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Abstract—Non–point-source pollution is an increasing source of stress to aquatic, estuarine, and marine ecosystems. Such pollution
may be of unknown etiology, distributed over extensive spatial scales, and comprised of multiple stressors. Current stressor-based
paradigms for ecological risk assessment (ERA) may be insufficient to characterize risk from multiple stressors at regional spatial
scales, necessitating the use of effects-based approaches. Historical data (1984–1999) for benthic macroinvertebrate biodiversity
in Chesapeake Bay, USA, were incorporated into a geographic information system (GIS) and spatial analysis tools were used to
model zones within the bay predicted to be of low or high anthropogenic impact. Data for benthic water quality and sediment
toxicant concentrations from each of these zones were subsequently analyzed and compared to identify associations between benthic
biodiversity and potential stressors. A number of stressors were significantly associated with high-impact zones, including increased
nitrogen and phosphorus concentrations, low dissolved oxygen, heavy metals, pesticides, polycyclic aromatic hydrocarbons, and
polychlorinated biphenyls. The spatial autocorrelation among multiple stressors suggests that traditional stressor-based approaches
to ERA may result in the a priori exclusion of ecologically relevant stressors. Considering the effects of individual stressors rather
than net effects of multiple stressors may result in underestimation of risk. The GISs are a useful tool for integrating multiple data
sets in support of comprehensive regional ERA.
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INTRODUCTION

During the past decade, the use of risk-based decision-
making in environmental management has increased signifi-
cantly, as evidenced by the proliferation of the ecological risk
assessment (ERA) paradigm as the standard method for char-
acterizing ecological impacts associated with anthropogenic
activities [1]. This paradigm largely centers on identifying
potential ecological stressors, characterizing their toxicity
through laboratory methods, and subsequently inferring effect
concentrations and ecological consequences. As such, ERA
currently focuses on characterizing the stressor while effects
are estimated through various forms of data manipulation. This
approach to risk assessment is valid when information re-
garding the potential ecological consequences of contaminant
exposure is required before their release, such as in the de-
velopment of novel chemical compounds or the siting of an
industrial facility that will generate potentially toxic effluent.
However, future challenges to environmental quality will likely
be quite different from those that have historically been of
concern. As water quality criteria become more rigorous and
pollution-prevention controls more effective, acute point-
source pollution will have a decreasing influence on environ-
mental quality. The future challenge to risk assessors and man-
agers will be the cumulative effects of chronic exposure to
multiple stressors of unknown etiology distributed over vari-
able temporal and spatial scales [2]. To meet this challenge,
development of effects-based approaches to ecological risk
assessment will be necessary [3], whereby observed changes
in ecosystem structure and function are used to monitor eco-
logical stress and identify stressors.

A potential barrier to effects-based risk assessment is the
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availability of sufficient data to characterize ecological effects.
Natural populations are frequently associated with significant
temporal and spatial variability [4–7], necessitating robust data
sets to differentiate natural variability from anthropogenic im-
pacts. If such data are to be used in hazard identification, then
extensive data collection regarding the distribution and mag-
nitude of a broad range of potential stressors must be per-
formed as well. Although such data dependence frequently
may be perceived as a prohibitive obstacle to effects-based
ERA, such data sets are readily available for many regions of
the United States. For example, state environmental agencies
conduct routine biological monitoring, water quality assess-
ment and toxicity screening in pursuance of the requirements
of the Clean Water Act. Temporally or spatially extensive en-
vironmental monitoring projects also have been sponsored by
federal agencies, such as the U.S. Environmental Protection
Agency’s Environmental Monitoring and Assessment Program
and the U.S. Geological Survey’s National Water Quality As-
sessment Program [8,9]. However, historically few concerted
attempts have been made to coordinate monitoring programs,
even within the same region, and significant variation may
exist with respect to spatial resolution and monitoring fre-
quency among data sets [9]. Thus, a more difficult challenge
is developing methods for integrating multiple large data sets
into a construct amenable to ERA so that such valuable data
resources can be used effectively in environmental manage-
ment [9].

Geographic information systems (GISs) are robust tools for
managing data associated with natural landscapes, and their
use in the analysis of environmental monitoring data may en-
hance the ERA process. The automated functions of com-
mercial GISs allow rapid quantification of distance, area, and
gradient, and more complex operations can be executed to
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Fig. 1. Distribution of benthic macroinvertebrate biodiversity moni-
toring stations (n 5 1,054) and calibration points for effect modeling
(n 5 40) within Chesapeake Bay, USA (1984–1999).

construct single or multivariate spatial models [10,11]. The
GISs also enable one to link spatially and temporally hetero-
geneous data sets for the purpose of quantitative statistical
analyses. The GISs have been used increasingly in watershed
analysis to understand interactions between land use and sur-
face water hydrodynamics and quality [12–17]. However, little
attempt has been made to use GISs for assessing stressor–
response phenomena within the water column [18]. With more
emphasis placed on non–point-source stressors, the spatial
scales over which ERAs are conducted will likely expand,
making the utilization of tools such as the GISs more critical.

The objective of the current study was to perform a regional
effects-based hazard identification of potential stressors to ben-
thic communities of the Chesapeake Bay, USA. Historical data
on the biodiversity of benthic macroinvertebrates in Chesa-
peake Bay was incorporated into a GIS and used to model
zones of high and low ecological impact over the time period
of 1984 through 1999. The GIS functions were then used to
link these regions to data sets for benthic water quality and
sediment toxicant concentrations over a similar time period.
Data for 17 water quality parameters and 68 toxicants were
compared between high- and low-impact zones to identify po-
tential stressors or stressor interactions associated with ob-
served ecological effects.

MATERIALS AND METHODS

Software

Data management and selection were conducted using Mi-
crosoft Excelt 97 (Redmond, WA, USA), Statview 4.0 (SAS
Institute, Cary, NC, USA), and the database features of
ArcViewy GIS 3.2 (Environmental Systems Research Insti-
tute, Redlands, CA, USA). Mapping of all geographic and
environmental monitoring data was performed using ArcView.
Point-pattern analyses were performed using CrimeStaty 1.1
(Ned Levine and Associates, Annandale, VA, USA). Effect
modeling and surface interpolation of benthic biodiversity
were performed using the Spatial Analyst 2.0 extension of
ArcView. Statistical operations were performed using Stat-
View.

Data sources

Digital geographic data for surface features were obtained
from several sources. Land and water features were obtained
as ArcView shapefiles from the U.S. Environmental Protection
Agency’s Better Assessment Science Integrating Point and
Non-point Sources (BASINS) geographic information system
(available over the Internet at http://www.epa.gov/OST/
BASINS). These features were based upon digitized images
of U.S. Geological Survey base maps (1:250,000 scale). These
features were used to construct a polygon theme representing
the primary basin of the Chesapeake Bay and the lower regions
of major tributaries comprising an area of 11,170 km2 (Fig.
1). All subsequent analyses were restricted to this study area.
State boundaries were also obtained as ArcView shapefiles
from the U.S. Environmental Protection Agency’s BASINS
system, based upon U.S. Geological Survey digital line graphs
(1:2,000,000 scale). Data for the general location of major
cities in close proximity to the Chesapeake Basin were ob-
tained as ArcView shapefiles from Environmental Systems Re-
search Institute.

Shannon’s biodiversity index for the benthic macroinver-
tebrate community was used as an effect indicator. Shannon’s

biodiversity index describes the equitability with which in-
dividuals in a community are allocated among species and was
calculated with Equation 1 [19]

SBI 5 p ln pO i i (1)

where SBI is Shannon’s biodiversity index and pi is the per-
centage of all individuals in the ith species. Shannon’s bio-
diversity index is a useful metric in regional biological as-
sessments where spatial heterogeneity in the distribution of
specific species may be significant [20]. Biodiversity data for
summer months (May–September) between 1984 and 1999,
inclusive, were obtained from the Chesapeake Bay Program’s
(CBP’s) data clearinghouse (available over the Internet at
http://www.chesapeakebay.net). Data were originally derived
from benthic community samples collected from 1,054 fixed
and random monitoring stations located throughout the basin,
resulting in a total of 2,596 individual observations (Fig. 1).
The locations of monitoring stations in decimal degrees were
obtained by loran-C (accurate to 6 500 m) with the geographic
coordinate system North American Datum 1927 between 1984
and 1996, after which locations were based upon global po-
sitioning system receivers using the North American Datum
1983. Samples were obtained by the use of a box-coring device
that collected from a benthic surface area of 0.04 m2. Counts
of individuals were subsequently normalized to the square me-
ter. Three replicate samples were taken per monitoring event.
Samples were then transferred to a 0.5-mm sieve bucket to
recover benthic organisms, after which samples were fixed
with a 10% formalin solution. Benthic specimens were re-
turned to the laboratory and sorted using a dissecting micro-
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Fig. 2. Distribution of water quality monitoring stations (n 5 112)
and sediment toxicant monitoring stations (n 5 353) within Chesa-
peake Bay, USA (1984–1999).

scope. All specimens were then identified to the lowest prac-
tical taxonomic level. Identification was aided by stereoscopic
zoom dissecting microscopes, fiber-optic illuminators, mag-
nifying lamps, and a phase-contrast compound microscope.
Five percent of all samples were reworked independently for
quality control of taxonomic identification, enumeration, and
biomass estimation. All values for Shannon’s biodiversity in-
dex available for the study area over the time period specified
were utilized.

Sixteen water quality parameters were analyzed including
physical and chemical conditions such as temperature, dis-
solved oxygen, pH, and total suspended solids as well as nu-
trient concentrations. Water quality data for summer months
between 1984 and 1999 also were obtained from the CBP. Data
were originally collected by monthly sampling from the basin
floor at 112 fixed monitoring stations located throughout the
basin (Fig. 2). Geographic locations in decimal degrees for
monitoring stations were obtained in a similar fashion as de-
scribed above. At each station, a hydrographic profile was
made (every 1–2 m) and water samples for chemical analysis
were collected from the surface and the bottom layers via a
pumping system. Quality assurance and control was main-
tained within laboratories through replication of field samples
and replication of laboratory analysis. Among-laboratory cal-
ibration and validation also were performed routinely to ensure
comparability of results among cooperating institutions within
the region. Specific methods used in the analysis of individual
water quality parameters have been previously reported by the
CBP [21]. The total number of observations for each parameter
ranged from approximately 200 to 2,000 depending on how

frequently data for individual variables were collected. All data
available for the 16 parameters included in the current study
over the specified time period were utilized.

Sediment concentrations of 68 toxicants were analyzed, in-
cluding total concentrations for 17 metals, 14 pesticides, 19
polycyclic aromatic hydrocarbons (PAHs), and 17 polychlor-
inated biphenyl (PCB) congeners. Sediment toxicant data for
summer months between 1984 and 1998 were obtained from
the CBP. Data originally were collected by yearly sediment
sampling at 353 fixed monitoring stations located around the
perimeter of the basin and in most of its major tributaries (Fig.
2). Geographic locations in decimal degrees for monitoring
stations were obtained in a similar fashion as described above.
Because one of the goals of the current study was to compare
sediment toxicant concentrations among regions of the bay
associated with low or high anthropogenic impacts (based upon
biodiversity modeling: see below), at least 10 samples must
have been collected from each predicted impact zone (i.e., high
and low) to be included in the current study. The total number
of observations for each toxicant varied, ranging from ap-
proximately 50 to 150 (see the Appendix for a complete list
of toxicants, sample size, and detection limits). Because no
formal toxicant monitoring program currently exists for the
watershed as a whole, data on sediment concentrations of tox-
icants available from the CBP are synthesized from approxi-
mately 50 independent assessment reports, a complete list of
which was published previously by the CBP [22]. All sediment
toxicant data that were available and met the above criteria
were utilized.

Point-pattern analysis

The distribution of monitoring stations for benthic biodi-
versity, water quality, and sediment toxicant data were ana-
lyzed to assess sampling density and clustering among mon-
itoring stations. The mean distance among monitoring stations
was calculated by averaging the distance of each individual
site to its first order (i.e., nearest) neighboring site. The bas-
inwide site density for each data set was calculated as the ratio
of the total number of monitoring stations to the total area of
the basin. In addition, spatial clustering of monitoring stations
was analyzed by calculating the K-statistic (a measure of the
nonrandomness with which points are distributed in space)
with Equation 2 [23,24]

2K(d ) 5 (A/N ) I(d ) (2)O Os ij1 2i j

where K(ds) is the K-statistic for a distance ds, A is the total
area of interest (here 11,170 km2), N is the total number of
points (i.e., monitoring stations), and I(dij) is the number of
points (j) found within the distance ds summed over all points
(i). Thus, a circle of radius ds is placed over each point i, and
the number of other points ij within that circle is counted. In
other words, the statistic compares the number of neighboring
points within a given radius to the number expected on the
basis of complete spatial randomness. The K(ds) can be cal-
culated over a range of ds (here 0.5–60 km) to determine the
extent of spatial clustering (nonrandomness) in the distribution
of points at different spatial scales. The relationship between
K(ds) and ds can be presented graphically for interpretation.
However, because the relationship is often nonlinear, K(ds) is
transformed to a square root function L(ds) with Equation 3
[25]
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1/2L(d ) 5 [(K(d )/p)] 2 ds s s (3)

where L(ds) is the transformed K-statistic, K(ds) is the K-sta-
tistic for distance ds (from Eqn. 2), p is pi, and ds is the
distance. The function L(ds) was plotted against a range of ds

values for the monitoring stations associated with each data
set (biodiversity, water quality, or sediment toxicant concen-
trations) to assess the extent of spatial clustering among mon-
itoring stations that might influence the study results. Values
greater than zero are indicative of clustering, whereas values
less than zero are indicative of dispersion.

Effect modeling

To determine values for biodiversity throughout the study
area, values for biodiversity had to be estimated for locations
where biological monitoring was not performed. This was ac-
complished by interpolating values for benthic biodiversity at
locations where samples were not collected based upon ob-
served values where samples were collected. A variety of sta-
tistical models can be used to perform such interpolations. The
simplest is simply the unweighted average of observed values
within a specified proximity to unsampled locations [26]. How-
ever, this assumes that all observed values are equally repre-
sentative of the true value at the unsampled location, an as-
sumption that is often not valid for environmental monitoring
data [26]. Instead, a weighted average can be used where the
weights are based upon a distance-decay function that gives
greater weight to observed values that are closer to the un-
sampled location than those values that are farther away. A
simple form of such weighted models is an inverse distance-
weighted (IDW) model, where the value of the weights de-
creases with some power function of distance from the inter-
polated area [26]. Therefore, all observed values within the
same distance from the interpolated area are assigned the same
weight, with no consideration for spatial correlation among
observed values. Most GIS and geostatistical software will
perform IDW modeling or calculations can be performed by
hand if data sets are sufficiently small. Alternatively, kriging
models are also distance-weighted, but the weights can be
adjusted to account for spatial correlation among observed
values, such as directional trends in the modeled variable or
spatial clustering of observations [26–28].

In the current study, an IDW model with the weights de-
termined by the inverse square law (i.e., value of the weights
decrease with the square of distance) was utilized to estimate
values for biodiversity throughout the study area. Early ex-
periments with various model parameters indicated that higher-
order IDW models (e.g., distance3 or distance4) yielded nearly
identical results as a second-order model. Before interpolation,
values for Shannon’s biodiversity index were transformed to
a cumulative probability distribution. Data were then projected
using an Albers equal-area–conic projection to account for
curvature of the earth. Surface interpolation was based upon
a grid system comprised of cells of equal area. Biodiversity
values were assigned to each grid cell with Equation 4 [29]

X 5 w XO0 i i (4)

where X0 is the interpolated value for a grid cell, Xi is the
transformed value for Shannon’s biodiversity index, and wi is
D(X0, Xi)22/W, where D(X0, Xi) is the distance from X0 to Xi and
W is a normalization factor that enables S wi 5 1. This method
of interpolation helps minimize bias caused by spatial hetero-
geneity in the distribution of biodiversity monitoring stations
around each grid cell. Although IDW models tend to cause

spatial smoothing of the modeled variable, given that the model
was used to identify general regions of the basin consistent
with low or high biodiversity rather than the value of biodi-
versity at any single location, this smoothing was seen as
advantageous.

Both the size (i.e., area) of the grid cells as well as the
neighborhood size (i.e., number of observations used to in-
terpolate the value of a grid cell) were important consider-
ations. Spatial resolution decreases with increasing cell size,
as data are aggregated over a larger area. Therefore, small grid
cells increase the likelihood that the interpolated value for that
cell will be representative of local phenomenon. Similarly, the
accuracy of the interpolated value for a grid cell is enhanced
by maximizing the number of biodiversity observations (i.e.,
neighborhood size) used in the interpolation. However, as
neighborhood size increases, the interpolation includes ob-
served values at increasing distances from the grid cell. There-
fore, large neighborhood sizes decrease the likelihood that the
interpolated value for that cell will be representative of local
phenomenon. Because of these constraints, the interpolated
value for a grid cell may vary significantly depending upon
how the IDW model is parameterized. Therefore, a sensitivity
analysis was conducted to optimize grid cell and neighborhood
size. Forty calibration points (independent of biotic sampling
points) distributed throughout the basin were selected (Fig. 1).
The interpolated value for Shannon’s biodiversity index at each
of these points was calculated assuming a range of cell sizes
(0.01–625 km2) and neighborhood sizes (1–20). No statisti-
cally significant differences were observed in mean biodiver-
sity among the 40 grid cells associated with the calibration
points over the range of cell and neighborhood sizes tested.
However, cell-specific interpolated values for biodiversity var-
ied with cell and neighborhood size. Therefore, optimal cell
and neighborhood sizes were determined by quantifying the
variation associated with each interpolated cell value with step-
wise decreases in cell size or increases in neighborhood size
and selecting neighborhood and cell sizes that minimized this
variation. At cell sizes of 0.0625 km2, further reductions in
cell size caused no further significant decreases in within-cell
variation. No significant variation was defined as a less than
1% change in mean values among the 40 calibration points
and a less than 5% change in value at 95% of individual
calibration points. At neighborhood sizes of 10, further in-
creases in neighborhood size caused no further significant de-
crease in within-cell variation. Thus, effect modeling of ben-
thic biodiversity was performed using grid cell and neighbor-
hood sizes of 0.0625 km2 and 10, respectively.

Confidence in the model was also assessed by validating
both the appropriateness of the IDW method of interpolation
and Shannon’s biodiversity index as an indicator of ecological
stress. Validation of the IDW model was performed by using
an alternative interpolation method, the results of which could
be compared to those of the IDW model. By using the same
parameters for neighborhood size and cell size as above, a
benthic biodiversity model was constructed with universal
kriging (see above). Validation of Shannon’s biodiversity index
was achieved by using an alternative indicator of benthic eco-
logical integrity in the IDW model. The predicted spatial pat-
terns for Shannon’s biodiversity index were compared to pre-
dicted patterns of benthic total macroinvertebrate biomass,
species richness, and the CBP’s benthic index of biotic integ-
rity with similar GIS-based modeling tools. The benthic index
of biotic integrity is a qualitative indictor incorporating mul-
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Fig. 3. Square-root–transformed K-statistics for the distribution of
biodiversity, water quality, and sediment toxicant monitoring stations
used in the current study at increasing spatial scales. Values greater
than zero indicate that the spatial distribution of monitoring stations
is more clustered than would be expected given complete spatial ran-
domness. Values less than zero indicate that the spatial distribution
of stations is more dispersed than would be expected given complete
spatial randomness.

tiple biotic indicators normalized for salinity and substrate
[20], and, thus, is designed to yield a more robust, compre-
hensive measure of ecological integrity than the use of a single
indicator. The results of both of these modeling exercises were
subsequently compared to the results generated for the IDW
model utilizing Shannon’s biodiversity index.

Upon the completion of the IDW interpolation, the areas
corresponding with the upper and lower 20th percentiles of
the cumulative probability distribution for benthic biodiversity
were selected and digitized as polygon features. The area of
each polygon was subsequently calculated for each tail of the
distribution (i.e., upper or lower 20th percentile) and desig-
nated as low-impact and high-impact zones, assuming that low
values for benthic biodiversity were indicative of ecological
stress. The upper and lower 20th percentiles were selected
because the modeled biodiversity values for these areas are
greater than one standard deviation from the basinwide ob-
served mean for benthic biodiversity and can be assumed to
be ecologically atypical because of their local environmental
conditions. Water quality and sediment toxicant monitoring
stations intersecting with either low-impact or high-impact
zones were subsequently selected and organized into separate
subsets for statistical comparison.

Stressor identification

Statistical comparisons of water quality parameters and sed-
iment toxicant concentrations between the high- and low-im-
pact zones were used to identify stressors that may account
for observed patterns of biodiversity. The assumption was
made that if the values for an individual water quality param-
eter of a toxicant were comparable between the high- and low-
impact zones, that variable likely could be excluded as a source
of stress to the benthic community within the high-impact
zones. Comparisons were made among mean values with a
two-tailed t test (a 5 0.05) to account for both variance and
sample size, because sample sizes differed among different
variables and effect zones. For sediment toxicant data, the
percentage of samples above the detection limit was estimated
when sufficient data were available.

Methodological uncertainties and limitations

The above methods produce several uncertainties and lim-
itations that should be noted. The dominant limitation is the
use of secondary data rather than the collection of original
data by the investigator. Historical monitoring data were not
collected specifically for the purposes for which they were
utilized in the current study, and verifying the quality of the
data and consistency in analysis methods is problematic. For
example, whether statistical outliers for monitoring parameters
are accurate representations of environmental phenomenon or
errors in analysis or reporting cannot be ascertained. Also, the
current study was retrospective, and thus, may not necessarily
accurately reflect future trends. Shannon’s biodiversity index
has been criticized because of its assumption that all species
are represented in the sample from a population of effectively
infinite size, and the value of the index does not vary with
sample size [19]. The strengths of alternative biodiversity mea-
sures, such as Brillouin’s index, have been described for non-
random field sampling, such as that performed by the CBP
[19]. In addition, other biotic indicators such as species rich-
ness (i.e., the number of species in a community) and species
evenness (i.e., the equitability of abundances among species
in a community) have been suggested for such applications

[19]. Regardless of the methods used to parameterize and con-
struct the biodiversity model, uncertainty is an unavoidable
consequence. Thus, any interpretation of the model must be
made with reported variation and uncertainty in mind. Al-
though field data were used as a potential indicator of adverse
effects, these effects cannot necessarily be attributed to water
quality or toxicant parameters considered in the current study.
Other environmental factors such as temperature or salinity,
may affect biodiversity [30–35]. Toxicant concentrations were
not adjusted to reflect modifying factors such as hardness or
dissolved organic carbon that might affect bioavailability or
toxicity, and ecotoxicologic data were not analyzed to estimate
community effect concentrations for stressors that could be
compared to environmental concentrations.

RESULTS

Point-pattern analysis

Monitoring stations for benthic biodiversity had a spatial
density of 0.09 monitoring stations/km2 with a mean distance
between monitoring stations of 1.38 km. Monitoring stations
for water quality had a spatial density of 0.01 monitoring
stations/km2 with a mean distance between monitoring stations
of 7.5 km. Monitoring stations for sediment toxicants had a
spatial density of 0.032 monitoring stations/km2 and a mean
distance between monitoring stations of 2.27 km. The cali-
bration sites used for sensitivity analysis for the interpolation
of biodiversity had a density of 0.004 sites/km2 and a mean
distance between sites of 17.86 km.

Analysis of the K-statistics indicated that monitoring sta-
tions for biodiversity, water quality, and sediment toxicants
all exhibited high spatial clustering over small spatial scales
(,10–20 km; Fig. 3). This indicates a spatial bias in moni-
toring stations that is a result of oversampling in certain regions
of the basin, particularly the lower Potomac, York, and James
rivers and the greater Baltimore and Annapolis, Maryland,
USA, areas (Figs. 1 and 2). This pattern is likely the result of
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Fig. 4. Results of effect modeling based upon observed benthic bio-
diversity within the study area (1984–1999). Low- and high-impact
zones were interpolated from observed values for Shannon’s biodi-
versity index at each biodiversity sampling location using a second-
order inverse distance-weighted model.

Fig. 5. Results of uncertainty analysis for effect modeling conducted
on the subset of grid cells associated with the 40 calibration points
used in sensitivity analysis (see Materials and Methods; Fig. 1). Un-
certainty in the interpolated value for each cell was expressed as the
coefficient of variation among the 10 observed values for Shannon’s
biodiversity index used to interpolate each grid cell value.

intensive sampling in regions of the bay historically considered
to be adversely impacted or located near areas of dense human
development. Monitoring stations for water quality and sedi-
ment toxicants were generally fewer in number, less dense,
and, thus, of lower spatial resolution than biodiversity moni-
toring stations. However, at spatial scales above 10 to 20 km,
monitoring stations for all three data sets were significantly
more dispersed than would be expected from a random dis-
tribution, indicating that monitoring stations were distributed
uniformly with respect to one another (Fig. 3). The K-statistics
for the calibration sites used for sensitivity analysis were also
highly dispersed (data not shown), because these sites were
selected by the investigator to be uniformly distributed.

Effect modeling

The basinwide mean and standard error for Shannon’s bio-
diversity index was 2.05 6 0.02. Based upon the modeling of
benthic biodiversity within the basin, 1,815 km2 were identified
as low-impact zones (Fig. 4). These zones were predominantly
located in the central and southern regions of the basin, al-
though smaller dispersed areas of high biodiversity were lo-
cated throughout the basin. The low-impact zones contained
nine water quality monitoring stations and 24 sediment toxi-
cant monitoring stations. In comparison, 1,412 km2 of the basin
were identified as high-impact zones (Fig. 4). These zones were
predominantly located in the northern regions of the basin and
the lower Potomac River, downstream of Baltimore and Wash-
ington, DC. However, smaller areas of low biodiversity were

located throughout the basin. The high-impact zones contained
20 water quality monitoring stations and 64 sediment toxicant
monitoring stations. The means and standard errors for ob-
served values for Shannon’s biodiversity index in the low- and
high-impact zones were 3.51 6 0.03 and 0.93 6 0.03, re-
spectively, confirming that the modeled areas identified as
high- and low-impact zones represented the observed values
for biodiversity within each.

An uncertainty analysis was subsequently conducted to as-
sess confidence in the model. The uncertainty associated with
the interpolated value for Shannon’s biodiversity index was
quantified for the subset of 40 grid cells associated with the
40 calibration points used in the sensitivity analysis (see
above). For each of these 40 grid cells, the coefficient of var-
iation (CV) was calculated for the 10 observed values for
Shannon’s biodiversity index used to interpolate the value for
that grid cell. The CVs varied from a low of 11% to a high
of 167% (mean 5 42%). Three fourths of the 40 grid cells
used in uncertainty analysis were associated with CVs of 50%
or less (Fig. 5).

Results of model validation indicated that the IDW model
agreed closely with results generated by universal kriging. A
high percentage of the areas identified as low- and high-impact
zones by the IDW model were also classified similarly by
kriging (Table 1). In addition, 70 to 100% of the biodiversity,
water quality, and sediment toxicant monitoring stations that
were contained in the low- or high-impact zones with the IDW
model were also contained in those zones when the kriging
model was used (Table 1). The IDW results for low-impact
areas generally agreed better with the kriging model than those
from the high-impact areas (Table 1). The IDW model results
generated from the use of Shannon’s biodiversity index also
agreed reasonably well with results generated from the use of
other biological indicators. Seventy-eight percent and 62% of
the areas identified as high-impact zones by the use of Shan-
non’s biodiversity index were also similarly classified by the
use of the benthic index of biotic integrity or total biomass,



Benthic biodiversity of Chesapeake Bay Environ. Toxicol. Chem. 21, 2002 157

Table 1. Validation of the inverse distance-weighted (IDW) model by
comparison to the kriging model. The % common area indicates the
percentage of the areas predicted to be of low or high anthropogenic
impact using the IDW model that were similarly identified using the
kriging model. The % biodiversity stations, % water quality stations,
and % sediment toxicant stations represent the percentage of
monitoring stations associated with low- or high-impact zones as
predicted by the use of the IDW model that were similarly associated

with low- or high-impact zones with the kriging model

Low impact High impact

% Common area
% Biodiversity stations
% Water quality stations
% Sediment toxicant stations

96
99

100
96

73
81
70
93

Table 2. Validation of the use of Shannon’s biodiversity index as an effect indicator. The % common area indicates the percentage of the areas
predicted to be of low or high anthropogenic impact using Shannon’s biodiversity index that were similarly identified by the other three indicators.
The % biodiversity stations, % water quality stations, and % sediment toxicant stations represent the percentage of monitoring stations associated
with low- or high-impact zones as predicted by the use of Shannon’s biodiversity index that were similarly associated with low- or high-impact

zones with each of the other three indicatorsa

Benthic IBI

Low impact High impact

Biomass

Low impact High impact

Species richness

Low impact High impact

% Common area
% Biodiversity stations
% Water quality stations
% Sediment toxicant stations

9
40
11

4

78
64
60
73

0
2
0
0

69
62
55
48

99
95

100
100

2
11

5
3

a IBI 5 index of biotic integrity.

respectively (Table 2). However, both the benthic index of
biotic integrity and biomass were biased toward low values,
resulting in a poor fit with the low-impact zones predicted by
Shannon’s biodiversity index. In contrast, species richness was
biased toward high values, and, thus, 95% of the areas iden-
tified as low-impact zones by Shannon’s biodiversity index
were also identified as low-impact zones by species richness
(Table 2). However, high-impact zones identified by Shannon’s
biodiversity index were a poor fit with those identified with
species richness. Because of the inherent biases and conflicting
results of the benthic index of biotic integrity, biomass, and
species richness, Shannon’s biodiversity index was the most
useful biological indicator of the four. However, other indi-
cators provided evidence in support of the delineation of high-
or low-impact areas based upon the use of Shannon’s biodi-
versity index.

Stressor identification

Comparison of benthic water quality data identified several
potential sources of stress for the benthic communities in the
Chesapeake Bay. Most significant were the disparities in nu-
trient concentrations between the low- and high-impact zones
(Table 3). Total nitrogen and phosphorus concentrations were
higher in the high-impact zones by 87 and 55%, respectively.
Similarly, dissolved organic nitrogen and phosphorus were
higher by 34% and 57%, respectively, in the high-impact
zones. Dissolved inorganic nitrogen was more than threefold
higher and dissolved inorganic phosphorus was 79% higher
in the high-impact zones. Total and dissolved organic carbon
were also significantly higher in the high-impact zones, by 41
and 34%, respectively. The availability of nutrients in the high-
impact zones was reflected in the photosynthetic biota, as in-
dicated by a twofold increase in chlorophyll concentrations

compared to the low-impact zones. Dissolved oxygen in the
high-impact zones was significantly lower by 34% than in the
low-impact zones, averaging only 3.69 mg/L during summer
months. Although pH varied significantly between the two
zones, the values were relatively similar (between 7.6 and 7.9),
suggesting this disparity may not necessarily be ecologically
relevant. In addition, salinity and conductivity were signifi-
cantly higher in the low-impact zones, which is likely a func-
tion of the geographic distribution of the low-impact zones
and their closer proximity on average to the Atlantic Ocean
(Fig. 4).

Of the 17 metals considered in the current study, 14 were
significantly increased in the high-impact area (Fig. 6). Cad-
mium concentrations were more than an order of magnitude
higher in sediments from the high-impact zones (1,001.6 mg/
kg) compared to the low-impact zones (73.6 mg/kg), and near
order of magnitude disparities were observed for other heavy
metals, including mercury and lead (Fig. 6). Other potentially
toxic metals such as arsenic, copper, aluminum, zinc, and man-
ganese were also significantly increased in the high-impact
zones (Fig. 6).

Concentrations of all pesticides considered in the current
study were increased in the high-impact zones with the ex-
ception of DDT (4,49) (Fig. 7). However, observed differences
were only statistically significant for dichlorodiphenyldichlo-
roethylene (DDE, 4,49) and dieldrin, both of which were ap-
proximately an order of magnitude higher in the high-impact
zones (Fig. 8). Mirex was present at concentrations on the
order of 100 ng/kg in the high-impact zones and was unde-
tectable in the low-impact zones, but this disparity could not
be addressed statistically (Fig. 7). The mean concentrations
for individual pesticides in low- and high-impact zones were
0.07 mg/kg and 0.5 mg/kg, respectively, and this difference
was highly significant (p 5 0.001; Fig. 7). Total pesticide
concentrations among monitoring stations in the high-impact
zones were also significantly higher than those in the low-
impact zones (p 5 0.03; Fig. 7).

All PAHs were significantly increased in the high-impact
zones compared to the low-impact zones, many by an order
of magnitude or more (Fig. 8). However, only increases of
fluorene and perylene were statistically significant. The mean
concentrations for individual PAHs in low- and high-impact
zones were 50 mg/kg and 110 mg/kg, respectively, and this
difference was highly significant (p , 0.0001; Fig. 8). Total
PAH concentrations in the high-impact zones were approxi-
mately fourfold higher than the in low-impact zones (Fig. 8).
However, this difference was not statistically significant.

All PCB congeners were elevated in the high-impact zones
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Table 3. Comparison of mean benthic water quality parameters between low-impact and high-impact zones of Chesapeake Bay, USA, during
summer months (May–September)a

Parameter

Low-impact zones

n Mean 6 SE

High-impact zones

n Mean 6 SE High/low

Dissolved oxygen (mg/L)
Water temperature (8C)
pH
Salinity (g/L)
Conductivity (mmhos/cm)
Total suspended solids (mg/L)
Turbidity (NTU)
Chlorophyll (mg/L)
Total organic carbon (mg/L)

599
614
589
614
614
601

66
361
441

5.62 6 0.08
23.20 6 0.15

7.96 6 0.01
22.26 6 0.18

34,473.80 6 249.16
20.85 6 0.66
16.12 6 1.75

5.67 6 0.31
2.62 6 0.07

1,321
1,335
1,312
1,335
1,335
1,324

111
986
943

3.69 6 0.09
22.70 6 0.11

7.63 6 0.01
14.26 6 0.18

23,311.90 6 274.44
19.89 6 0.67
20.29 6 2.52
12.30 6 0.85

4.06 6 0.09

0.66*
0.98
0.96*
0.64*
0.68*
0.95
1.26
2.17*
1.55*

Dissolved organic carbon (mg/L)
Total nitrogen (mg/L)
Total dissolved nitrogen (mg/L)
Dissolved organic nitrogen (mg/L)
Dissolved inorganic nitrogen (mg/L)
Total phosphorus (mg/L)
Total dissolved phosphorus (mg/L)
Dissolved organic phosphorus (mg/L)
Dissolved inorganic phosphorus (mg/L)
Sample depth (m)

380
405
164
153
488
494
408
404
404
614

2.32 6 0.04
0.50 6 0.01
0.36 6 0.01
0.26 6 0.01
0.10 6 0.00
2.62 6 0.05
0.03 6 0.03
0.01 6 0.00
0.01 6 0.00

12.93 6 0.30

943
1,005

985
972

1,147
1,164
1,101
1,082
1,082
1,338

3.26 6 0.06
0.94 6 0.02
0.69 6 0.02
0.35 6 0.01
0.32 6 0.01
4.06 6 0.03
0.04 6 0.04
0.01 6 0.00
0.03 6 0.00

14.21 6 0.26

1.41*
1.87*
1.94*
1.34*
3.29*
1.55
1.33*
1.57*
1.79*
1.10

a n 5 number of observations for each parameter; SE 5 standard error of the mean; High/low 5 ratio of mean values in high-impact to low-
impact zones; NTU 5 nephelometric turbidity unit.

* Significant difference (a 5 0.05) between means in low- and high-impact zones by two-sided t test.

Fig. 6. Comparison of sediment concentrations in the low- and high-
impact zones for 17 metals considered in the current study. Error bars
represent the standard error of the mean. Asterisks indicate that the
mean concentration in the high-impact zones differed significantly (p
, 0.05) from that in the low-impact zones by two-tailed t test.

Fig. 7. Comparison of sediment concentrations in the low- and high-
impact zones for 15 pesticides considered in the current study. Error
bars represent the standard error of the mean. Asterisks indicate that
the mean concentration in the high-impact zones differed significantly
(p , 0.05) from that in the low-impact zones by two-tailed t test.
DDD 5 dichlorodiphenyldichloroethane; DDE 5 dichlorodiphenyldi-
chloroethylene.

(data not shown). However, when individual congeners were
considered, no significant differences were observed between
mean sediment concentrations in the low- and high-impact
zones. The mean concentrations for individual PCBs in low-
and high-impact zones were 0.110 mg/kg and 1.05 mg/kg, re-
spectively, and this difference was highly significant (p 5
0.004). Total PCB concentrations in the high-impact zones
were approximately fivefold higher than in the low-impact
zones. However, this difference was not statistically signifi-
cant.

DISCUSSION

The analysis of the spatial distribution of benthic biodi-
versity in Chesapeake Bay indicates that a significant area of

the basin (;13% of the study area) is predicted to have low
biodiversity. Those regions of principle concern are the main
channel of the upper Chesapeake Bay, downstream of Balti-
more and Annapolis, and the lower Potomac River, down-
stream of Washington. The proximity of these high-impact
zones to areas of dense human population, development, and
industry suggests an anthropogenic influence on the spatial
distribution of biodiversity within the basin. The high-impact
regions identified in the current study are areas historically
associated with high organic and inorganic toxicant concen-
trations [36–38]. However, some high-impact zones over-
lapped with salinity values between 5 and 8 g/L that have been
associated with low estuarine species abundance [35]. Thus,
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Fig. 8. Comparison of sediment concentrations in the low- and high-
impact zones for 19 polycyclic aromatic hydrocarbons (PAHs) con-
sidered in the current study. Error bars represent the standard error
of the mean. Asterisks indicate that the mean concentration in the
high-impact zones differed significantly (p , 0.05) from that in the
low-impact zones by two-tailed t test.

one cannot completely eliminate natural variation in water
chemistry as a confounder in effects assessment.

Comparison of water quality parameters between the low-
and high-impact zones identified potential direct and indirect
sources of stress to the basin’s benthos. Both nitrogen and
phosphorus concentrations were elevated in the high-impact
zones by approximately two- to threefold, indicating increased
delivery of nutrients to the high-impact zones. Likely sources
of such nutrients are urban and agricultural runoff associated
with the various land usages within the watershed, as well as
atmospheric deposition [38,39]. Although some discussion of
the potential toxicity of nitrogenous compounds such as ni-
trates has occurred [40], the concentrations reported in the
current study likely are not sufficient to cause direct toxicity.
However, they are a potential indicator of runoff and environ-
mental degradation and may be indirectly responsible for other
stressors. For example, chlorophyll concentrations were also
elevated in the high-impact zones, probably as a result of
greater nutrient availability. Toxic algal blooms during summer
months resulting from eutrophication are a well-documented
source of stress to aquatic organisms [41–43]. Hypoxic or
anoxic conditions also have been associated with eutrophi-
cation [44–47], and the oxygen demands in the benthic en-
vironment may be sufficient to cause periodic or sustained
oxygen depletion. Dissolved oxygen concentrations similar to
those in the high-impact zones (3.69 mg/L) have been dem-
onstrated to cause stress to aquatic organisms [48–50].

The differences in sediment toxicant concentrations be-
tween the high-impact and low-impact zones were generally
much greater than those observed for any water quality pa-
rameter. These differences were most readily apparent with
metal concentrations. Cadmium concentrations in the high-
impact zones were more than an order of magnitude greater
than those in the low-impact zones. Concentrations of other
heavy metals such as mercury and lead were also several-fold
higher in the high-impact zones. The consistent elevation of
all metals in the high-impact zones raises questions regarding
whether such observations could be the result of geologic fac-
tors resulting in an inherently greater relative background met-
al concentration in the high-impact zones. However, previous
work identified areas of elevated metal concentrations similar

in extent to the high-impact zones defined in the current study,
even after accounting for geologic phenomena [38]. In some
cases, elevated metal concentrations were linked to point-
sources such as steel mills or sewage treatment plants [36,37].

The concentrations of organic toxicants, including pesti-
cides, PAHs, and PCBs were also consistently elevated in the
high-impact zones. Because of the small sample sizes asso-
ciated with these compounds as well as high or unreported
detection limits, a significant degree of uncertainty must be
associated with these data. However, the fact that the majority
of organic compounds were elevated in the high-impact zones,
often by an order of magnitude, indicates that delivery of these
toxicants into these zones is greater than delivery into other
zones. As anthropogenic compounds, background levels large-
ly can be excluded as a confounder. Thus, the assumption can
be made that benthic organisms within the high-impact zones
are exposed to a complex mixture of organic and inorganic
toxicants. However, determination of the ecological signifi-
cance of such exposures is difficult. Average concentrations
in the high-impact zones for individual pesticides, PAHs, and
PCBs were on the order of 0.5 mg/kg, 50 mg/kg, and 1 mg/
kg, respectively. If one considers additivity among those com-
pounds included in the current study, their sum concentrations
are on the order of 10 mg/kg for pesticides, 4,000 mg/kg for
PAHs, and 20 mg/kg for PCBs. Persistent hydrophobic com-
pounds as well as metals also may bioconcentrate or bioac-
cumulate, leading to more severe exposures for certain trophic
levels than indicated by sediment concentrations alone
[38,51,52].

The use of ecological effects data to drive the ERA process
offers several advantages over the more common stressor-
based approach to ERA. For example, Hall et al. [53] con-
ducted an ERA of copper and cadmium in surface water of
the Chesapeake Bay. Although several sites of potential risk
were identified, the authors could not validate their risk esti-
mates with observations of effects from the field. If indeed
adverse effects had been observed in situ they could not have
been attributed to cadmium and copper, for other potential
stressors were not assessed and excluded. As a result, both the
predicted effects as well as the predicted stressors are asso-
ciated with significant uncertainty, identifying limitations of
such an approach to ERA. An effects-based approach to ERA
alleviates these problems in two ways. First, the estimates of
adverse ecological effects are less ambiguous because they are
based upon direct measurements and are the result of the net
direct and indirect effects of all relevant stressors and stressor
interactions. Thus, the a priori identification of the stressor(s)
is not necessary for quantifying the effects [3]. Second, the
ERA becomes more amenable to the consideration of multiple
stressors, because potential stressors are not excluded by the
investigators from the outset. Effects-based ERA also may be
utilized to monitor ecosystem responses to long-term cumu-
lative impacts or impact-mitigation management strategies [3].
However, effects-based ERA is not a replacement for tradi-
tional ERA methods. Although the identification of a suite of
stressors that may affect the biota is advantageous for devel-
oping a comprehensive conceptual model of ecological stress,
the ability to quantify and estimate the cumulative effects of
multiple stressors remains an important challenge. For ex-
ample, although the disparities in toxicant concentrations be-
tween the low- and high-impact zones were greater than the
observed disparities in water quality parameters such as dis-
solved oxygen, one cannot conclude that toxicants pose a
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greater risk to the biota. Therefore, use of an effects-based
approach to screen or identify candidate stressors that can be
investigated further through laboratory toxicity testing or
body-burden analysis from field populations to prioritize their
risk may be a rigorous approach to regional ERA.

CONCLUSIONS

The development of regional environmental assessment
methods is a critical task in light of future challenges to both
terrestrial and aquatic ecosystems. However, ERA at the re-
gional level has significant data requirements necessitating the
integration of data from all available sources. The availability
of GIS technology and its increasing application in environ-
mental management and decision-making makes GIS tech-
nology a useful tool for overcoming some of the current chal-
lenges to conducting regional ERA. Based upon available data,
the current study identifies multiple potential stressors to the
benthic biota of the Chesapeake Bay, including dissolved ox-
ygen, cadmium, mercury, lead, copper, and the cumulative
effects of pesticides, PAHs, and PCBs. Additive or synergistic
interactions have been observed for combinations of these
stressors as well [54–56]. A number of other toxicants likely
are present, suggesting that continued sampling is necessary.
The spatial autocorrelation among multiple stressors at re-
gional scales suggests that a priori assumptions regarding the
identity of stressors or the consideration of stressors individ-
ually may result in incomplete cataloging of hazards. As a
result, effects-based approaches to retrospective ERA may as-
sist in preventing the exclusion of potential effects, their caus-
es, or both.

Methods similar to those used in the current study could
be extended readily to address additional research questions
related to regional ERA. For example, although the current
study considered spatial patterns of environmental data, tem-
poral patterns were not assessed. Temporal variation or trends
in toxicant concentrations or effects are an important consid-
eration, particularly in the development or assessment of man-
agement goals or strategies. Application of more advanced
spatial modeling tools may lead to the development of prob-
abilistic models of ecological risk derived from spatial as well
as temporal patterns of multiple stressors. Additional work also
must be performed regarding the data requirements for GIS-
based analyses methods, such as the optimal distribution and
density of monitoring stations, the types of data that should
be collected, and the frequency of data collection. Establishing
links between the distribution of stressors and terrestrial sourc-
es, both point and nonpoint, would yield valuable information
for watershed management. Finally, the rapid application of
tools such as GIS technology to ERA as they become available
will assist in the timely development of more robust assess-
ment methods.
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APPENDIX

List of toxicants considered in the current study. Detection limits reported by the Chesapeake Bay Program for each toxicant are listed as a
range (minimum–maximum). Sample sizes and the estimated percentage of samples above detection limits (% . DL) are also listed for each
toxicant and impact zone (low or high)a

Toxicant Name
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(mg/kg)

Low-impact zones

No. samples % . DL

High-impact zones

No. samples % . DL
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Copper
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Lead
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Tin
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0–10,000
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0–1,000
0–5,000
0–8,000

6.5–5,000
0–10,000
2–1,000
0–5,000
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22
32
21
43
33
43
26
43
23
34
43
31
25
21
14
43

100
50
80

NA
12
85
96

100
91

100
27
87
20
13

NA
80

100

57
44
84
37

112
88

112
66

112
61
88

112
70
51
37
53

112

100
81
84

NA
68
96
91
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95
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60
89
40
27

8
75
98

Mean 31 69 76 76

Pesticides
Aldrin
Chlordane
DDD (4,49)

0.004–150
0.001–1.16
0.003–130
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12
23
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42
59

4
100

18
DDD (O,P)
DDE (4,49)
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18

39
61

NA
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APPENDIX

Continued

Toxicant Name
Detection limit

(mg/kg)

Low-impact zones

No. samples % . DL

High-impact zones

No. samples % . DL

DDE (O,P)
DDT (4,49)
DDT (O,P)
Dieldrin
Endrin
Heptachlor
Heptachlor epoxide
Lindan
Mirex
Trans-nonachlor

0.68–1.11
0.002–120
0.18–1.22

0.009–150
0.008–230
0.003–120
0.002–140
0.004–16.1
0.025–1.2
0.031–0.87

12
23
12
23
20
23
22
12
12
12

NA
10

NA
NA
NA
NA
NA

0
0

NA

39
59
40
60
40
60
53
49
43
40

NA
16

6
8

NA
4
2

NA
3
7

Mean 18 8 49 17

Polycyclic aromatic hydrocarbons
Acenaphthene
Acenaphthylene
Anthracene
Benzo[B1K]fluroanthene
Benzo[a]pyrene
Benzo[b]fluroanthene
Benzo[e]pyrene
Benzo[gh]perylene
Benzo[k]fluroanthene
Benzo[a]anthracene
Chrysene
Dibenzo[a,h]anthracene
Fluroanthene
Fluorene
Indeno[1,2,3-cd]pyrene
Naphthalene
Perylene

0.002–225
0.05–212

0.0002–265
9.6–145

0.0002–502
0.19–459
0.05–153

0.0001–545
0.306–459

0.0002–587
0.0002–479
0.0003–587
0.003–350
0.002–227

0.0001–545
0.004–200
0.05–189

25
16
28
12
28
11
14
16
11
27
28
18
28
28
26
17
14

50
10
62
50
76

NA
71
56

NA
80
84
42
84
62
74
18
66

59
51
63
36
64
35
43
52
31
63
64
58
64
63
63
55
43

43
20
58
75
59
42
63
54
25
74
71
39
71
55
56
56
50

Phenanthrene
Pyrene

0.001–290
0.003–350

17
28

45
76

55
64

59
74

Mean 21 59 54 55

Polychlorinated biphenyls
PCB 8
PCB 18
PCB 44
PCB 52
PCB 66
PCB 101
PCB 105
PCB 118
PCB 128
PCB 138
PCB 153
PCB 170
PCB 180
PCB 187
PCB 195
PCB 206
PCB 209

0.09–2.9
0.074–3.45
0.06–1.24
0.1–2.0

0.08–1.01
0.026–0.72
0.07–0.77
0.01–0.49

0.037–0.95
0.01–0.83
0.08–0.77
0.1–8.12

0.01–0.75
0.01–0.76

0.043–0.72
0.068–0.81
0.068–0.65

12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12

NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
29

NA
NA
NA
NA
NA
10

39
36
37
40
37
40
40
40
41
41
41
40
37
40
37
37
37

7
7
7

33
26
43
19
26
20
43
36
14
24
40
16
20
29

Mean 12 20 39 24

a NA 5 not available (sufficient data were not available to make the calculation because of underreporting of detection limits); DDD 5
dichlorodiphenyldichloroethane; DDE 5 dichlorodiphenyldichloroethylene.


