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a b s t r a c t

Large area forest inventory is important for understanding andmanaging forest resources and ecosystems.
Remote sensing, the Global Positioning System (GPS), and geographic information systems (GIS) provide
new opportunities for forest inventory. This paper develops a new systematic geostatistical approach for
predicting forest parameters, using integrated Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images,
GPS, and GIS. Forest parameters, such as basal area, height, health conditions, biomass, or carbon, can be
incorporated as a response variable, and the geostatistical approach can be used to predict parameter
values for uninventoried points. Using basal area as the response and Landsat ETM+ images of pine stands
in Georgia as auxiliary data, this approach includes univariate kriging (ordinary kriging and universal
kriging) andmultivariable kriging (co-kriging and regression kriging). The combination of bands 4, 3, and
2, as well as the combination of bands 5, 4, and 3, normalized difference vegetation index (NDVI), and
principal components (PCs) were used in this study with co-kriging and regression kriging. Validation
based on 200 randomly sampling points withheld field inventory was computed to evaluate the kriging
performance and demonstrated that band combination 543 performed better than band combination 432,
NDVI, and PCs. Regression kriging resulted in the smallest errors and the highest R-squared indicating the
best geostatistical method for spatial predictions of pine basal area.

© 2008 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by
Elsevier B.V. All rights reserved.
1. Introduction

Large area forest inventories generally are based on field plot
sampling, and small area forest inventories usually are processed
forest stand units. These two traditional inventories can be
integrated by combining ground inventorywith Global Positioning
System (GPS) and remote sensing data and processing them in
geographical information systems (GIS). It is now relatively easy
to measure the locations of survey plots, forest stands, and stand
boundaries in the field with accuracy of within three meters using
differential GPS.
Developments in sensor technology also have allowed the

acquisition of remotely sensed data at a range of scales. Remote
sensing data are available from satellite sensors providing images
with medium spatial resolution of 20–30 m (e.g., Landsat TM,
Landsat ETM+, SPOTHRVIR) aswell as high spatial resolution of less
than 5 m (e.g., Ikonos, QuickBird, LIDAR, and others). Integration
of geospatial technologies allows achievements in forest metrics
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using image data with cell sizes of 30 m, 20 m, 10 m, 5 m, 1 m,
or 0.5 m. These forest metrics can be estimated from remote
sensing data by modeling the relationships between the image’s
digital numbers and the forest variables inventoried on the ground
with GPS. Geographic information systems and spatial modeling
are efficient tools to model, estimate, map, and predict spatial
characteristics of stands or trees.
Generally, there are two ways to predict fine scale spatial

forest information, nonspatial modeling and spatial modeling.
Nonspatial modeling methods widely applied in forest research
with linear and nonlinear regressions are the common models
applied for estimations of forest variables (Ardö, 1992; Trotter
et al., 1997; Dungan, 1998; Cohen et al., 2003; Hudak et al.,
2006;Masellj and Chiesi, 2006;Muukkonen and Heiskanen, 2007).
K nearest neighbor (KNN) methods for achieving forest metrics
using remote sensing data have been applied for forest inventories
(Tomppo, 1991; Moeur and Stage, 1995; Franco-Lopez et al., 2001;
Holmström and Fransson, 2003; Masellj and Chiesi, 2006; Meng
et al., 2007). Artificial neural networks (ANN) also are used for
estimating forest variables using remote sensing data (Foody and
Boyd, 1999; Foody, 2000; Tatem et al., 2001; Chudamani et al.,
2006).
Using the data from Landsat and SPOT as predictors, Tokola

et al. (1996) applied both linear regression and the KNN method
on forests in the southern boreal vegetation zone in Finland.
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Fig. 1. The study area includes 20 counties (b) in the United States of America (a). The ground inventory locations are indicated as dark points in B.
The authors reported standard errors of stem volume prediction
from 70 to 80 m3/ha (more than 60% of the mean) at the plot
level. Trotter et al. (1997) used ordinary least squares to predict
stem volume of mature plantations in New Zealand and reported
a root mean square error (RMSE) greater than 100 m3/ha (with
a mean stem volume of 413 m3/ha) for pixel predictions. Using
a combination of SPOT 4 and low frequency radar data from
the airborne CARABAS system, Holmström and Fransson (2003)
applied KNN method to predict forest variables and reported
RMSE of 64% (of the mean) of stem volume using optical data
and of 53% using the combination of optical and radar data.
The stem volume of the sample plots (10 m radius) was in the
range of 0–750 m3/ha with a mean value of 171 m3/ha. Using
Landsat ETM+ data and comparing ANN, multiple linear regression
and maximum likelihood classification, Chudamani et al. (2006)
concluded that linear regression performed significantly worse
than other methods for characterizing forest canopy density.
Many studies have conducted spatial predictions based on

remotely sensed data (Curran, 1988; Atkinson et al., 1994; Dungan
et al., 1994; Lark, 1996; Dungan, 1998; Curran and Atkinson,
1998; Addink and Stein, 1999; Atkinson and Lewis, 2000; Chica-
Olmo and Abarca-Hernandez, 2000). Few studies have been
conducted on estimations of forestry relevant variables using
spatial models, although a large number of spatial-statistical and
prediction models are available in the literature (e.g. Cressie
(1993), Wackernagel (1994), Odeh et al. (1995), Goovaerts (1997)
and Odeh and McBratnery (2000). Masellj and Chiesi (2006),
Buddenbaum et al. (2005), Berterretche et al. (2005), Tuominen
et al. (2003), and Zhang et al. (2004) applied geostatistical models
to estimate forest variables, such as leaf area index, and to classify
forest lands based on remote sensing data. Gilbert and Lowell
(1997) used kriging to predict stem volume in a 1500 ha balsam fir
(Abies balsamea) dominated forest. Prediction based on 5.6 m and
11.3 m radius plots resulted in a RMSE of 54% (of the mean) and
39%–46%, respectively. Methodologically, the accuracy rate of the
predicted variable could be improved by incorporating close field
observations as predictors in spatial modeling.
In addition to analyzing spatial characteristics of GIS-integrated

ground and remote sensing data, it is also necessary to analyze
nonspatial data, for example, the selection of band combinations
and data reduction of remotely sensed imagery. What is the asso-
ciation between the response variable and independent variables
(i.e., the remotely sensed data)? Distribution tests may be needed,
Fig. 2. One example of a field plot.

although the derivation of kriging equations does not depend on
any distributional assumptions. Correlation diagnostics are impor-
tant formultivariable geostatistics and variogrammodels are often
fitted to check spatial autocorrelation and dependence. Cross var-
iograms need fitting if multivariable geostatistical approaches are
conducted. Additionally, it is important to check whether a spa-
tial trend exists in the data of the response variable. Both universal
kriging and regression kriging are efficient to incorporate the trend
in geostatistical predictions.

2. Data sources

2.1. Ground data

Ground data covering 20 counties in west Georgia (USA) were
inventoried in 1999 (Fig. 1) by private timber companies. The
locations of these ground data were collected using differential
Global Positioning System (DGPS) units with accuracywithin three
meters. One example of a field plot composed of sixteen fixed-
radius subplots is indicated in Fig. 2. The radius for the subplots
in a given plot was fixed and dependent on the density of a given
stand, but the specific distributions of the plots in the study area
cannot be given in detail because of the business confidentiality.
The coordinates of the grounddatawere converted to theUniversal
Transverse Mercator ground coordinate system to match those of
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Fig. 3. Landsat ETM+ images used for pine basal area prediction. (a) a 543 band combination; (b) a 432 band combination; (c) the three PCs images; (d) the NDVI images.
the Landsat ETM+ images (Fig. 3). There were 2822 ground records
used in this studywith amean of basal area of 13.99m2/ha ranging
from 0.038 to 29.84 m2/ha. The basal area and dominant height
were measured, and volume of trees was calculated according
to tree species. The dominant species are Loblolly pine (Pinus
taeda) and Slash pine (Pinus eliotii), and pine basal area (PBA) was
conveniently used as the response variable in this study. A Landsat
pixel size (30 m) was maintained in the prediction process of basal
area for the uninventoried areas in these 20 counties.

2.2. Remote sensing data

Two Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images
(Path/Row: 19/37 and 19/38) acquired on 10 September 1999
from the US Geological Survey (USGS) Earth Resource Observation
System Data Center were used in this research. Atmospheric
conditionswere clear at the time of image acquisition, and the data
had been corrected for the radiometric and geometric distortions
of the images to the standard Level 1G before delivery. Two Landsat
images covering this study area were masked after the geometric
corrections using USGS digital orthophoto quarterquads (DOQQs)
as the source of control (RMSE is less than 10 m). This resulted in
4449 pixel by 9010 row, 6-band (i.e., 1, 2, 3, 4, 5, and 7) images
for analysis. The field inventory data were overlaid on the image
data, and then the nearest pixel values including Landsat bands and
computed NDVI and PCs were attached to the ground records.

2.2.1. Band combinations
Band 1 of Landsat images contributes little for vegetation

analysis. Studies indicate that as the leaf coverage changes from
0% to 11.9%, 43.2%, and 87.6%, very little change occurs in the
reflectance of band 1 (0.4–0.5 µm) (Short, 1999). The differences
of reflectance increase in bands of large wavelength from
0.5 to 0.8 µm as leaves change. The differences of reflectance in
the mid-infrared ranges are very close to the differences in the
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Fig. 4. A systematic geostatistical approach for predicting forest parameters based on remotely sensed data.
near infrared ranges. Band 6 and band 7 with ground resolution
of 60 and 120 m are not necessary for spatial prediction of
forest parameters with cell size of 30 m. Bands 2, 3, 4, and 5
were applied to estimate pine basal area. The band combination
432 is the standard ‘‘false color’’ composite that is similar to
color infrared aerial photography and displays vegetation in
shades of red. The band combination 543 provides a display with
information on healthy vegetation depicted as bright green. The
band combinations 532 and 542 were not applied in this study,
since by visual assessment they did not indicate the pine stands
as clearly as the combinations of 432 and 543. Landsat band
combinations of 432 and 543, therefore, were used for further
geosatistical analysis of PBA.

2.2.2. Principal component analysis
Principal component analysis (PCA) is the most frequently used

technique for remote sensing data reduction. Generally, remotely
sensed data, such as Landsat images, are highly correlated among
the adjacent spectral bands (Barnsley, 1999). The Landsat bands are
transformed into orthogonal principal components (PCs) with the
first PC containing the largest percentage of data variation, and the
second PC containing the second largest variance of the data, and
so on. The higher the PC is numbered, the less useful information
the PC contains. In this research, the six Landsat ETM+ bands used
(i.e., bands 1, 2, 3, 4, 5, and 7) were processed using PCA, and the
first three PCs were applied for pine basal area analysis because
they accounted for more than 95% of the total variance.

2.2.3. Normalized difference vegetation index
NDVI (Eq. (1)) measures both the amount of green vegetation

and vegetation health in an

NDVI = (NIR− red)/(NIR+ red) (1)
area, but it also is a basic indicator of changes in vegetation over
space and time. It has been extensively applied as a proxy for
leaf area index (Tucker, 1979), vegetation biomass (Sellers, 1987),
and net primary production (Goward et al., 1985). Therefore, NDVI
indicates the spatial characteristics of forest stand development,
especially the density and health of trees. It has been proven to
be an efficient indicator in detecting and quantifying large-scale
changes in plant and ecosystem processes (Braswell et al., 1997;
Myneni et al., 1997).

3. Methodology

Rarely has research explored the integration of remote sens-
ing data, GPS, ground data, GIS, and geostatistics to estimate for-
est parameters at a high spatial resolution for large areas. One
systematic geostatistical approach for spatial forest inventory is
developed and explored in this research. Compared to the typ-
ical ordinary kriging (OK) and universal kriging (UK) using only
one variable, this research develops a systematic geostatistical
approach – co-kriging (CoK) and regression kriging (RK) using
Landsat ETM+ data as predictors – to improve spatial predictions of
forest variables by integrating GPS, ground inventory data, Landsat
ETM+, and GIS. This systematic geostatistical approach is summa-
rized in a flow chart (Fig. 4), which considers the associations be-
tween one forest parameter and DN, and incorporates the spatial
dependence of the forest parameter into the process of spatial pre-
diction. In this study, basal area is used as the response variable to
conduct this geostatistical approach.

3.1. Correlation analysis

Correlation analysis was applied to measure the strength
of association between the response variable and the indepen-
dent variables. Pearson’s product-moment correlation coefficient
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(rxy, Eq. (2)) and the Pearson partial correlation coefficient (rxy•zq,
Eq. (3)) were used

rxy =
∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2

∑
(yi − ȳ)2

(2)

rxy•zq =
rxy•z − rxq•zryq•z√
(1− r2xq•z)(1− r2yq•z)

(3)

to measure the association between the response variable
(e.g., pine basal area) and the independent variables (e.g., Landsat
bands). Pearson’s product-moment correlation measures the
associationwithout considering the correlation contributions from
other associated variables. The Pearson partial correlation in this
study measures the strength of a relationship between pine basal
area and one Landsat band, while controlling the effects of two
additional Landsat bands. Therefore, Eq. (3) is called the second-
order partial correlation indicating the partial correlation between
pine basal area and a given Landsat band, because this partial
correlation is conditioned on two additional Landsat bands of z
and q. For example, we calculate the second-partial correlation
between pine basal area (e.g., y) and Landsat band 2 (e.g., x) by
controlling band 3 (e.g., q) and band 4 (e.g., z). Likewise, a first order
partial correlation is the partial correlation that is conditioned on
only one variable (e.g. rxy•z has a single control variable z), and we
can call a typical Pearson correlation coefficient without controls
‘‘a zero order correlation’’.

3.2. Geostatistical approach

Geostatistical methods are based on the theory of regionalized
variables (Matheron, 1965), which assume that observations are
stochastic variables. A spatial property Zat location x is assumed to
be a realization of a random function Z(x). The stationarity of the
first- and second-order moments of Z(x)− Z(x+ h) is the intrinsic
hypothesis that allows us to define the semivariogram.
Semivariogram is one of the key steps in geostatistical mod-

eling. Semivariogram describes the spatial dependence of spatial
variables. Semivariogram has been used widely in remote sens-
ing to determine spatial structures (Curran, 1988; Warren et al.,
1990; Atkinson and Lewis, 2000). Based on the semivariogram, the
geostatistical process derives optimal linear unbiased spatial pre-
diction methods (i.e., kriging) by minimizing mean-squared pre-
diction error. However, the assumptions of stationarity, which
often are not met by the field-sampled data sets, and the require-
ment of a large dataset to define the spatial autocorrelation result
in the limitations of univariate kriging. Fortunately, geostatistical
methods also provide optimal prediction methods using auxiliary
data. Large volumes of auxiliary data like remote sensing data for
forest research are available now. Incorporating the auxiliary data,
co-kriging and regression kriging, as described below, can increase
prediction accuracy. The gstat package (Pebesma, 2005) is mainly
referenced for variogram and kriging methods as follows.

3.2.1. Variograms
The direct variogram generally is computed from Eq. (4),

γ (h) =
1

2N(h)

N(h)∑
i=1

[z(xi)− z(xi+h)]2 (4)

where xi is a data location, h is a vector of distance, Z(xi) is the data
value of one kind of attribute at location xi, N(h) is the number
of data pairs for a certain distance and direction of h units. This
equation is used for determining the spatial autocorrelation of the
univariate variable.
A typical cross variogram is calculated using Eq. (5). It is applied
for the joint spatial

γ (h) =
1

2N(h)

N(h)∑
i=1

{[z(xi)− z(xi+h)] · [y(xi)− y(xi+h)]} (5)

variability between two types of spatial variables. It is defined as
half of the average product of the lag distance relative to the two
variables Z and Y with the same notations as Eq. (4).
When direct and cross variogram models are fitted, they also

can guarantee that the fitted models follow the linear model
of coregionalisation (Goovaerts, 1997). This ensures the cross
covariance matrices are always positive.

3.2.2. Kriging

3.2.2.1. Ordinary kriging and universal kriging. Ordinary kriging
(OK) is identical to multiple linear regression, with a couple of
important differences. The ordinary kriging model is as in Eq. (6).

ẑ(s0) =
n∑
i=1

λiz(si). (6)

Ẑ(s0) is the value to be interpolated at location s0, z(si) are the
sampled values at their locations, and λi are the weights to be
assigned to each sampled value. Universal kriging is applied when
a trend exists. Universal kriging is often fitted using a polynomial
equation, which can be represented in the similar way as the
Eq. (6) to analyze the trend across the study area.

3.2.2.2. Cokriging. For forest applications, a few studies using
remote sensing data have been conducted using the geostatistical
approach. Dungan et al. (1994) and Dungan (1998) applied co-
kriging and a stochastic simulationmethod for forest management
using synthetic remote sensing datasets.
Co-kriging (CoK) is an extension of kriging, and is a method

for estimating one or more variables of interest using data from
several variables by incorporating not only spatial correlation but
also inter-variable correlation. Co-kriging is a very versatile and
rigorous statistical technique for spatial point estimation when
both primary and auxiliary attributes are available. It is defined as
in Eq. (7).

ẑ(s0) =
n∑
j=1

z(sj)Λj•. (7)

If each component of z(sj) satisfies the intrinsic hypothesis (Journel
and Huijbregts, 1978), then Eq. (7) is unbiased if

n∑
j=1

Λj• = Il (8)

where Il is an identity matrix with the size of l that is the number
of variables, and Λj• are the weights associated with prediction.
Eq. (7) is
v∑
φ=1

Γ (si, sj)+ Ψ = Γ (si, s0) (9)

where z(sj) is the vector z1(sj) . . . zm(sj). Γ (si, sj) and Γ (si, s0) are
the cross variograms, and Ψ is the Lagrange Multiplier for i from 1
to n.
According to the sample relations between the primary variable

and the auxiliary variables, CoK could be described in several ways
as follows. The efficientway to predict the primary variablemay be
to use the auxiliary variables to cokrige it into dense grid locations.
This is named heterotopic cokriging (Wackernagel, 1994). Isotopic
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Table 1
Pearson correlation matrix for the variables analyzed for pine basal area estimation.

PINEBA Band 2 Band 3 Band 4 Band 5 NDVI PC1 PC2 PC3

PINEBA 1
Band 2 −0.3917 1
Band 3 −0.5417 0.8364 1
Band 4 0.3456 0.1221 −0.0724 1
Band 5 −0.5964 0.8067 0.9312 −0.0488 1
NDVI 0.6365 −0.6517 −0.8794 0.5202 −0.8187 1
PC1 −0.5195 0.8623 0.9384 0.1197 0.9766 −0.7417 1
PC2 −0.6520 0.7129 0.9022 −0.3508 0.9448 −0.9269 0.8784 1
PC3 −0.0315 −0.1852 −0.1287 −0.7872 −0.3163 −0.2450 −0.3835 −0.0441 1
Table 2
Partial correlation between pine basal area and Landsat bands.

432 band combination 543 band combination
Band 2 Band 3 Band 4 Band 3 Band 4 Band 5

rxy 0.0129 −0.3350 0.3436 0.0828 0.3997 −0.3429
P value 0.4976 <.0001 <.0001 <.0001 <.0001 <.0001
cokriging requires that data on both the target variable and co-
variables be measured at all sample locations. A variant of both
is generalized cokriging (Myers, 1982) that involves simultaneous
prediction of all the correlated variables intomore dense locations.
The complete case is the casewhere the covariates and the primary
variable do not share any common locations. A more general type
applied to remote sensing data is collocated cokriging, where
covariates are available at all interpolation locations, although the
primary variable is available at only a few locations. When CoK
is compared to univariate kriging, no new concept is added, but
there is heavier notation associated with having several variables
(Goovaerts, 1997).

3.2.2.3. Regression kriging. Regession kriging (RK) is a hybrid
method that combines either a simple or multiple-linear regres-
sion model (or a variant of the generalized linear model (GLM)
and regression trees) with kriging (Odeh et al., 1995; Goovaerts,
1997). In the process of RK, krigingwith uncertainty introduces the
regression residuals (i.e., the model uncertainty) into the kriging
system, which is then applied directly to predict the primary vari-
able. The predictions are combined from two parts; one is the es-
timate m̂(S0) obtained by regressing the primary variable on the k
auxiliary variables qk(s0) and q0(s0) = 1; the second part is the
residual estimated from the ordinary kriging. Regression kriging is
estimated as follows:

ẑrk(s0) = m̂(s0)+ ˆ̀(s0) (10)

ẑrk(s0) =
v∑
k=0

β̂kqk(s0)+
n∑
i=1

ωi(s0)`(si) (11)

where β̂k are trend model coefficients, optimally estimated using
generalized least squares; ωi are weights determined by the
semivariance function, and ` are the regression residuals. The gstat
package is used to conduct the regression kriging (Pebesma, 2004,
2005).

3.2.3. Model evaluation
In this study, different geostatistical models are developed

and applied for pine basal area prediction. There are always
discrepancies between true and predicted values. It is necessary
to validate the models and to check which is more efficient. In
addition to cross validation that is used to validate whether the
model fits the training data, validation based on random samples
outside of the training data set is applied to assess these kriging
approaches for spatial estimation. We developed 200 random
points to checkwhichmodel ismore efficient in spatial predictions
of pine basal area.
There are many different measures for checking discrepancies,

and each has its advantages andweaknesses. Details about forecast
evaluation were discussed by Murphy and Katz (1985). Typically,
root mean square error (RMSE) is often used, other indices
including standard deviation (SD), bias error (BE), and mean-
absolute error (MAE) are used to make a relatively complete
comparisons. The measures are listed as Eqs. (12)–(15).

SD =

[
1

N − 1

N∑
n=1

(Xn − X̄)2
]1/2

(12)

BE(X) =
1
N

N∑
n=1

(Xf − Xo) (13)

RMSE(X) =

[
1
N

N∑
n=1

(Xf − Xo)2
]1/2

(14)

MAE =
1
N

N∑
n=1

∣∣Xf − Xo∣∣ (15)

where N is the size of the sample, Xn is the sample values and X̄
is the mean of the sample, Xf is the forecast value, and Xo is the
observed value. A positive BE indicates a tendency to overpredict,
while a negative BE implies underprediction.

4. Results

Based on the 2822 fieldmeasurements, various krigingmethods
are applied to estimate basal area across the 20 counties, in which
remotely sensed data are used as predictor variables when spatial
estimation is predicted through cokriging and regression kriging.
Pearson correlation is used to understand the contributions from
predictors and semivariogram models are fitted to explore spatial
dependence and variability.

4.1. Correlations between pine basal area and predictors

A relatively high correlation between auxiliary bands and PBA
indicates that the auxiliary variables can play important roles
in the prediction process of PBA (Tables 1 and 2). A partial
correlation shows the contribution of an auxiliary variable to the
prediction of PBA when several auxiliary variables are used in
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Fig. 5. Semivariogram analysis for pine basal area.

model fitting. Therefore, kriging with contributions from highly
correlated auxiliary variables can perform better than kriging only
based on the dependent variable of PBA.
Predictors are grouped into four groups: a 432 band combina-

tion; a 543 band combination; a three-PCs combination; and an
NDVI image. The general Pearson correlation coefficients were cal-
culated and summarized in Table 1. Considering the absolute val-
ues of these coefficients, for the correlations between pine basal
area and different independent variables, PC2 has the highest cor-
relation, the second one is NDVI, the third one is band5, and then,
band3, PC1, band2, band4, and PC3. The spectral characteristics
of the bands of Landsat ETM+ typically determine the correlation
between PBA and the auxiliary variables. PBA in a given area de-
scribes the degree to which pine trees occupy in this area. Band 2
of Landsat ETM+ is usually applied to assess the vegetation vigor,
while band 3, 4, and 5 are designed respectively for chlorophyll ab-
sorption, biomass surveys, and vegetationmeasurements. The high
correlation between PC2 and band 3 and 5 and the relatively high
correlation between PC2 and band 4 determine that PC2 is highly
correlatedwith PBA.We can expect if a PC or a band index is highly
correlated with band 3, 4, and 5 then basal area would be highly
correlated with this PC or band index.
Since different combinations of predictors were used, the

Pearson partial correlation coefficients were calculated and tested
in the combinations of bands and PCs in order to better understand
the associations between pine basal area and the predictors
(Table 2). In the 432 band combination, band 3 and band 4
have similar degree correlations but in different directions; one
is positive, and the other is negative; band 2 is little correlated
with the pine basal area, and the coefficient is not significantly
different from 0. In the 543 band combination, band 4 and band
5 have similar correlations with pine basal area. However, band 4
is positively correlated, and band 5 is negatively correlated. Band
3 is little correlated with pine basal area. PC2 is highly correlated
with pine basal area. The coefficient of PC1 is much smaller. The
correlation between PC3 and pine basal area is not statistically
significant, since its P value is around the boundary of 0.05.

4.2. Variograms and spatial dependence

Variograms were used to spatially analyze the surface proper-
ties of pine basal area. Based on the variogram cloud, the empirical
semivariogrammodel was created. The different types of semivar-
iogram models used to fit the points include exponential, Gaus-
sian, circular, spherical, tetraspherical, pentaspherical, Hole effect,
K-Bessel, and J-Besselmodels. The sphericalmodel had the best fits
and was selected as the theoretical model applied for spatial pre-
dictions (Fig. 5). The fit of the spherical model has a nugget of 5, a
partial sill of 450, and a range of 750 m. Also, there was no obvious
trend existing among the pine basal area across the study area.
The characteristics of the semivariogram also may be affected

by the directions, which result from a special geographic
phenomenon. For example, a certain kind of species exists and
crosses the area in a certain direction. Anisotropy therefore is
often checked before further analysis. Semivariogram analyses at
directions 0, 45, 90, 135, 180, 225, 270, and 315 were conducted,
and the results indicated similar spatial dependence at a scale
about 750 m in eight directions (Fig. 6). It is not necessary to
consider anisotropic effects in spatial estimation using different
kriging models.

4.3. Assessment of pine basal area estimation

We first applied Univariate kriging (i.e., OK and UK) to estimate
the pine basal area based on the 2822 ground inventory points.
The UK was used to check whether it is effective compared to the
OK, though there was no obvious trend of pine basal area existing
across the study area. Four types of co-kriging were applied using
the 432 band combination, the 543 band combination, NDVI, and
PCs as the auxiliary data. At last, four groups of regression kriging
were conducted using the 432 band combination, the 543 band
combination, NDVI, and PCs as predictors.
The results were evaluated using cross validation (Table 3). Bias

errors using the kriging methods indicated the values of BE were
close to 0, and almost unbiased estimations of pine basal areawere
obtained. For RMSE, there was not much difference between OK,
UK, and the four kinds of co-kriging. However, the RMSEs of the
estimations using regression krigingweremuch smaller than those
from OK, UK, and co-kriging.
In order to further assess these geostatistical approaches,

validation based on 200 random sample points outside of the
training dataset was used to compare these kriging methods
(Table 4). The regression kriging methods had the smallest BE,
MAE, RMSE, and SDe, which indicated that regression kriging
was more efficient than other kriging methods. Pine basal
area predictions based on RK resulted in the prediction BE of
27.9%–31.5% of the mean (13.99 m2/ha), the prediction MAE of
39.3%–42.1% of the mean, the prediction RMSE of 63.5%–68.6% of
themean, and the prediction SDe of 59.3%–62.1% of themean using
the 200 random points outside the training datasets. Additionally,
using the 200 random sampled points, scatter plots of observations
versus predictions were listed in Fig. 7 and the corresponding R-
squared was attached. R-squared is calculated using, R2 = 1 −∑n
i=1(yi− ŷi)

2/
∑n
i=1(yi− ȳ)

2 where yi is the field values of PBA, ȳ
is themean of field values of PBA, and ŷ is the estimated PBA value.
The scatter plots and the R-squared also show that regression
kriging is the most powerful approach to spatially predicting pine
basal area.

5. Discussion

Challenges still exist in the field of large area forest inventory
using remotely sensed data (Tokola et al., 1996; Trotter et al., 1997;
Holmström and Fransson, 2003). Spatial diversity of forest stands
and landscape makes the spatial prediction of forest parameters
a major challenge, although the remote sensing data are highly
associated with forest features. For example, forest stands may
have very similar values of biomass/carbon but have different
spectral characteristics, because of differences in species. The
differences of spectral characteristics between plantations and
natural stands might exist although the stands have many of the
same characteristics, such as same species, same age, and same
density. These differences will add noise when the prediction
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Fig. 6. Semivariogram modeling of directional effects.
Table 3
Model evaluation using cross validation.

OK UK CoK432 CoK543 CoKndvi CoKPCs RK432 RK543 RKndvi RKPCs

BE −0.076 −0.078 −0.099 −0.100 −0.095 −0.095 −0.078 −0.067 −0.066 −0.070
RMSE 11.310 11.290 10.970 11.000 11.010 11.020 7.020 7.000 7.220 6.890

Ordinary kriging (OK), universal kriging (UK), Co-kriging (Cok), and regression kriging (RK) are used to predict basal area. CoK432 means using the 432 band combination
as predictors to krige the basal area, likewise CoK543, CoKndvi, CoKPCs, RK432, RK543, RKndvi, and RKPCs; bias error (BE) and root mean square error (RMSE) are used to
measure the discrepancy between observations and predictions.
Table 4
Model and forecast evaluation based on random samples.

OK UK CoK432 CoK543 CoKndvi CoKPCs RK432 RK543 RKndvi RKPCs

BE 10.120 10.130 4.990 4.980 4.760 4.660 4.460 4.010 4.432 3.964
RMSE 13.320 13.390 10.550 10.320 10.560 10.010 9.655 8.980 9.601 9.161
SDe 8.660 8.770 9.300 9.260 9.310 9.210 8.583 8.601 8.700 8.280
MAE 10.330 10.470 6.310 6.290 6.310 6.280 5.929 5.502 5.900 5.727

Stand deviation of errors (SDe), mean-absolute errors (MAE); other notations as Table 3.
models are fitted based on the associations between remotely
sensed data and ground-inventoried data.
Mutivariable kriging is more robust compared with univariate

kriging as indicated in this research. Regression kriging is powerful
comparedwith other krigingmodels. Aswe know the performance
of typical kriging models are best for spatial interpolation, while
these models can be significantly poor for spatial extrapolation
because the kriging coefficients depend on the spatial variation.
Regression kriging can be applied for spatial extrapolation because
its main coefficients except the coefficient for the residual part
just depend on the linear correlation between dependent variable
and independent variables. Multivariable kriging can be applied
for almost all kinds of forest parameters. Little research has
appliedmultivariable kriging to estimate forest variables for forest
resource management, although either numerical or categorical
data can be used in the process of kriging, i.e., any kind of variable
can be used as auxiliary data or predictors.
Remote sensing data and ground inventory data are collected

and stored in different data structures. The discrepancy between
remotely sensed data and ground sampling data might be the
source of errors in forest predictions (Tokola et al., 1996; Gilbert
and Lowell, 1997). The ground inventory data are usually collected
at the forest plot level or forest stand level. The plot size may
be from several meters to 10 or 20 m. The stand size may be
from 10 m to dozens of meters, and the stands are assumed to be
homogenous. Some ground data may be finer than remote sensing
data in spatial resolution, but generally, remote sensing data has
a finer spatial resolution than ground inventory data. This may
result in somenoise added to the geostatisticalmodeling and cause
bias errors. On the other hand, remote sensing data processing
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Fig. 7. Scatter plots of observations (y axis) versus predictions (x axis). Kriging: (1) ordinary kriging, (2) universal kriging, (3) cokriging with band 234, (4) cokriging with
band 345, (5) cokriging with NDVI, (6) cokriging with PCs, (7) regressiogn kriging with band 234, (8) regression kriging with band 345, (9) regression kriging with NDVI, (10)
regression kriging with PCs.
especially high accurate classification of the interesting variable
can help reduce the estimation errors.

6. Conclusions

The systematic approach of geostatistical prediction developed
by integrating Landsat ETM+ data, ground inventory, and GPS
data provides a new way to spatially estimate forest parameters
based on remotely sensed data. It has many applications in
forest or natural resource management. Forest metrics, such as
stand density, dominant height, species, stand age, forest health
conditions, the probability of forest fire, biomass, carbon, and so
on, can be incorporated in these models for forest inventory in
this study area. This geostatistical approach can be applied in
other research regions, while correlation analysis, semivariogram
modeling, and kriging models need to be examined for spatial
estimation.
Providing high spatial information is essential for large area

timber, biomass, and carbon budget management and planning.
Kriging is an optimummethod for spatial interpolation. Regression
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kriging is the powerful one among the different kriging methods
in this research. It was used to predict the pine basal area at
30 m for these 20 counties (about 35000 km2) using 2822 ground
inventory data points. Four groups of independent variables are
used in RK. The 543 band combination resulted in the smallest BE,
RMSE, MAE, and had a relatively smaller SDe. Therefore, Compared
with OK, UK and CoK using different auxiliary data, RK resulted
in the smallest BE, RMSE, SDe, and MAE; RK using the 543 and
combination is the best method for pine basal area predictions.
For other forest parameters, such as dominant height, timber
volume, or biomass/carbon, other band combinations, such as PCs
or NDVI need to be applied again to check which will result in best
estimations.
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