge correction
methods for Ripley's K-function and we used “The guard area
correction” in this study. SpPack software was used to perform the
K-function (Perry, 2004), and confidence envelopes were set to 95%,
based on 499 replicates.

2.3. LR model

In recent years, many scholars have used LR to predict and
analyze forest fire occurrence (Chang et al. 2013; Martínez et al.
2009; Oliveira et al. 2012; Rodrigues, de al Riva, & Fotheringham,
2014; Saefuddin, Setiabudi, & Fitrianto, 2012; Vega Garcia,
Woodard, Titus, Adamowicz, & Lee, 1995). In the analysis, forest
fire occurrence was assigned a value of 1 (y ¼ 1), while “zero
occurrence” was 0 (y ¼ 0). Furthermore, we assumed that the
probability of occurrence of forest fire (y ¼ 1) was P, and the
probability of no forest fires (y ¼ 0) was (1 � P). This allowed us to
use LR to model the probability of occurrence of forest fire in as-
sociation with each variable. The specific expression was

ln
�

p
1� p

�
¼ b0 þ b1x1 þ b2x2 þ…þ bmxm (1)

The formula for estimating the probability of forest fire occur-
rence converted using Logit was

p ¼ 1
.�

1þ e�ðb0þb1x1þb2x2þ…þbmxmÞ
�

(2)

In Eq. (2), P is the probability of forest fire occurrence, m is the
number of covariates, is (b1, b2,… bm) is the correlation coefficients
for each variable using the LR model, and ðx1; x2;…; xmÞ are the
respective variables which influenced the occurrence of forest fires.

2.3.1. Dependent variable
Binomial LR model requires that the data are in a binomial

distribution. A certain percentage of random points (non-fire
points) were created to satisfy the requirements of the binomial LR
model. The forest fire data used in this study were Fujian
2000e2008 satellite fire point data provided by the Forestry Sci-
ence Data Center (http://www.cfsdc.org/indexAction.action?
classId¼1). There were 13,185 forest fires that occurred in Fujian
during 2000e2008. Data points also provided the geographic co-
ordinates, time, and other information of the forest fires. There was

http://www.cfsdc.org/indexAction.action?classId=1
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Fig. 1. Study area showing the bounds of Fujian province in China (a); elevation (b); fire points (ignitions) and meteorological stations (c); and railway, road, and settlement (d).
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no uniform requirement for the number of random points selected.
We randomly generated 14,965 random points, about the same
number as the ignition points.

2.3.2. Independent variables
In this paper, independent variables included five different as-

pects: topography, vegetation, weather, infrastructure, and social
and economic data. Detailed descriptions for each variable are
provided in Table 1.

2.3.2.1. Topography. Topography data included elevation, slope,
and aspect, extracted from a 1:50,000 digital elevation model
(DEM) dataset, which was built in 2002 (http://www.gscloud.cn/).
We extracted elevation and slope values for each point from the
DEM dataset using ArcGIS. Since aspect was a character (i.e., not
numerical), these data could not be directly used to fit model;
consequently, we transformed these data using the following steps:
(1) calculate the proportion of each aspect in the total aspect; (2)
determine the aspect of each point (fire or non-fire point); and (3)
use this value (i.e., proportion of aspect) to represent the aspect to
which each point (fire or non-fire point) belongs (Chang et al.
2013).

2.3.2.2. Vegetation data. The vegetation data for this study were
based on a vegetation structure and type map from the Cold and
Arid Regions Environmental and Engineering Research Institute of
Chinese Academy of Sciences (http://westdc.westgis.ac.cn/). The
data were gathered in 2000, and spatial resolution was reported to
be 1 km. Using this map, we grouped polygons of vegetation into
four categories: Needleleaf evergreen trees (40.9% cover of Fujian
province), broadleaf evergreen tree (13.2% cover), broadleaf de-
ciduous shrub (11.8% cover), grass, and crop (34.1% cover). The
forest type distributions are shown in Fig. 2.
Forest type is also character data. Vegetation extraction steps
were similar to those used to transform aspect data: (1) calculate
the proportion of plant type in the total plant types; (2) determine
the plant type of each point (fire or non-fire point); (3) use this
value (i.e., proportion of plant types) to represent the plant type to
which each point (fire or non-fire point) belongs.
2.3.2.3. Meteorological data. The meteorological data were derived
from the China Meteorological Data Sharing Service System (http://
cdc.cma.gov.cn/), and covered daily meteorological data from 22
national meteorological stations (Fig. 1c) in the Fujian province.
Daily weather data included 22 meteorological factors that were
preprocessed to removemissing data points (e.g., due to equipment
damage), and the remaining factors included average surface
temperature (�C), daily maximum surface temperature (�C),
average wind speed (m$s�1), precipitation (mm/24 h), sunshine
hours, average temperature (�C), minimum relative humidity (%),
and others (Table 1), for a total of 15 meteorological variables. The
“Extract Values to Points” function in ArcGIS was used to extract
meteorological data to fire and random points.
2.3.2.4. Infrastructure and salient geographic features.
Geographic distribution of infrastructure and salient geographic
features were taken from the National Administration of Surveying,
Mapping and Geoinformation of China (http://218.244.250.78/
NgccDigitalHall/). The data were collected in 2000, based on a
1:250,000 precision vector map. Data included spatial distribution
of railways, roads, rivers, settlements, and other anthropogenic
landscape structures. We converted infrastructure data using Arc-
gis10.0, and then calculated the Euclidean distance from each point
(fire and random) to all the types of infrastructure, including the
distance from each point to railways, roads, rivers, residential areas,
and other infrastructure within the study area.

http://www.gscloud.cn/
http://westdc.westgis.ac.cn/
http://cdc.cma.gov.cn/
http://cdc.cma.gov.cn/
http://218.244.250.78/NgccDigitalHall/
http://218.244.250.78/NgccDigitalHall/


Table 1
Predictor variables included in forest fire model development for the Fujian forest region.

Variable type Variable name Code Resolution/scale Description Source/reference

Topographic Elevation Elev. Raster/25 m Elevation of each fire point and control
extracted from a raster map of study area

<National Administration of
Surveying, Mapping and
Geoinformation of China>, 2002Slope Slope Slope of each fire point and control

extracted from a raster map of study area
Aspect Aspect Proportion of each aspect class

(N,NE, E, SE, S, SW, W, NW) in the study area
Vegetation Forest type Forest type Raster/1 km Proportion of each forest type in the study area The Cold and Arid Regions

Science Data Center, China
(http://wesdc.westgis.ac.cn/)

Climatic Daily precipitation Da_preci Daily/0.01 Corresponding daily climate factors of
each fire point and control point based on
five national weather stations

China Meteorological Data
and Sharing Network
(http://cdc.cma.gov.cn/)

Sunshine hours SSD
Daily mean wind speed Da_wind
Daily maximum wind speed Da_maxwind
Daily average ground surface
temperature

GST_avg

Daily maximum ground surface
temperature

GST_max

Daily minimum ground surface
temperature

GST_min

Daily mean site pressure Da_spre
Daily maximum site pressure Da_maxspre
Daily minimum site pressure Da_minspre
Daily mean temperature Da_temp
Daily mean relative humidity Da_RH
Daily minimum relative
humidity

Da_minRH

Daily maximum temperature Da_maxtemp
Daily minimum temperature Da_mintemp

Infrastructure Distance to the nearest railway Dis_railway Vector/1:100,000 The straight distance between a fire point or
a control point and the nearest railway

<National Administration of
Surveying, Mapping and
Geoinformation of China>2002Distance to the nearest river Dis_river The straight distance between a fire point or

a control point and the nearest river
Distance to the nearest road Dis_road The straight distance between a fire point or

a control point and the nearest road
Distance to the nearest
settlement

Dis_sett The straight distance between a fire point or
a control point and the nearest settlement

Socioeconomic Per capita GDP CGDP Grid/1 km Per capita GDP of the study area Data Sharing Infrastructure
of Earth System Science
(http://www.geodata.cn/
Portal/index.jsp), 2010

Density of population Den_Pop The annual population density of the study area
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2.3.2.5. Demographic and socioeconomic data. Gridded de-
mographic and socioeconomic data were taken from the Data
Sharing Infrastructure of Earth System Science (http://www.
geodata.cn/Portal/index.jsp) with 1-km resolution, including the
grid population density and per capita GDP (CGDP) from 2000,
2003, 2005, and 2010. In addition, we calculated the average pop-
ulation and GDP growth rates in the intervals of 2000e2003,
2003e2005, and 2005e2010 and generated grid data for the
annual population and GDP from 2000 to 2008. These data were
then correlated with fire point and random points, using the ArcGIS
“Raster Extraction tool” (Oliveira et al. 2012).
Fig. 2. The distribution of forest types in Fujian province.
2.3.3. Test for multicollinearity
Multicollinearity refers to the correlation between each

explanatory variable in a linear regression model. This correlation
may distort the model estimation or interfere with accurate esti-
mation. This study used VIF (variance inflation factor) to test for
multicollinearity, and variables with significant collinearity were
gradually removed. Generally, this study considered VIF equal to 10
as the benchmark. If the VIF was >10, this indicated significant
collinearity between variables which were gradually removed (Wu
& Zhang, 2013).
2.4. Calibration of LR model

In order to evaluate model performance, we used receiver
operator characteristic (ROC) curve test method; this has been used
to evaluate the goodness of fit of LR models by other scholars
(Chang et al. 2013; Del Hoyo, Isabel,& Vega, 2011). The evaluation is
based on the value of area under the curve (AUC). Typically, the AUC
should range from 0.5 to 1: higher AUC values indicate a better
goodness of fit of the regression model. It is generally suggested
that AUC equal to 0.5 indicates a totally random prediction, AUC in
the range of 0.5e0.7 poor fit, and AUC of 0.7e0.9 normal fit, while
an AUC of 0.9e1 indicates high goodness of fit. At present, the ROC
test method is applied to forest fire prediction (Del Hoyo et al. 2011;
Jim�enez-Valverde et al. 2012).

In LR, judgment about the cutoff point is critical to estimate the

http://www.geodata.cn/Portal/index.jsp
http://www.geodata.cn/Portal/index.jsp
http://wesdc.westgis.ac.cn/
http://cdc.cma.gov.cn/
http://www.geodata.cn/Portal/index.jsp
http://www.geodata.cn/Portal/index.jsp
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value of the model's predicted probability. Many studies in the past
used the system default value of 0.5 (Deng, Li, Feng,& Zhang, 2012);
however, in recent years, some scholars pointed out that this
method might result in large deviation (Chang et al. 2013). In an
effort to address this problem, scholars began using sensitivity and
specificity of ROC in the calculation of “Youden index
(sensitivityþ specificity�1),” then judging the “cut-off point” (best
cutoff value) to classify probability. This method has also been used
to predict forest fire (Martínez et al. 2009). If the predicted prob-
ability of the model is higher than the cutoff point, it is predicted
that forest firewill occur; however, a lesser value indicates no forest
fire.

2.5. Selection of model variables

In this study, all 28,150 fires and random non-fire points (Sect.
2.4.1) were assigned either to a validation set (60%) or a calibration
set (40%). In order to reduce the influence of a random division of
samples on the selection of model parameters (variables), the di-
vision and model fitting were performed three times. Three inter-
mediate models were generated. Variables that were significant in
at least two of the three intermediate models were selected to be
used in analysis of the complete dataset (Oliveira et al. 2012;
Rodrigues et al. 2014).

2.6. Mapping the likelihood of fire occurrence and fire risk

The probability of forest fire and random points were predicted
using Eq. (3), and maps of fire occurrence likelihood were created
using the Kriging method using ArcGIS, based on the predicted and
residual values in the LRmodel. In addition, the map of fire risk was
categorized into three classes based on the fire occurrence likeli-
hood and the cutoff value (0.404) of a complete dataset: low
(0e0.404), medium (0.404e0.5), and high (>0.5) (Chang
et al.2013).

3. Results

3.1. Spatial analysis

We computed a K-function for each year from 2000 to 2008, and
also the combined fire ignitions of 9 years (Fig. 3 and Fig. 4). As we
p ¼ 1
.�

1þ e�ð�0:1389�0:0019x1þ0:2937x2þ0:0449x3þ0:0058x4�0:0173x5�0:0053x6þ0:0132x7�0:0148x8þ0:0001x9þ0:0001x10Þ
�

(3)
can see, there is a clear departure from CSR toward clustering, in
most years between 2000 and 2008, and across the 9 years of the
dataset. The amount of clustering for a given year changed also as a
function of distance e clustering started at 0.1� (~10 km), which
suggests that there were more fires within any specified distance
(>10 km) than expected under complete spatial randomness,
where an identified fire is the starting point. The degree of clus-
tering seemed to increase with radius. For the years 2004 and 2007,
clustering ended at 0.6 and 1� (~60 and 100 km), respectively, and
tended toward more regular distribution after their clustering-end
distances. Fire ignitions in 2008 were regularly distributed in space
at varying distances.

3.2. Test for multicollinearity

The multicollinearity test selected a total of 18 variables for
model fitting, including ten non-meteorological variables (“dis-
tance to railway,” “distance to road,” “distance to river,” “distance to
settlement,” “elevation,” “slope,” “aspect,” “plant functional types,”
“population density,” and “per capita GDP”) and eight meteoro-
logical variables (“daily maximum globe surface temperature,”
“daily minimum surface temperature,” “daily maximum wind
speed,” “20:00e20:00 precipitation,” “daily maximum air pres-
sure,” “sunshine hours,” “daily average relative humidity,” and
“daily minimum relative humidity”).

3.3. Analysis of model fitting results

3.3.1. Selection of model parameters
Table 2 shows that 11 variables in the intermediate models met

the stated requirements (significant in at least two of the three
intermediate models) and were used in the final stage of model
development.

3.3.2. Evaluation of model performance
Fig. 5 shows ROC curves for the three subsamples and the

complete sample size. The AUC values (i.e., area under the ROC
curve) were between 0.8 and 0.9 (p < 0.0001). This suggests an
acceptable goodness of fit (Liu& Yang, 2013), such that the model is
a good candidate for predicting forest fire occurrence in Fujian
Province. According to the selected variables in the model, com-
binedwith cutoff values for the three subsamples (0.445, 0.420, and
0.442), results showed that the predictive accuracy of the three
models derived from the three subsamples was higher and was
close to each other (Table 3). These variables were then used to
assess model fit for all samples. Result of ROC testing showed an
AUC value of 0.843, indicating a high goodness of fit when the full
dataset was tested using our test model. The associated cutoff value
e 0.404ewas then used to guide classification (i.e., fire occurrence/
nonoccurrence), and the predictive accuracy of the final prediction
model using all sample data was found to be 76.4% (Table 3, Fig. 5).

3.3.3. Spatial distribution of fire ignition likelihood
Based on the final model of parameter estimation using LR

(Table 4), the probabilitymodel for forest fire in Fujian provincewas
calculated as
The various ‘x’ variables represent elevation (x1), distance to
road (x2), distance to settlement (x3), maximum ground surface
temperature (x4), daily minimum globe surface temperature (x5),
daily precipitation (x6), sunshine hours (x7), daily relative humidity
(x8), population density (x9), and per capita GDP (CGDP) (x10).

The fire ignition likelihood map (Fig. 6a) indicated that areas
with high probability of forest fire were distributed throughout
most of Fujian, but were especially concentrated in the north and
northeast, covering most of the municipal areas of Nanping, Fuz-
hou, and Zhangzhou, and at the junctions of Sanming, Ningde,
Fuzhou, and Nanping. The model showed that the western area of
Fujian had a low probability of forest fire occurrence. The map of
fire risk (Fig. 6b) was also generated based on fire occurrence
likelihood and cutoff values. The distribution of high-risk zones was
similar to Fig. 6a, which indicates that high and medium fire risk
areas were evenly distributed throughout the north and northeast



Fig. 3. Calculated Ripley's K-functions for the density of fire ignitions each year from 2000 to 2008 in the study area (Fujian, China), compared with the theoretical Ripley's K-
function, representing complete spatial randomness (CSR). The pink line represents the empirical K-function under CSR with green and red lines, which are 95% confidence en-
velopes. X-axis represents the distance to the nearest ignition from a given ignition point and the unit is degree. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.).
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of Fujian. The cities of Nanping, Zhangzhou, and Putian had areas of
high and medium fire risk.

In order to better evaluate the goodness-of-fit model and
compare the predicted probability with the observed values in our
model, model residuals and residual plots were generated,
assessed, and mapped (Fig. 7). We found that the model over-
estimated forest fire occurrence rate in the northeastern Fujian, and
some areas of southwestern Fujian, while it underestimated the
probability of forest fire occurrence in most areas of Nanping,
Sanming, and western Zhangzhou, and the middle area of
Quanzhou.
4. Discussion

The fire ignition pattern in our study area was mainly clustered
in space, which is consistent with other previous studies (Genton,
Butry, Gumpertz, & Prestemon, 2006; Miranda, Sturtevant,
Stewart, & Hammer, 2012; Mundo, Wiegand, Kanagaraj, &
Kitzberger, 2013). Our findings indicated that the spatial hetero-
geneity (pattern) of fire ignition may be caused by the compre-
hensive effect of topography, human activity, and meteorological
factors, which were consistent with other studies (Genton et al.
2006; Schoennagel, Veblen, & Romme, 2004). Proximity to trans-
portation corridors (e.g., roads) has been identified by others as a
main driver of fire ignition (Butry & Prestemon, 2005). In contrast
to Stephens (2005) and Romero-Calcerrada et al. (2010), railways
were not identified as drivers in the present study. In this study,
most railways were located in non-forest areas and, consequently,
did not influence forest fire occurrence. Owing to the relative
concentration and intensity of human activity at low altitudes, the
likelihood of human-caused fire ignition was unsurprisingly higher
(Chang et al. 2013; Miranda et al. 2012; Oliveira et al. 2012; Syphard



Fig. 4. Calculated Ripley's K-functions for the density of fire ignitions during
2000e2008 in the study area (Fujian, China), compared with the theoretical Ripley's K-
function representing complete spatial randomness (CSR). The pink line represents the
empirical K-function under CSR with green and red lines, which are 95% confidence
envelopes. X-axis represents the distance to the nearest ignition from a given ignition
point and the unit is degree. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.).
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et al. 2008), The factors that can reflect the local socioeconomic
activity such as population density, CGDP, and distance to settle-
ment were found to be positively related to fire occurrence in
Fujian, China. Our results are in agreement with other published
works (Miranda et al. 2012; Syphard et al. 2007). Higher frequency
of socio-economic activity associated with increased probability of
fire occurrence in this study may indicate that in Fujian, many of
the socio-economic activities may be forest-related. Forest type
may not have emerged as crucial to fire occurrence because the
species composition of forests in Fujian is relatively simple in space,
which also agreed with the findings of other studies (Wu, He, Yang,
Liu, & Liang, 2014).

Over the past decades, climatic factors have emerged as
Table 2
Significant (p < 0.05) variables selected by intermediate models using logistic
regression. The direction of association between each predictor and dependent
variable is also presented (þ, positive association; �, negative association).

Variables p-value min p-value max No. significant
samples

Direction

Elev <0.0001 <0.0001 3 �
Aspect 0.0201 0.1202 1 þ
Slope 0.0360 0.1860 1 �
Forest type 0.0110 0.0850 1 þ
Dis_road <0.0001 <0.0001 3 �
Dis_river 0.0383 0.2130 1 þ
Dis_sett <0.0001 <0.0001 3 þ
Da_maxtemp <0.0001 <0.0001 3 þ
Da_mintemp <0.0001 <0.0001 3 �
Da_wind 0.0042 0.0931 1 �
Da_preci <0.0001 <0.0001 3 �
SSD <0.0001 <0.0001 3 þ
Da_RH <0.0001 <0.0001 3 �
Den_Pop <0.0001 <0.0001 3 þ
CGDP <0.0001 <0.0001 3 þ

Note: Elev is elevation; Dis_road is distance from ignition point to the nearest road;
Dis_river is distance to the nearest river; Dis_sett is distance to the nearest settle-
ment; Da_maxtemp is daily maximum globe surface temperature; Da_mintemp is
daily minimum globe surface temperature; Da_wind is daily mean wind speed;
Da_precipitation is daily precipitation; SSD is sunshine hours; Da_RH is daily mean
relative humidity; Den-Pop is density of population; and CGDP is per capita GDP.
important for predicting fire ignition risk (Liu, Yang, Chang,
Weisberg, & He, 2012; Preisler, Brillinger, Burgan, & Benoit, 2004;
Syphard et al. 2008; Wotton, Martell, & Logan, 2003). In this
study, we identified five important climatic drivers of fire ignition
in Fujian: daily maximum temperature and sunshine hours were
positively related to fire probability, while daily minimum tem-
perature, daily precipitation, and daily mean relative humidity
were found to be negatively correlated with fire occurrence. High
temperatures and abundant sunshine are variables that likely in-
fluence each other, and either alone or in combination can
contribute to increased evaporation from plants, as well as decrease
moisture content of potential fire fuels (e.g., downed woody ma-
terial), leading to increased probability of fire occurrence (Chuvieco
et al. 2004). Precipitation and relative humidity are two important
factors for indicating the moisture of fuel in the forest. High pre-
cipitation and relative humidity contribute to fuel moisture, which
in turn decreases the possibility of fire ignition (Zumbrunnen et al.,
2011). It is worth noting that some variables such as temperature
and relative humidity do not necessarily have a consistently linear
relationship with fire occurrence (Castro, Tudela, & Sebasti�a, 2003;
Wu, He, Yang, & Liang, 2015); consequently, it is important that
even where apparently linear relationships exist between certain
variables and fire occurrence, unanticipated or subtle thresholds
may be present and we must focus on discussions regarding the
same.

Fig. 6a illustrates that much of the province could be classified as
having a high probability of forest fire, with exception of the
western area of Fujian. Severe soil erosion may offer one likely
explanation for the low probability of fire in the western area of
Fujian (Chen, Chen, & Chen, 2011), whereby forest coverage was
reduced and possibly even prevented from reestablishing. The fire
risk map (Fig. 6b) shows that fire-risk zones, especially those with
high fire risk, are distributed across administrative divisions;
consequently, it would be more efficient and reasonable if fire
prevention strategies and management plans were organized
based on fire-risk zones, rather than on separate administrative
divisions, as it is currently managed.

One potential caveat is that the distribution of model residuals
indicates a degree of error in the model's predictive capacity that
could be improved upon. The model may underestimate or over-
estimate the probability of occurrence of forest fires in Fujian
spatially. The most likely source for model error is that the logistic
model did not consider spatial correlation among fire points.
Several studies have shown that the consideration of data spatial
correlation could improve the predictive capacity of the model
(Koutsias, Martínez-Fern�andez, & Allg€ower, 2010; Kupfer & Farris,
2007), and the spatial correlation should be considered in future
studies. Particular attention should be paid to the areas where the
fire risk has been underestimated during the fire season and more
resources should allocated to high fire risk regions in order to
improve the efficiency and level of fire prevention and manage-
ment in Fujian, China.

5. Conclusions

The spatial patterns and likelihood of forest fire occurrence in
Fujian province, China were investigated using geospatial infor-
mation, weather conditions, and socioeconomic factors for the
period 2000e2008. The computed model was used to map the
likelihood of fire distribution within the study area. The findings
showed that fire ignitions were mostly spatially clustered during
the study period due to the comprehensive influence of elevation,
weather conditions, infrastructure, and socioeconomic factors. The
spatial and geographical variations among factors also lead to the
spatial heterogeneity of the likelihood of fire occurrence. The forest



Fig. 5. Receiver operator characteristic (ROC) curves for logistic regression model fitting for three subsamples and complete sample.
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fires were more likely to occur in areas with low elevations and
high frequency of human activity. In addition, the majority of Fujian
was threatened by high and medium fire risk, especially the
Table 3
Model prediction performance of the intermediate models created with logistic regressi

Sample Cutoff Observed

Sample 1 0.445 Fire 0
1

Overall percentage
Sample 2 0.420 Fire 0

1
Overall percentage

Sample 3 0.442 Fire 0
1

Overall percentage
Complete dataset 0.404 Fire 0

1
Overall percentage
northern and southeastern regions, but relatively low fire risk was
identified in the western part of Fujian mainly due to the low forest
coverage caused by soil erosion. Overall, the findings provide
on, including the cutoff.

Predicted

Fire Percentage correct

0 1

6494 2476 72.4
1417 6502 82.1

76.9
6280 2676 70.1
1222 6711 84.6

76.9
6546 2486 72.5
1423 6434 81.9

76.9
10,252 4713 68.5
1930 11,255 85.4

76.4



Fig. 7. Distribution of residuals obtained from the developed fire prediction model,
overlaid by the eight main administrative areas of the study area (Fujian, China).

Table 4
Variables selected using stepwise regression for the complete dataset.

Variables Coefficients Standard error Wald test P-value

Constant �0.1389� 0.1460 0.9053 0.3413
Elev. �0.0019 0.00007 855.7574 <0.0001
Dis_road 0.2937 0.0206 203.2626 <0.0001
Dis_settlement 0.0449 0.0024 338.4808 <0.0001
GST_max 0.0058 0.0003 502.4062 <0.0001
GST_min �0.0173 0.0004 2290.5652 <0.0001
Da_prec �0.0053 0.0006 89.9448 <0.0001
SSD 0.0132 0.0007 391.6069 <0.0001
Da_RH �0.0148 0.0016 89.6316 <0.0001
Den_Pop 0.0001 0.00002 31.4403 <0.0001
CGDP 0.0001 0.00001 164.5007 <0.0001

Note: Elev is elevation; Dis_road is distance to the nearest road; Dis_sett is distance
to the nearest settlement; Da_maxtemp is daily maximum globe surface tempera-
ture; Da_mintemp is daily minimum globe surface temperature; Da_precipitation is
daily precipitation; SSD is sunshine hours; Da_RH is daily mean relative humidity;
Den-Pop is density of population; and CGDP is per capita GDP.
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valuable insights that will guide planning and resource allocation
for effective prevention of forest fire risk in Fujian province. Future
efforts to prevent forest fire should focus on geographic patterns
rather than administrative units as the fire-risk zones appear across
all administrative regions in Fujian province.
Fig. 6. (a, b) Distribution of fire occurrence likelihood based on prediction model
within the eight administrative areas of Fujian, China. (a). Fire risk is represented by
three classes: low, medium, and high fire risk (b).
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