
16   International Journal of Agricultural and Environmental Information Systems, 2(2), 16-28, July-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 Autocorrelation,	Land	Use	Planning,	Periurban	Areas,	Soil	Consumption,	Spatial	Statistics,	
Urban	Sprawl

1. INTRODUCTION

Analyzing the main historical urban func-
tions, Salsano (1998) considered town walls 
and the market as the first basic elements of 
the city. First the defensive functions, then 
the advantages of agglomeration principles 
and industrial development have led to a long 
migration process from rural areas to cities. 

In this period it was very easy to distinguish 
between city and country.

With the passing of time urban and rural 
concepts have undergone great changes. Land 
renting and the expulsion of several typical 
urban functions outside the city increased 
pressure on rural areas. The city organized the 
countryside influencing socio-cultural, eco-
nomical and functional aspects. Consequently 
demographic relationships between city and 
countryside have been changed, generating a 
reversal trend. New concepts are emerging: 
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urban exodus, new conurbations, “rurbaniza-
tion”, periurban countryside (Charrier, 1994). 
Therefore, it is not easy to define in a clear and 
unambiguous way which is the sharp boundary 
between urban and rural areas (Murgante & Las 
Casas, 2004; Murgante et al., 2008). Ahlqvist 
and Ban (2007) developed an ontology con-
sidering the degree of urbanization going from 
rural through exurban, from suburban to urban.

In planning literature, the periurban phe-
nomenon has been defined in different ways. 
Le Jeannic (1997) describes the population 
displacement as the need to escape from the 
dense city in order to have more space and a 
better environment. Also, growth of periurban 
belt is due to high costs of flats, the need of 
individual dwellings and land rents (Guerois 
& Pumain, 2001). Since 1980s it has been less 
and less possible to distinguish town from 
country, denying the concept of two separate 
entities which was for many years one of the 
cornerstones of spatial planning (Hidding et al., 
2000; Van Den Berg & Wintjes, 2000). Rural 
areas are more urbanized and an uncontrolled 
growth of periurban belts has increased the 
number of inhabitants. At the same time, urban 
areas have lost resident population gaining 
population in transit (Alberti et al., 1994), be-
cause of the activities concentration in urban 
areas. All these situations produce a huge com-
muting phenomenon (Cavailhès et al., 2004). 
The main feature of this trend is a low density 
of urbanization which spreads in all directions 
(Camagni et al., 1998). Growth of these areas 
is strictly related to urban sprawl, generating 
negative repercussions on agricultural activi-
ties. A great amount of roads have been built 
to improve dwelling accessibility and car is 
the only means of transport (Camagni et al., 
2002). This is an opposite trend compared to 
the period after the Second World War, when 
urban planners used statistical methods to give 
a dimension of the migratory flows towards 
towns. This tendency, strictly related to Urban 
Sprawl, is so complex to analyze, that classical 
statistics are not enough for a complete under-
standing of the phenomenon. Settlement loca-

tion in zones surrounding urban areas takes into 
account environmental features, accessibility, 
agricultural losses of productivity. In order to 
achieve a more complete analysis it is important 
to analyze each phenomenon according to its 
spatial location, so that it is possible to consider 
the concentration of some events in some areas 
and their possible interactions. Geostatistics can 
be useful in order to study this problem with 
an innovative approach compared to the clas-
sic socio-economic techniques. This method 
allows an analysis which may determine the 
actual trend in one region. This technique has 
been applied in Potenza Municipality, where a 
migratory phenomenon began from urban to 
rural areas after a strong earthquake occurred 
in 1980. All the informative layers have been 
combined with a land suitability procedure in 
order to define a periurban fringe with a certain 
precision.

2. AN OVERVIEW OF SPATIAL 
STATISTICS TECHNIQUES

The main aim of spatial analysis is a better un-
derstanding of spatial phenomena aggregations 
and their spatial relationship. Spatial statistical 
analyses are techniques which use statistical 
methods in order to determine if data show the 
same behaviour of the statistical model. Data are 
treated as random variables. The events are spa-
tial occurrences of the considered phenomenon, 
while points are each other arbitrary locations. 
Each event has a set of attributes describing 
the nature of the event. Intensity and weight 
are the most important attributes; the first is 
a measure identifying the event strength, the 
second is defined by the analyst who assigns a 
parameter in order to define if an event is more 
or less important according to some criteria. 
Spatial statistics techniques can be grouped in 
three main categories: Point	Pattern	Analysis, 
Spatially	Continuous	Data	Analysis and Area	
Data	Analysis (Bailey & Gatrell, 1995).

The first group, Point	 Pattern	Analysis, 
considers the distribution of point data in the 
space. They can follow three different criteria:
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• Random distribution: the position of each 
point is independent of the others points;

• Regular distribution: points have an uni-
form spatial distribution;

• Clustered distribution: points are concen-
trated in some building clusters.

The second group, Spatially	Continuous	
Data	Analysis, takes into account the spatial 
location and the attributes associated to points, 
which represent discrete measures of a continu-
ous phenomenon.

The third group, Area	Data	Analysis, ana-
lyzes aggregated data which can vary continu-
ously through space and can be represented as 
point locations.

Spatial analysis aims to identify quantita-
tive and spatial relationships among variables, 
studying the presence of spatial	 autocor-
relation. If some clusters are found in some 
regions and a positive spatial autocorrelation 
is verified during the analysis, it can describe 
an attraction among points. The case of nega-
tive spatial autocorrelation happens when deep 
differences exist in their properties, despite the 
closeness among events. If it is impossible to 
define clusters of the same property in some 
areas, a sort of repulsion occurs. Null autocor-
relation arises when no effects are surveyed in 
locations and properties. Null autocorrelation 
can be defined as the case in which events 
have a random distribution over the study area 
(O’Sullivan & Unwin, 2002). Essentially, the 
autocorrelation concept is complementary to 
independence: events of a distribution can be 
independent if any kind of spatial relationship 
exists among them.

Spatial distribution can be affected by two 
factors (Gatrell et al., 1996):

• First order effect, when it depends on the 
number of events located in one region;

• Second order effect, when it depends on 
the interaction among events.

If these two definitions seem clearer, it 
isn’t as clear as the recognition of these effects 
over the space.

2.1. Kernel Density

Kernel	density is one of the point pattern analysis 
techniques, where input data are point themes 
and outputs are grids. While simple density 
computes the number of events included in a 
cell grid considering intensity as an attribute, 
kernel density takes into account a mobile three-
dimensional surface which visits each point. The 
output grid classifies the Si event according to 
its distance from the point S and the number 
of events found inside the three-dimensional 
surface (Bailey & Gatrell, 1995). The influence 
function de-fines the influence of a point on its 
neighbourhood. The sum of the influence func-
tions of each point can be calculated by means 
of the density function, defined by:
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where:

• λ is the distribution intensity of points, 
measured in L;

• Li is the event i;
• K is the kernel function;
• τ is the bandwidth.

Li, K and τ are the different factors that 
influence Kernel Density Estimation. Li is the 
intensity of point pattern. It could be represented 
not only by the numerousness of events, but also 
in terms of strength of a single point.

Another important factor is kernel, char-
acterized by unimodality, regularity, symmetry, 
finite moments of the first, second, etc. order 
(Breiman et al., 1977) and it is always not 
negative. Principal kernel types are uniform 
kernel, gaussian kernel (Burt & Burber, 1996), 
quartic kernel (Bailey & Gatrell, 1995), and 
Epanechnicov kernel (Epanechnikov, 1969). 
However, according to Silverman (1989) the 
choice of this parameter is less important than 
the bandwidth choice.

So the factor which more influences density 
values is bandwidth: if τ is too big the value of 
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λ is closer to simple density; if τ is too small 
the surface does not capture the phenomenon 
(Jones et al., 1996). Approaches used to choose 
the bandwidth are two: the first one uses one 
fixed τ for the whole distribution; the second 
uses instead a variable value. Different methods 
used in literature are reviewed from Jones et 
al. (1996).

Finally, like in every grid analysis, a factor 
influencing density values is cell size. For cell 
choice, it is known that if the size is less than 
the bandwidth value divided by a factor between 
2 and 5 times the bandwidth, this causes little 
effects on density estimation (O’Sullivan & 
Wong, 2007).

2.2. Straight Line Distance

Straight line distance is a function coming from 
map algebra techniques. It allows to measure the 
distance between each cell and the nearer source, 
where the distance calculation is based on the 
concept of Euclidean Distance (Tomlin, 1990; 
De Mers, 2002). The source can be in vector 
or grid format. In the case of grid format some 
cells will contain information about the source 
and some others will not, while in the case of 
a vector theme it will be necessary a previous 
transformation in grid before determining the 
distance.

The output of straight line distance is 
in grid format and the distance is measured 
between cells barycentre. Also, in this case it 
is important to estimate some factors such as 
the maximum distance within which one has 
to assess measures and sizes of cells.

2.3. Moran Index

Moran	index I (Moran, 1948) is a global measure 
of spatial autocorrelation. This index takes into 
account the number of events occurring in a 
certain zone and their intensity. It is a measure 
of the first order property and can be defined 
by the following equation:

I
N w X X X X

w X X

ij i jji

ij iiji

=
− −

−

∑∑
∑∑∑
( )( )

( ) ( )2
 

(2)
where:

• where: N is the number of events;
• Xi and Xj are intensity values in the points 

i and j (with i≠j), respectively;
• X  is the average of variables;
• w X X X X

ij i jji
( )( )− −∑∑ is the co-

variance multiplied by an element of the 
weight matrix. If Xi and Xj are both upper 
or lower relative to the mean, this term will 
be positive, if the two terms are in opposite 
positions compared to the mean the prod-
uct will be negative;

• wij is an element of the weight matrix 
which depends on the contiguity of events. 
This matrix is strictly connected to the 
adjacency matrix.

There are two methods to determine wij,: 
the “Inverse Distance” and the “Fixed Distance 
Band”. In the first method, weights vary in 
inverse relation to the distance among events:

w d
ij ij

x=  

where z is a number smaller then 0.
The second method defines a critical dis-

tance beyond which two events will never be 
adjacent. If the areas to which i and j belong 
are contiguous, wij will be equal to 1, otherwise 
wij will be equal to 0. Moran	index I can have 
values included between -1 and 1.

If the term is high, autocorrelation is 
positive, otherwise it is negative. Moran index 
vanishes in very rare cases, but usually the 
convergence is towards the theoretical mean 
value E(I), where each value is independent 
from the others.
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If I < E(I), the autocorrelation is negative, 
if I > E(I) the autocorrelation is positive.

The significance of Moran index can be 
evaluated by means of a standardized variable 
z (I) defined as:

where SE(I) is the standards deviation from the 
theoretical mean value E(I).

2.4. Local Indicator of Spatial 
Association and the G 
Function by Getis and Ord

The Local Indicator of Spatial Association by 
Anselin (1995) and the G function by Getis and 
Ord (1992) are indicators at the local scale. Both 
LISA and G function take into account disaggre-
gated measures of autocorrelation, considering 
the similitude or the difference of some zones. 
These indexes measure the number of events 
with homogenous features included within a 
distance d, located for each distribution event. 
This distance represents the extension within 
which clusters are produced for particularly 
high or low intensity values.

The Local Indicator of Spatial Association 
(Anselin, 1995) is defined as:
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where symbols are the same used in Moran’s I, 
except for SX

2 which is the variance.
The function by Getis and Ord (1992) is 

represented by the following equation:

 
(4)

which is very similar to Moran index, except for 
wij(d) which, in this case, represents a weight 
which varies according to distance.

The use of the local indicator is not immedi-
ate, because there is the need to make explicit 
the dataset spatial structure, by defining: 1) 
contiguity and distance rules and weight matrix; 
2) homogeneous classes of intensity.

With this aim we left data speak by them-
selves using a method that integrates the global 
and the local indicators of spatial association to-
gether. More in detail, Moran’s I was iteratively 
used with different values of distance band, with 
the aim of finding the value maximizing I, that 
is the degree of cluster level in the distribution. 
This distance is then used in local indicators.

3. THE CASE STUDY

These techniques have been applied to Potenza 
municipality. This is located in the southern 
Apennines area of Italy and it is the chief town 
of Basilicata, which is a region with a very low 
residential density.

Its territory, about 18000 ha sized, lays on 
an area roughly 900 m a.s.l., characterized by 
a relevant presence of forests, by very steep 
slopes and by a large number of areas inter-
ested by landslides. Although the morphology 
of this area did not encourage the diffusion of 
isolated houses, existing houses in the extra 
urban territory increased by 25% during the 
1980-1990 decade. The migration of people 
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from urban to rural areas mainly happened 
after the earthquake in 1980 (Figure 1), when 
a huge number of buildings in the urban area 
were defined uninhabitable and the fear of new 
seismic events, mixed with the wish of running 
away from the most damaged places, induced 
citizens to choose new localizations for build-
ing new houses. These reasons coupled with 
social, economic and cultural aspects generated 
an inhabitant flow to the countryside around 
Potenza, so intense that it deeply altered the 
urban morphology and modified the traditional 
physical functional relationships between urban 
and rural areas.

This process caused a decrease of agricul-
tural areas and a development of new settlements 
with a crown shape all around the town, with 
no respect for natural morphology and without 
considering the consequent resources consump-
tion. This kind of uncontrolled expansion, for 
more than twenty years, generated the follow-
ing phenomena:

• Diffuse territorial decline, with hydrogeo-
logic phenomena due to anthropic uses 
(construction of small road infrastructures);

• Abandonment of agricultural soils related 
to expectations of real estate development, 
especially in areas close to the town;

• Diffusion of scattered settlements in rural 
areas, with inadequacy of facilities and 
infrastructures;

• Pauperization of environmental and land-
scape valuable components.

On this purpose, it can be useful to apply 
spatial statistic techniques to define criteria 
concerning suitability in locating new settle-
ments, considering particular tendencies that 
some specific areas already manifest.

A first factor considered in this study is 
density. Periurban area is characterized by a 
spread of settlements with extensive features, 
compared to urban area, which has a greater 
density. Lower density is the first condition 
distinguishing periurban areas from urban ones.

Rural sites have a strong connection with 
agricultural activities and the relationship with 
the urban area is weak. It is also necessary to 
establish a lower threshold which can distin-
guish periurban areas from rural ones.

In order to calculate density, all the poly-
gons representing buildings have been con-

Figure	1.	Expansion	of	Potenza	Municipality	from	1883	to	2004
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verted in points which are the events to take 
into account in point pattern analysis. The ratio 
between the number of flats and the number 
of buildings has been calculated from census 
data; this value, considered as the intensity of 
events, has been calculated for each census unit 
and has been assigned to each building falling 
inside each unit. Figure 2 compares the density 
of scattered settlements between 1987 and 2004 
and it shows the huge growth of urban sprawl. 
In the case study, a value of bandwidth of 400 
m and a cell size of the grid of 10 m have been 
used. This bandwidth has been chosen con-
sidering a distance between periurban fringe 
and urban areas that can be travelled on by 
walking. Consequently the bandwidth becomes 
representative of accessibility to urban area.

A first rough analysis of periurban fringe 
takes into account zones with a low density 
expansion including areas with values of kernel 
density included between 1 and 18 flats/ha 
(Figure 3). Orography and accessibility define 
the second factor, which consists of the distance 
from infrastructures because urban growth is 
more concentrated along the main line of road 
network. In order to locate areas with a good 
accessibility, distance from infrastructures has 
been defined so that it represents the tendency. 
Straight Line Distance identified areas with a 
distance from the main infrastructures within 
200 meters. The third factor is the spatial au-
tocorrelation which has been analyzed consid-
ering Moran Index, G function as developed 

by Getis and Ord (1992) and Local Indicator 
of Spatial Association (LISA).

In this case intensity of events is obtained 
as the ratio between number of inhabitants and 
number of buildings in each census zone. Mo-
ran index is able to specify if an event is clus-
tered, scattered or with a random distribution. 
It has been calculated by means of the inverse 
distance method considering data in two dif-
ferent periods, 1987 and 2004, to evaluate the 
variation of scattered rate of settlements. The 
following values have been achieved:

• Moran Index at 1987: I1987 = 0.0698;
• Moran Index at 2004: I2004 = 0.0722.

These two indexes show a low autocorrela-
tion in both cases, and the second one is higher 
than the first one. These data can be interpreted 
as growth of settlements concentrated in some 
particular zones.

The next step of our study was to calcu-
late the contiguity belt considered as the area 
where the phenomenon grows homogenously 
and where it will intensify in the future. Moran 
index depends from the distances among points; 
it is possible to calculate a distance value which 
produces an index I with the maximum level of 
correlation among events, by maximizing the 
deviation z. This value has been calculated in 
1600 m and it has been used as an input param-
eter in LISA and then in Getis and Ord (1992) 

Figure	2.	Density	of	scattered	settlements	in	1987	and	2004	(flats/hectare)
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function determining zones where events are 
autocorrelated.

A LISA positive value indicates a positive 
autocorrelation; obviously a negative autocor-
relation corresponds to a negative value.

For the periurban fringe it is important 
to pay attention to the medium-low level of 
intensity, so the classes in Table 1 have been 
considered.

In Getis and Ord (1992) function, highest 
and lowest values of G mean highest and low-
est values of phenomenon intensity.

The classes in Table 2 have been consid-
ered.

Figure 4 compares results, showing the 
similitude of areas with positive autocorrelation 
achieved with both indicators. In our study case 
Getis and Ord (1992) function fits the phenom-

Figure	3.	Areas	which	have	Kernel	density	included	between	1	and	18	flats/hectare

Table	1.	LISA	classes	

Class Autocorrelation LISA

no correlation Negative autocorrelation -106,9 ÷ 0

1 low Positive autocorrelation among lower bounds 0 ÷ 14

2 low Positive autocorrelation among low bounds 14 ÷ 28

3 low Positive autocorrelation among medium-low bounds 28 ÷ 54

4 high Positive autocorrelation among high bounds 54 ÷ 84.7
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Table	2.	Getis	and	Ord	(1992)	function	classes	

Class Autocorrelation Intensity value Xi (inhabitants/
buildings)

G’

no correlation Negative autocorrelation Xi ≤ 18
Xi ≥ 18

-1.3 ÷ - 2 
-6.3 ÷ 1

1 low Positive autocorrelation among lower 
bounds

Xi ≤ 18 -1.3 ÷ - 2

2 low Positive autocorrelation among low 
bounds

Xi ≤ 18 -2 ÷ - 4

3 low Positive autocorrelation among 
medium-low bounds

Xi ≤ 18 -4 ÷ - 6.3

4 high Positive autocorrelation among high 
bounds

Xi ≥ 18 1 ÷ 11.9

Figure	4.	Clusters	location
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enon better because it is more sensible to in-
tensity changes allowing more accurate clas-
sification.

Figure 5 shows in a more detailed map 
how deep are analyses produced with Getis and 
Ord (1992) function. Opposite values can occur 
in contiguous areas. Picture it shows how the 
highest values of autocorrelation correspond to 
the highest buildings of the town. Picture b 
highlights an abrupt transition, in a few metres, 
from no correlation to high correlation passing 
from ancient low buildings to high concrete 
buildings. Picture c shows how very elevated 
values of autocorrelation correspond to high 
buildings separate by narrow streets.

4. RESULTS AND FINAL 
DISCUSSION

Autocorrelation phenomena included in medi-
um medium-low values have been interpolated 
thus generating polygons which represent the 
contiguity belt. These polygons represent the 
second level of suitability. It is composed by 
the inclusion rules considered in land suitability 
procedures reduced considering the global and 

local measures of autocorrelation. It is obvious 
that kernel density (Figures 2 and 3) is a rough 
measure which needs a deeper analysis. Moran 
index and Getis and Ord (1992) function give a 
further interpretation of phenomena consider-
ing contiguity not in all directions but only in 
some zones.

The exclusion rules (Figure 6) have been 
considered in the present study: areas included 
within a distance of 150 m from rivers, streams 
and springs, slopes higher than 35%, Nature 
2000 sites, hydro-geological risk zones, areas 
higher than 1200 m a.s.l., landslides, areas close 
to railways and road networks.

Figure 6 shows the flow chart of the land 
suitability procedure for the location of Peri-
urban fringe. All these rules have been combined 
using map algebra techniques. Figure 7 quanti-
fies the reduction of suitable areas achieved 
after the procedure.

The results are illustrated as geographic 
components in Figure 8. Location of the con-
tiguity belt is determined by the highway, which 
determines two gates for the town. In these 
areas urban sprawl is more intensified, particu-
larly in the eastern part where the other road, 

Figure	5.	Detailed	map	with	pictures	which	show	autocorrelation	difference



26   International Journal of Agricultural and Environmental Information Systems, 2(2), 16-28, July-December 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

which connects the industrial areas of Potenza 
with FIAT factory, amplifies the phenomenon. 
Steep slope obstructs urban growth in other 
zones. Periurban fringe (oblique hatch in Figure 
8) considers contiguity belt after the exclusion 
rules and represents areas suitable for the loca-
tion of new settlements or for intensifying the 
existing ones.

After the theorization by Tobler (1970), 
the first law of geography is reported here: 
“Everything is related to everything else, but 
near things are more related than distant things”. 
More experience exists of the use of spatial 

statistics in geographical analysis; for instance 
Kernel density has been applied for the location 
of epidemics (Gatrell et al., 1995), in urban 
renewal analyses (Murgante et al., 2008), in 
defining damage scenarios (Danese et al., 2008; 
Danese et al., 2009) and studies on spreading 
of city services (Borruso & Schoier, 2004), 
while these techniques have not been used 
enough in the field of territorial planning. In 
this paper several kinds of spatial statistic func-
tions have been applied for a deeper knowledge 
of territory and to give urban planners a better 
support for planning choices.

 

Figure	6.	Scheme	of	the	land	suitability	procedure	for	the	location	of	Peri-urban	fringe

Figure	7.	Size	of	suitable	areas
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