LABORATÓRIO 1: ANÁLISE DE PADRÕES DE DISTRIBUIÇÃO DE PONTOS

O objetivo deste laboratório é ilustrar as várias formas de analisar padrão de pontos, a partir de alguns conjuntos de dados. As ferramentas de análise disponíveis no SPRING são: o Interpolador Kernel, o Método do Vizinho Mais Próximo e a Função K.

Aplicação do Estimador de densidade por Kernel

Primeiramente aplicou-se o estimador de densidade por Kernel, o qual refere-se a uma medida de um suavizador de pontos para os dados de violência no Município de Porto Alegre/RS. Para isso, utilizou-se o banco de dados Porto Alegre no Spring.

Inicialmente ativou-se o banco de dados e o projeto com os respectivos dados. Visualizou-se os dados pontuais correspondentes aos eventos de homicídios, suicídios e acidentes de trânsito e após isso procedeu-se a fase da aplicação do método de Kernel. No menu "Análise" acessou-se "estatística espacial" e posteriormente "estimador de densidade por Kernel". Na interface apresentada, seleciona-se o tipo de dado (neste caso, ponto – associado ao PI "eventos_mortalidade"), define-se a largura da banda e seleciona-se a categoria e o PI de saída (o qual será MNT).

Para a análise dos resultados, foram utilizadas duas larguras de banda diferentes, apresentadas nas Figuras 1 a 6, as quais foram 1500 e 5000 metros. Nas figuras 1 e 2 é apresentada a grade regular gerada a partir do estimador de densidade por Kernel.

Figura 1: Grade regular – banda 1500m.

SPRING 4.3.2 · [PortoAlegre][PortoAlegre]				- 6
Arquivo Editar Exibir Inogen Ten-	ático MNT Cadastral Rede Anál	se Executor Ferramentas Ajuda			
3 🖬 🖉 🗾 Auto 💌	1/ 204367 Indiva			8	
	oto oto oto 2180±00	3.2+_008.5+_004.1+_004 0_0 0_0	α _φ	Painel de Controle	
	0_0 0_0 6.5e_008.1e_00	E.00-002.30-008.40-001.50-008.80-004	a_0	Categolias (Faliamento	_
	ob zontocarenteceuretee	1.3e-001 1.000 0 1.200 9.0e-002.0e-001	αp	(V) Municipio (V) Numerico	1
	0.0 8.7+-028.4+-001	1.872 1.878 2.518 4.4e-001	ap	M Berote Planos de Informação	Ň
	1.10-008.30-001 1.085 2.635	2401 2.722 2817 28739 3.34-001	a_p	[G1K_5000 []Kernel_2500	
	620-003.0012.730 8.312	\$296, \$297 view 7.18-dos.24-000	φ	(Kernel_2500_teste	
	8.8e-022 1.493 (3.48e 3.68	101 4.178 6.24 (01.3+-034.0+-008	αņ	Anostas	laoinhea
	2.0+-001 1.04 8781 92.220	4442 9 80-008.20-001.00-002	a.p	Urade	Inagen
	240-008-5-0011499 1.00-00	N30-008.90-008.30-002.90-003.90-002	φ	Selectioner	Consultar
	5.10-007.50-007.30-009.00+00	1.80-001 1.200 0.001.20+008.00+002	d'o	Alivat 💿 1 🔿 2 Exibit 🔄 2	030405
	1.80-005.20-003.50-006.30-00	6 10-001 1 400 00 00 00 00 00 00 00 00 00 00 00 00	₫₽	Acoplec 2	
	00 4.70-000.00-000 es-00	r p÷one +r÷ost vr÷ont va ² -one va ₂ 665.	9-000	Fechar	Ajuda
	oto oto erenterestation	N.3e-001.4e-008.4e-008.3e-002.2e-008.	s-002		
	eµ µµ 2.7+−008.1+−00 ζ	2 4 4 10 1 10 10 10 10 10 10 10 10 10 10 10 1	10-001		
	÷ ÷ • • •	+ 2+7 + 8+ 43			
	th th the sh	* * * * *	Ψ.	PI: K_5000	
🐮 Iniciar 🔰 🖉 🚳	🔁 laboratórios 🛛 🖪	SPRING-4.3.2 - (Prvt 4 Adde)	leader - f146 🚮 Labora	tório t. Aline e	5 17 5 M 10

Figura 2: Grade regular – banda 5000m.

A fim de refinar e melhorar a interpretação do resultado obtido a partir de uma grade numérica fez-se a transformação do tipo Grade → Imagem, resultando nas Figuras 3 e 4 apresentadas a seguir.

Figura 3: Imagem – banda 1500m.

Figura 4: Imagem - banda 5000m.

Na etapa posterior realizou-se o fatiamento na grade gerada a partir do método de Kernel. Essa etapa foi cumprida no programa em LEGAL, no menu "análise" do Spring. As classes de densidade pelo fatiamento foram classificadas em: baixa, baixa-média, média, média-alta e alta, considerando um intervalo fixo determinado a partir da diferença entre a cota mínima e a cota máxima, em ambos os valores da banda do Kernel. As figuras 5 e 6 demonstram as diferenças após o fatiamento da grade.

Figura 5: Fatiamento da grade – banda 1500m.

Figura 6: Fatiamento da grade – banda 5000m.

Os resultados apresentados segundo a análise do estimador de densidade por Kernel, fornecem a idéia do que compreende a suavização das características pontuais de acordo com o valor de banda utilizado. No primeiro caso, com o valor da banda de menor número (1000m), a imagem gerada apresenta menor generalização dos dados se comparada ao resultado encontrado no mapa com uma banda de número maior. A suavização apresentada pelo segundo resultado (banda com valor de 5000m), torna os dados menos confiáveis se considerar como objetivo uma análise mais detalhada.

Aplicação do Kernel considerando o valor do atributo

Nesta aplicação, o Kernel refere-se a uma medida de quantidade total do atributo por unidade de área. Para isso, utilizou-se o banco de dados com bairros de São Paulo, com atributos sobre o percentual de idosos (mais de 70 anos).

Inicialmente ativou-se o banco de dados e o projeto com os respectivos dados. Visualizou-se os dados de áreas correspondentes aos bairros da parte central e leste da cidade de São Paulo e após isso procedeu-se a fase da aplicação do método de Kernel. No menu "Análise" acessou-se "estatística espacial" e posteriormente "estimador de densidade por Kernel". Na interface apresentada, seleciona-se o tipo de dado (neste caso, área – associado ao PI "mapa_bairros"), define-se a largura da banda e seleciona-se a categoria e o PI de saída (o qual será MNT).

Para fins de comparação, foram utilizadas duas larguras de banda diferentes, apresentadas nas Figuras 7 a 12, as quais foram 2000 e 5000 metros. Nas figuras 7 e 8 é apresentada a grade regular gerada a partir do Kernel.

SPRING-4.3.	2 - [Bai	rros_Si	P][Bairi	ros_SP]															- 8
Arquivo Editar E	xbir Inc	igen Te	en Stico	MNT Co	dastral	Rede A	nálise E	Stecutar	Ferram	entas Aj	uda					_		🖪 Painel de Con	t 🔳 🗖
8 🖻 🛢 🥏	82	Auto	1/	134648		Inati	va	× 1			0		2 2	🗶 🔄	5	2		Categorias	
																		()Insgen	
																		(V) Mepa_Cedestal	
																		Hecote MI Superficie	
																		Planos da Informação	
	4.0													0.0		0.0		ISTK 2000	
No 40 40	4	ΎΨ ^o	40	40	+	40	4 10	+	+	40 9	φ ¥	4	40	÷	+	Ŧ	+	[]K_5000	
				e endrem	-					Zon								[]Kenel_3k5_Perid	090
+ + +	01 40	N€.	+	t	+	+	+	+	+7	1.	÷ 4	- 4	+	+	+	÷.	+		
Variation La	02.00000	100			7-000	e-mm	and a		Luna	Jan 1			0.0	0.0	50	0.0	1000	Prioridade: 300	CR .
	· · · · ·	YF.	<u>_</u> +	+}	* ?	+	-		5	31	r 1	- 4 <u>5</u>	2	Ŧ	÷	Ŧ	+	Anostras	Isolation
1.98-00 K.Ee-0	05.66-00	1.60-00	7.20-001	40.005	50-102	40-000	-018 I	10-008.0	-005.2	x-001 0	a a.	4.400-	11.4-11	4. Te-00	5.00-00	8.1e-00	and a	Grade	Texto
1 + Le	× * .	- 1	÷.,	^+]	Le L	-	+ <	* 7		+ 7.	• 3	J∽ +			- 74	mgs-	ッと	TIN TIN	Imagem
5-00-008.00-0	0.0 10	0.0	1.3+-025	1.00-101	1.003 a	44-001 1	1.040 62	84-00 R.S		-co1 0	10 / a	3.84-0	01.10-00	2.24-00	2 04 00	N.46-00	15.04-0	Salarinow	Consiliar
20 *	4	- 1	- */	* /	+	<u>}</u> +	* (* 2		Y.	7.1	*		1.*	∕*_	- *\	· *	Controle de Talas	
4.40-005.30-0	01.50-03	1.24-00	2.24 021	1.126 3.	Ce-00 4	94-00 5.5	50-001	1.120 2.2	e-007.3	e-001 0	0 6.04	00834-0	03.44-0	08.3e-00	0,0	0,0	2.04-0	Aliver @ 1 0 2	01040
- + L +	-		1		×	+	÷	* 1	+	*)				< *	P	*	1.1	East D 2 D	
5.1e-008,1e-0	08.90-00	1.349	9.84-951	1,885	1418	2,055	274 -	1,318 8.4		e-001.30	-003.4+	007.50-0	01.0e-0	1	7.80-00	3.10-00	21 0,0		
16		<u> </u>	1	-	1.	20	F				2		2		T		1	Acopea:	1.0+0
2.08-005.10-0	02.70-00	8.60-07	R. 30-001	1.197	2.040	1.227 1	417	1,054 2.2	s-col 1	.124 1.44	-009.40	002.74-0	02.30-91	1.3e-00	Q.1e-00	3.20-00	28.30-0	Anpla: 0 1 0	0.0
7	2		1	~		11	25		\searrow				-	\sim				Fechar	Ajuda
2.3 tokno	08.00-00	8.2+-00	1 1.422 1	44-001	2504	1.668	1319 3	8127 1	-176 I	232 2.70	-001 1.1	71 2.70	69.44-0	00-00	11.34-00	9.5+-0	3.24-6	102.24-001.54-001	0 00
6 5							1.	~	5			U						5	
903.7e-001.3e-0	07.30-00	8.94-00	5.5+-033	k1e-001	1.149	uter l	1/2 /3	24-001.5	+-cost	e-002.2e	001.24	052.00-0	09.14 0	00,56-00	a.94-00	V.40-00	2.10-0	02 0.0 1.54-00E.14	poz po
_ 5				\sim			\sim	1	2	γ		rh.		Υ.			1		2
202.5+-002.2+-0	08.34-00	2.4+-00	8.04-009	L7e-001	1.221 7	34-00.81	×-001 ·	1,548 3.5	-001 I	104 2.00	-0016.04	00854-0	c3/1-0	0.5+-00	a 7e-00	1 995	100	0.0 7.4e-002.2e	004 0.0
A					-		$\neg \land$									5			>
COL 88-002.00-0	08.36-00	0.7e_00	7.50-001	1.044 6.	00-00	1.131 7.1	14:00 61	10-00 TL	s-cos.e	8-00D.04	-003.20	001.54-0	07.18-00	1.5e-00	0.24-00	B.40-00	23.7e+0	01.70-001 00 0	yo vo
			1	1	Jere	7. 000.	1	Y				~			1.00		Sec. 1	. 5	
a service of	+	a	X.	7-7-001		+	+	+	+ or	+	¥ 9	4 ⁴	3.00	with a	2.4400	+ +	1	No. of the of the the	₩ ¥
									_										
										_									
																P1	I: K_200	0	
L Iniciar	6	(A) (A)	6	a contrato de la cont			100 500	-	2 - Ittal	. 6	1 Ante	Deader -		20	strentle.	in t Alim			5 A. M. 101

Figura 7: Grade regular – banda 2000m.

SPRING-4.3.2 - [Bairros_SP][Bairros_SP]								
Arquivo Editar Exibir Inagen Temático MNIT Cadastral Rede Análise Executar Ferramentas Ajuda	🖪 Painel de Cont 🔳 🔲 🗙							
🛢 📴 💋 👷 Auto 💌 1/ 134648 Institus 💌 🔛 🗏 🕂 🛟 🔍 🗶 🗶 🗶 😵	Categorias							
	🗍 Imagem 🔄							
	(V) Mapa_Cadastral							
	() Hecole							
	Planos de Informacião							
007.4+009.3+003.8+003.3+003.3+008.3+008.8+008.8+008.8+008.8+008.1+008.8+	[]K_2000							
	(G)K_5000							
-008.2+008.0+000.0+008	()Kernel_3k5_Peridoso							
- 000 Le - 001 au - 001 au - 001 au - 001 au - 002 au - 0	Priceidade: 300 CR 🗾 🗾							
1000	Anostras lasinhas							
	Grade Texto							
we so we to we so we	TIN Imagen							
	Selecionar. Consultar							
00274-0027e-008.1e-008.3e-008.0e-007.5e-008.4e-008.3e-007.3e-008.7e-008.5e-00259-002.7e-008.4e-008.3e-002.1e-002.0e-008.3e-008	Controle de Teles							
	Abvar. 1 0 2 0 3 0 4 0 5							
-002/4-008/a-008/a-008/a-008/a-001/041 1216 1241 1122 6.4-007/a-008/a-	Exbir: 2 3 4 5							
02.3+ 008.0+ 008.0+ 008.4+ 001 1 208 485 401 1 208 1 208 1 208 1 208 1 208 1 208 208 208 208 208 208 208 208 208 208								
-002 34-002 3-002 34-002 34-002 34-001-1223 1210 1240 1140 1140 1140 1140 10400 34-002 64-008 34-002 34	Fechar Auda							
	$\sum $							
-multiprotection -moral-moral-moral-moral day intervention into the statement of the statem	000000000000000000000000000000000000000							
1003 8= 005 84 008 8= 005 80 00 80 001 001 102 (1/13) 100 9= 00 5 5 005 3= 005 3= 005 3= 005 3= 001 3= 001 0= 00	007.94-002.14-002.34-002							
	50							
-002.0+-002.0+-002.0+-008.2+-008.2+-008.2+-008.2+-008.2+-008.2+-008.2+-008.2+-008.0+-002.0+-008.0+-008.2+-008.0+-008	002.29-002.00-002.00-002							
- 003 54- 005 04- 008 54- 008	003.1a-002.3a-002.1a-003							
· Merand March (1 1 1 1) · · · · · · · · · · · · · · ·	+ + +							
ง ๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚๛๛๚								
PEK,500	0							
🛃 Iniciar 🛛 🖉 🏟 😂 laboratórios 🛛 🕅 SPRING-4.3.2 - (Derr 📢 Adobe Reader - (LAB 🔡 Laboratório 1 "Aine e	💊 🗐 👗 🖉 10.13							

Figura 8: Grade regular – banda 5000m.

Da mesma forma ao exemplo anterior, para refinar e melhorar a interpretação do resultado obtido a partir de uma grade numérica transformou-se o tipo Grade em Imagem, resultando nas Figuras 9 e 10.

Figura 9: Imagem – banda 2000m.

Figura 10: Imagem – banda 5000m.

Na etapa posterior realizou-se o fatiamento na grade gerada a partir do método de Kernel. Essa etapa foi cumprida no programa em LEGAL, no menu "análise" do Spring. As classes do fatiamento foram classificadas em: baixa, baixa-média, média, média-alta e alta, considerando um intervalo fixo determinado a partir da diferença entre a cota mínima e a cota máxima, em ambos os valores da banda do Kernel. As figuras 11 e 12 demonstram as diferenças após o fatiamento da grade.

Figura 11: Fatiamento da grade – banda 2000m.

5000m.

A análise do método de Kernel de acordo com o valor do atributo considerando amostras de áreas, apresenta resultados semelhantes ao exercício anterior. Os valores das bandas que foram utilizadas correspondem a 2000 e 5000 metros, respectivamente. Da mesma forma, quanto menor o número da banda utilizada mais detalhado é o resultado final. No entanto, a banda com maior número apresenta uma suavização maior dos dados, generalizando as superfícies de áreas estudadas.

Análise do vizinho mais próximo – banco de dados de Porto Alegre

A técnica de análise pelo método do vizinho mais próximo consiste em um gráfico de freqüência acumulada da distância de cada ponto (evento) em relação ao vizinho mais próximo.

Ao iniciar o Spring, ativou-se o banco de dados e o projeto referente aos dados de eventos da cidade de Porto Alegre. Para esta análise, no menu "análise" seleciona-se "estatística espacial" e logo, "análise univariada de pontos". Na interface apresentada, a análise a ser escolhida corresponde ao "vizinho mais próximo", a distância mínima (0) e o número de intervalos (10) foram mantidos, enquanto a distância máxima foi modificada três vezes com valores diferentes em cada uma delas: 1000m, 1700m e 3400m. Nas figuras 13, 14 e 15 podem ser observados os gráficos resultantes de cada uma das análises.

Figura 13: Método vizinho mais próximo – dist.máx. 1000m.

Figura 15: Método vizinho mais próximo – dist.máx. 3400m.

Figura 14: Método vizinho mais próximo – dist.máx. 1700m.

Análise do vizinho mais próximo com simulação - banco de dados de Porto Alegre

O método do vizinho mais próximo com simulação permite a comparação da função acumulada das amostras com as funções de dados gerados aleatoriamente (simulação superior e inferior).

Para este caso, utilizou-se o mesmo procedimento do método anterior do vizinho mais próximo, porém acrescentou-se o número de simulações. Desta forma, foram consideradas as mesmas distâncias do método anterior, com o número de intervalos e número de simulações igual a dez (10) nos três casos.

Figura 16: Método vizinho mais próximo com simulação – dist.máx. 1000m.

Figura 17: Método vizinho mais próximo com simulação – dist.máx. 1700m.

Figura 18: Método vizinho mais próximo com simulação – dist.máx. 3400m.

Na análise do vizinho mais próximo com simulação para o banco de dados de Porto Alegre foram utilizadas as mesmas distâncias calculadas no exercício anterior. Para todas as distâncias, em todos os gráficos apresentados, a função se destacou acima de uma reta de 45°, demonstrando o agrupamento dos dados de acordo com a escala.

Análise da Função L – Derivada da Função K

A função K considera escalas maiores para análise de padrões pontuais. Para uma análise que facilite a interpretação dos resultados, utiliza-se a função auxiliar L.

Para a elaboração dos gráficos a seguir, foi utilizada como análise a Função L, a distância mínima – zero (0), o número de intervalos – dez (10), e a distância máxima no primeiro gráfico é igual a 1000m e no segundo, 10000m.

Figura 19: Gráfico da Função L – Dist. Máx. 1000m.

Figura 20: Gráfico da Função L – Dist. Máx. 10000m.

A interpretação dos gráficos da Função L busca explicar se há evidências de agregação a partir da distribuição espacial dos dados (eventos), aleatoriedade ou ordenação regular. Neste caso, de acordo com a interpretação sugerida, os gráficos apresentam resultados de agregação dos dados espacialmente, uma vez que a maior parte das distâncias observadas correspondem a extremos positivos.

Análise da Função L com simulação

A análise da Função L com simulação é semelhante a análise do vizinho mais próximo, a fim de estimar a significância dos desvios da distribuição L (h) em relação a aleatoriedade. O principal objetivo é realizar as simulações sobre a região R e computar os valores, superior e inferior.

Para esta análise, no menu "análise" selecionou-se "estatística espacial" e "análise univariada de pontos". Após isso definiu-se a análise a ser utilizada, neste caso, Função L com simulação, determinou-se a distância mínima (0), a distância máxima (10000m e 1700m). Para o número de intervalos e de simulação escolheu-se 10 (dez). As figuras 21 e 22 apresentam os gráficos obtidos.

Figura 21: Gráfico da Função L com simulação – Dist. Máx. 10000m.

Figura 22: Gráfico da Função L com simulação – Dist. Máx. 1700m.

Para a interpretação dos gráficos gerados a partir da análise da Função L com simulação, parte-se do pressuposto de que se valores de $L^{(h)}$ são positivos e se estes estiverem acima dos envelopes (superior e inferior), caracteriza-se nesta escala de distância como agrupamento, sendo estes mais fortes nas distâncias que possuem os extremos da curva. Observando os gráficos elaborados com distâncias máximas de 10000m e 1700m, respectivamente, ambos possuem agrupamento dos eventos, sendo que estes, aumentam quanto maior for a distância.