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Abstract

This paper reviews a number of conceptual issues pertaining to the implemen-
tation of an explicit “spatial” perspective in applied econometrics. It provides an
overview of the motivation for including spatial effects in regression models, both
from a theory-driven as well as from a data-driven perspective. Considerable at-
tention is paid to the inferential framework necessary to carry out estimation and
testing and the different assumptions, constraints and implications embedded in
the various specifications available in the literature. The review combines insights
from the traditional spatial econometrics literature as well as from geostatistics,
biostatistics and medical image analysis.
Key Words: spatial econometrics, spatial autocorrelation, spatial processes, model
specification.

1 Introduction

Recent years have seen a virtual explosion in the application of spatial models in a
range of fields in the social sciences in general, and in applied economics in particu-
lar (recent reviews are given in, e.g., Anselin and Bera 1998, Goodchild et al. 2000,
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Joseph Havlicek Jr. Memorial Lecture in Applied Econometrics, The Ohio State University, Columbus, OH,
and short courses at the Wharton School, University of Pennsylvania, Philadelphia, PA, and the University
at Albany, Albany, NY. Comments, questions and suggestions from the participants at these presentations
contributed to refining the arguments outlined in the paper and are greatly appreciated.
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Anselin 2001b,c). Over time, the methodology ofspatial econometrics(Paelinck and
Klaassen 1979, Anselin 1988) has matured and evolved from an aspect of spatial statis-
tics with primary application in regional science and analytical geography (Ord 1975,
Cliff and Ord 1981), to an increasingly visible thread in formal econometric theory
(for example, Conley 1999, Kelejian and Prucha 1999, 2001, Baltagi and Li 2001,
Lee 2002). Similarly, when dealing with aggregate cross-sectional data in empirical
work, testing for spatial autocorrelation and estimating models that formally incorpo-
rate spatial effects is no longer exceptional. Arguably, spatial regression techniques are
beginning to become part of the toolbox of applied econometrics. In agricultural and
resource economics, illustrations of this perspective can be found in Benirschka and
Binkley (1994), Bockstael (1996),Weiss (1996), Nelson and Hellerstein (1997), Bell
and Bockstael (2000), Florax et al. (2001), Hurley et al. (2001), Anselin et al. (2002),
Irwin and Bockstael (2002), Kim et al. (2002) and Roe et al. (2002), among others.

While undoubtedly considerable progress has been made, most applications of spa-
tial econometrics are rather limited in the way in whichspatial interactionis incor-
porated in the model specifications. The typical approach is to distinguish between
so-calledspatial lagandspatial errormodels (see Anselin 1988). The former incorpo-
rate a spatially lagged dependent variable (Wy) on the right hand side of the regression
model. Spatial error autocorrelation is either modeled directly, following the general
principles of geostatistics, or by utilizing a spatial autoregressive process for the er-
ror term (for a recent review of these models, see Anselin and Bera 1998, Anselin
2001b). What is not always well understood in this process is that different spatial
models induce sometimes radically different spatial correlation patterns, which do not
necessarily match the underlying theoretical interaction model.

In this paper, I review some issues in the specification and interpretation of spatial
regression models. The objective is to pull together results from a variety of disciplines
in which different modeling strategies have been pursued, including spatial economet-
rics, biostatistics, medical image analysis and geostatistics. The review is aimed at a
general audience of applied econometricians, without assuming familiarity with spatial
econometrics. Hence, the approach taken is primarily pedagogic and mostly a reformu-
lation and elaboration of ideas that have been outlined in some form in earlier review
papers (specifically, Anselin and Bera 1998, Anselin 2001b,c, 2003). The emphasis
throughout is less on technical aspects than on the underlying concepts and intuition.
The objective is to highlightunusualresults and suggest additional ways in which spa-
tial models may be introduced in applied econometrics. A more technical treatment is
pursued in a companion paper.

The focus of the paper is exclusively on spatial correlation in linear regression mod-
els, leaving the discussion of spatialheterogeneityaside.1 Also, space-time models and
spatial panel specifications are not considered explicitly, although most of the structures
considered can be implemented in a space-time context without modification.2

The remainder of the paper consists of four sections and a conclusion. First, the-
oretical motivations for the inclusion of spatial dependence in a regression model are

1For a general review of approaches to model spatial heterogeneity in a regression context, see, among
others, Anselin (1988, 1990), Casetti (1997), Fotheringham et al. (1998) and LeSage (2002).

2See for example Elhorst (2001) for a recent review of some of the issues, and Anselin (1988, 2001b),
for the specification of spatial panel data models.
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considered. This is followed by a similar focus on data-driven motivations. Next, a
number of conceptual issues are reviewed that pertain to the foundations for statisti-
cal inference in spatial regression models, including data models, the construction of
spatial weights and asymptotics. Finally, some comments are formulated on the issue
of ecological regression, i.e., the application of spatial regression models to aggregate
units, such as counties or states.

2 Theory-Driven Specifications

The inclusion of spatial effects in applied econometric models is typically motivated
either on theoretical grounds, following from the formal specification of spatial inter-
action in an economic model, or on practical grounds, due to peculiarities of the data
used in an empirical analysis. I consider the theoretical perspective first.

In their description of the definition ofspatial econometrics, Paelinck and Klaassen
(1979) stressed the importance of spatial interdependence, the asymmetry of spatial re-
lations, and the relevance of factors located in “other spaces.” This early formulation
of the importance of spatial interaction was mostly based on pragmatic grounds. How-
ever, more recently, these concerns are also reflected in theoretical economic models of
interacting agentsandsocial interaction. Such models deal with questions of how the
interaction between economic agents can lead to emergent collective behavior and ag-
gregate patterns, and they assign a central role to location, space and spatial interaction.
The substantive concepts receive different labels in various subfields, such as social
norms, neighborhood effects, peer group effects, social capital, strategic interaction,
copy-catting, yardstick competition and race to the bottom, to name a few. However,
an important commonality is the need to formally specify the range and strength of the
relations between the interacting agents, which in empirical practice translates into the
need to specify a structure for spatial correlation.

Examples of such theoretical frameworks in economics are models of complex be-
havior built on principles from statistical mechanics, such as interacting particle sys-
tems and random field models (Brock and Durlauf 1995, Akerlof 1997, Durlauf 1997);
macroeconomic models with mean field interaction (Aoki 1996); models for neighbor-
hood spillover effects (Durlauf 1994, Borjas 1995, Glaeser et al. 1996); and models
of increasing returns, path dependence and imperfect competition underlying thenew
economic geography(Fujita et al. 1999).

Rather than providing a detailed review of how specific spatial econometric mod-
els follow from these theoretical considerations, I will first focus on two particularly
interesting forms that have seen considerable application in practice: spatial reaction
functions and potential variables. Next, I present some remarks on spatial latent vari-
able models.

2.1 Spatial Reaction Function

A spatial reaction function (Brueckner 2003) expresses how the magnitude of a deci-
sion variable for an economic agent depends on the magnitudes of the decision vari-
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ables set by other economic agents.3 This provides the theoretical basis for a so-called
spatial lagmodel, or, mixed regressive, spatial autoregressive model (Anselin 1988):

y = ρWy+Xβ+ ε, (1)

where, as usual,y is an n by 1 vector of observations on the dependent (decision)
variable,W is ann by n spatial weights matrix that formalizes the network structure
(nodes and links) of the social network of then agents,4 ρ is the spatial autoregressive
parameter,X is ann by k matrix of observations on the exogenous variables, with an
associatedk by 1 regression coefficient vectorβ, andε is a vector or random error
terms.

Brueckner (2003) develops two theoretical frameworks for strategic interaction that
yield a reaction function as the equilibrium solution. One is referred to as aspillover
model, in which an agenti chooses the level of a decision variable,yi , but the values
of they chosen by other agents (say,y−i , where the−i subscripts refers to all agents
other thani) affect its objective function as well. For example, this would be relevant
in a situation where a farmer would determine the amount of farmland devoted to a
crop by taking into account the amounts allocated by the other farmers in the system.
Consequently, the objective function for each agent is:

U(yi ,y−i ; x′i), (2)

with x′i as a row vector of (exogenous) characteristics ofi. The solution to the usual
objective maximization problem yields the reaction function as

yi = R(y−i ,x
′
i). (3)

The spatial lag model (1) is an implementation of the reaction function obtained
by specifying a linear functional form forR and by restricting the set of interacting
agents to the “neighbor” structure expressed in the spatial weightsW. Even though
this imposes a large number of zero constraints inW in the structural form (1), the
corresponding reduced form reveals aglobal range of spillovers:

y = (I −ρW)−1Xβ+(I −ρW)−1ε, (4)

in which the “Leontief inverse”(I −ρW)−1 links the decision variableyi to all thexi

in the system through a so-calledspatial multiplier. In addition, (4) illustrates how
the dependent variableyi at i is determined by the error terms at all locations in the
system, and not just the error ati. This simultaneitymakes the spatially laggedWy
variable endogenous, which necessitates specialized estimation techniques, such as
maximum likelihood estimation or instrumental variables approaches (see, e.g., Ord
1975, Anselin 1988, Kelejian and Robinson 1993, Kelejian and Prucha 1998).

3Brueckner (2003) develops his argument in the context of public economics and refers to the “agents”
as “jurisdictions,” which are the decision-making agents in this setting. Here, I will use the more generic
term agents. See also below, Section 5 for a discussion of the interpretation of reaction functions when the
units are aggregates of agents, which is an important distinction.

4A more formal treatment of the spatial weights is postponed until Section 4.2.
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The particular form of the spatial multiplier in (4) is only one example out of a
taxonomy of models for spatial spillovers, as presented in Anselin (2003). Different
ranges for the spatial spillovers can be incorporated by applying the spatial lag oper-
ator (pre-multiplication by the spatial weights matrixW) to they, X or ε terms in a
regression specification. However, it is important to note that models that includeWy
all induce aglobal form of spillovers.

Local forms of spillover are obtained from spatial lags for the explanatory vari-
ables (WX, see section 2.2) and particular error covariances, such as those induced by
a spatial moving average model and a spatial error components model (see Anselin
2003, Anselin and Moreno 2003). These do not seem to fit the strategic interaction
framework.

Brueckner (2003) illustrates how a number of empirical applications of strategic
interaction models are special cases of his spillover model, with applications to state
expenditures, pollution abatement and other forms of yardstick competition.5

A second theoretical framework is referred to as theresource flowmodel. Here, the
agent’s decision variable is not directly affected by the levels chosen by other agents,
but only indirectly. The indirect effect follows from the presence of the value of a
“resource” in the the individual agent’s objective function,

U(yi ,si ,x
′
i), (5)

wheresi is the amount of the resource available to agenti. For example, this could
pertain to a farmer’s decision of how much irrigation to apply to a field, where the
resourcesi would be the amount of water available for this purpose. The interaction
between agents follows from the way in which the resource is distributed among them,
which depends both on the characteristics of each agent (x′i , for example, the type of
crop grown on the field), as well as on the decisions taken by the other agents (how
much water they use):

si = H(yi ,y−i ; x′i). (6)

After substituting (6) into (5), the interaction variablesy−i become part of the objective
function, and the resulting equilbrium solution takes the same form as the reaction
function (3) for the spillover model. Brueckner (2003) illustrates how a number of tax
competition and other strategic interaction models fall in the resource flow category
and thus also suggest a spatial lag specification.6

It is important to note that the spillover and the resource flow models both lead to
the same spatial lag econometric specification. Put differently, the spatial econometric
model as such is not sufficient to identify the economic mechanism that leads to the
presence (and empirical evidence) of spatial interaction. This is an example of thein-
verse problem, which is pervasive in spatial data analysis (see, for example, Ch. 8 in
Chilès and Delfiner 1999). A similar problem is encountered in the interpretation of
a spatial lag model as the expression of a spatial diffusion process.7 While diffusion

5Familiar examples are Case et al. (1993), Besley and Case (1995), Murdoch et al. (1997), and Bivand
and Szymanski (1997, 2000).

6Examples are Brueckner (1998) and Saavedra (2000), among others.
7See, for example, the discussion in Baller et al. (2001) and Messner and Anselin (2003).
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processes will lead to equilibrium outcomes that are compatible with a spatial lag spec-
ification, other processes may yield the same outcome as well. In other words, these
different processes areobservationally equivalent.

The essence of the problem is that a single cross-sectional data set contains insuf-
ficient information to identify the precise nature of the underlying mechanism. This is
only one example of the kinds of identification problems encountered in spatial econo-
metric models, as shown by Manski (1993) and Kelejian and Prucha (1997), among
others.8

2.2 Potential Variables

A potentialvariable formally expresses the importance of “other spaces” in a regression
specification. The theoretical motivation for this goes back to the early treatment of
spatial interaction in the regional science literature by Isard (1960). There, the potential
for interaction between an origini and all destinationsj was formulated as a sum of
“mass” terms in the destination, suitably downscaled by a distance decay function.
Specifically, withzj as a measure of mass (e.g., income, population size) andf (di j ) as
a distance decay function, the potential ati becomes:

Pi = ∑
j

f (di j )zj . (7)

Note that the destinations need not be the same as the origins for this concept to work,
although they typically are.9 Commonly used distance decay functions are the negative
exponential,f (di j ) = e−γdi j , and the inverse distance function,f (di j ) = d−γ

i j .10

A concept related to notion of a potential is thespatial cross-regressiveterm or
spatially lagged explanatory variable (WX), discussed in Florax and Folmer (1992).
Such a variable consists of a weighted sum of values at other locations, or, for each
observationi,

[Wx]i = ∑
j 6=i

wi j x j , (8)

where the importance of each linki- j is expressed in the weights. The weights are
perfectly general, and can include the distance decay specifications given above. Typi-
cally, they are based on geographic contiguity of the units of observation. The non-zero
elements in thei-th row ofW determine the range of interaction that affects locationi,
or, the range of spatial spillover.

In contrast to the spatially lagged dependent variable that follows from the spatial
reaction function, the spatial cross-regressive term does not imply a multiplier effect.

8In point pattern analysis, this identification problem is referred to as the problem oftrue vs. apparent
contagion. In a nutshell, the information in a cross-section is not sufficient to distinguish between clustering
as resulting from a contageous process, or clustering as a result of spatial/structural heterogeneity (for details,
see, among others, Upton and Fingleton 1985, Cressie 1993).

9For example, in Anselin et al. (1997) a variable is included that incorporates the effects of counties sur-
rounding an MSA, as a “ring” variable, whereas those counties are not part of the data set for the dependent
variable.

10The parameterγ is either estimated jointly with the other parameters of the model, which turns it into a
non-linear specification, or set a priori. Common choices in the inverse distance model are the integers 1 and
2, the latter following from the Newtonian gravity model. See Isard (1960), for an extensive discussion.
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Whether its range is global (including all other observations) or local (limited to a few
“neighbors”) depends on the specification of the spatial weights, that is, on the extent
to which zero restrictions (of the formwi j = 0) have been imposed.

In a regression specification, the same variables may be included in non-lagged and
spatially lagged form, as in

y = Xβ+WXγ+ ε, (9)

where zero restrictions can be imposed on specific elements of the parameter vectorsβ
andγ. In addition, when both the original values (xk) and the spatial lag (Wxk) for the
same variable are included, tests for the importance of distance decay can be performed
(distance decay impliesγk < βk). Finally, in contrast to the spatial lag model, the
spatial cross-regressive specification does not require specialized estimation methods
and ordinary least squares remains unbiased forγ.

2.3 Spatial Latent Variable Models

So far, the theoretical models considered were formulated for a continous dependent
variabley. In applied econometrics, a more relevant specification often pertains to dis-
crete dependent variables, where only a limited number of values are observed, such as
the presence or absence of an action, or whether one out of a small number of alterna-
tive decisions has been taken. The standard approach to modeling such phenomena is
to develop a specification for an unobserved underlyinglatent dependent variable for
each agent, sayy∗i . The link between the latent variable and the observed discrete phe-
nomenon is obtained by specifying a threshold, sayc, such thatyi is observed whenever
y∗i > c. A typical application of this approach is in spatial land use models, where only
the outcome is observed (one out of a set of discrete land use decisions), but the de-
cision process is related to a latent variable, such as profitability, in a random utility
framework.

A spatial latent variable model is a specification for this process where spatial cor-
relation is introduced between the decision variables and/or in the error structure of
the model. As a familiar point of departure, consider a latent linear regression model,
where the unobserved dependent variabley∗i is related to a1 by k row vector of ex-
planatory variablesx′i and an error termεi ,

y∗i = x′iβ+ εi (10)

A matching spatial lag model would then be

y∗ = ρWy∗+Xβ+ ε, (11)

or, equivalently,
y∗i = ρ ∑

j 6=i

wi j y
∗
j +x′iβ+ εi , (12)

wherey∗ is the full n by 1 vector of the latent dependent variables. Note that this is
compatible with a spatial reaction function for the latent variables, butnot necessarily
for the observed discrete outcomes. In other words, it is the latentWy∗ that is present
in the actors’ objective functions, such as equation (2), butnot the observedWy. For
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example, this would imply that it is the unobserved profitability of the neighbors parcels
that enters in the utility function of a spatial land use model, but not the observed actual
land uses.

The matching reduced form of the latent spatial lag process is as in (4), but again
pertaining to the vector of latent variables

y∗ = (I −ρW)−1Xβ+(I −ρW)−1ε, (13)

or,
y∗ = (I −ρW)−1Xβ+u, (14)

whereu = (I −ρW)−1ε.
For simplicity, let the thresholdc = 0 and letyi be binary, taking on the value of 1

whenevery∗i > 0. From (13), it follows that

y∗i = ∑
j

ai j x
′
jβ+ui , (15)

where ai j is the elementi, j of the Leontief inverse matrix(I − ρW)−1, and ui =
∑ j ai j ε j . The summation overj implies thaty∗i is determined not only byx′i , but also
by all the otherx′j in the system, and not only byεi , but by the other error termsε j in
the system as well.

The discrete variableyi is observed whenevery∗i > 0 in (15), or

∑
j

ai j x
′
jβ+ui > 0. (16)

For a symmetric random variableui , this yields the familiar condition

Prob[yi = 1] = Prob[ui < gi(X,W,β,ρ)], (17)

wheregi = ∑ j ai j x′jβ depends onX, W, β andρ. Note that in (17),ui is not i.i.d. as in
the usual (non-spatial) model, but is a random variable whose marginal distribution is
determined (in part) by the covariance matrix of the multivariate random vectoru.

In the case of a standard normalεi , i.e., for a spatial probit model, the random vector
u will be multivariate normal with a covariance matrixCov[u] = [(I−ρW)′(I−ρW)]−1.
An important consequence of this complex covariance structure is that the marginalui

will be heteroskedastic. This makes standard probit estimation inconsistent. In addi-
tion, due to the high degree of covariance, it is necessary to integrate out then− 1
other random variables in order to obtain the marginal distribution for each individual
ui . Note that whenεi does not follow a normal distribution, the transformed multivari-
ate random variable(I −ρW)−1ε is not necessarily well defined. For example, this is
the case for a logit specification and for models of counts (Poisson models), where the
resulting multivariate specification is intractable.

The essence of the problem is again thesimultaneityof they∗i , which precludes an
easy solution such as

Prob[yi = 1] = Prob

[
εi < ρ ∑

j 6=i

wi j y
∗
j +x′iβ

]
. (18)
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This expression is not operational, since they∗j that enter in the inequality condition are
not observed, and are themselves determined byy∗i .

This simultaneousmodel contrasts with aconditional approach, in which either
y j or Prob[y j = 1] are (assumed to be) observable. An implication of the conditional
approach is that the spatial pattern of they j cannot be explained by the model. In
other words, in order to be operational, a conditional model requires that the values
of they j for the neighbors are obtained separately from the spatial model (12). More
importantly, the two approaches arenot equivalent, a point sometimes lost in the inter-
pretation of results obtained in empirical practice.

A distinct advantage of the conditional approach is that standard estimation tech-
niques can be applied, as long as the spatial lag term can be inserted as an observable
on the right hand side of the condition (18). In practice, this can be implemented by
a judicious spatial resampling (cluster sampling of non-contiguous clusters), although
this typically involves a substantial loss of information.11 In contrast, the complexity
of the multivariate interactions in (17) invalidates standard probit or tobit techniques
and requires specialized estimation and tests. This is still very much an active area of
research. A number of suggestions have been formulated, such as the use of the EM
(expectation, maximization) approach (McMillen 1992), general method of moments
(GMM) estimation (Pinkse and Slade 1998), and simulation estimators, such as recur-
sive importance sampling (Vijverberg 1997, Beron and Vijverberg 2002) and the Gibbs
sampler (LeSage 2000).12

3 Data-Driven Specifications

In practice, the motivation for applying a spatial econometric model is typically not
driven by formal theoretical concerns, but instead is a result of data “problems.” For
example, the scale and location of the process under study does not necessarily match
the available data, such as when agricultural land markets are studied with data at the
county level. This mismatch will tend to result in model error structures that show
a systematic spatial pattern. Also, explanatory variables are often “constructed” by
spatial interpolation to make their scale compatible with that of the dependent vari-
able. Again, this spatial prediction will tend to result in prediction “errors” that show
systematic spatial variation. This problem is commonly encountered in models where
economic outcomes are related to environmental or resource variables, such as air or
water quality. Spatially aggregate measures of the latter are computed by interpolating
measures obtained for a small set of monitoring stations, whose locations do not coin-
cide with those of the economic agents. Another often encountered situation is when
data on important variables are missing, and those variables show spatial structure, as
is often the case in studies of tropical land use and deforestation. A common charac-

11For example, if observations typically have four neighbors, the effective sample size in a non-contiguous
subsample would be one fourth of the original sample size. This loss of degrees of freedom will result in a
lower precision of the estimates, limiting this approach in practice to very large data sets.

12A review of estimation issues in spatial latent variable models is contained in Fleming (2002). Testing
for spatial autocorrelation in probit and tobit models is considered in Kelejian and Prucha (2001) and Pinkse
(2002).
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teristic of these data problems is that the error term in a regression model will tend to
be spatially correlated.13

In contrast to theory-driven models, which can be referred to as dealing withsub-
stantivespatial correlation, the correlation in the error models is referred to as anui-
sance. From a technical viewpoint, the parameters used in the specification of the
structure of the spatial correlation can therefore often be considered to be nuisance
parameters, which facilitates estimation in some instances.14 The main objective of
the econometric exercise is to obtain unbiased/consistent and efficient estimates for the
regression parameters in the model (theβ), while taking into account the spatial struc-
ture incorporated in the error covariance matrix. Formally, the main interest is in the
familiar regression model,

y = Xβ+ ε, (19)

where the error covariance matrix,Cov[εε′], or, equivalently,E[εε′], specifies spatial
covariance when the off-diagonal elements are non-zero,E[εiε j ] 6= 0 (for i 6= j), in
accordance with a given “spatial ordering” (Kelejian and Robinson 1992). Specific
forms for the covariance structure are either specified directly (in so-called direct rep-
resentation models) or follow from a spatial stochastic process model (such as a spatial
autoregressive or spatial moving average model).

3.1 Spatial Filtering

An interesting perspective in the context of spatial correlation as a nuisance is the
so-calledspatial filteringapproach. Similar to first differencing for time series, one
can consider a form of spatial differencing.15 However, unlike the time series case,
for row-standardized spatial weights, the first differencing leads to singularity, since
ρ = 1 is outside the proper parameter space. For general, not row-standardized weights
the parameter space is typically constrained to values much smaller than one, so that
(unscaled) first differencing is similarly not allowed.

More formally, a spatial first difference can be expressed as

y−Wy= (X−WX)β+u, (20)

or,
(I −W)y = (I −W)Xβ+u. (21)

Since the row elements ofW sum to one, the matrix(I −W) is singular. Instead of
using a “pure” first difference, a spatial autoregressive parameter must be included, as
in

(I −ρW)y = (I −ρW)Xβ+u. (22)

13This pertains not only to the error terms in classical linear regression models, but extends to generalized
linear models (such as Poisson regression models) and generalized additive models (e.g., models for rates) as
well. Examples can be found in Gotway and Stroup (1997), Waller et al. (1997b), Best et al. (1999), Lawson
(2001), MacNab and Dean (2002), among others.

14For a review of the econometric issues, see Lancaster (2000).
15For some early examples, see Martin (1974) and Getis (1995).
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The operation where a vector (or matrix) of data is pre-multiplied with the matrix
expression(I −ρW) is called aspatial filter. Further premultiplying both sides of the
equation by(I −ρW)−1 yields

y = Xβ+(I −ρW)−1u, (23)

which is equivalent to a model with a spatially autoregressive error term:

ε = (I −ρW)−1u (24)

(I −ρW)ε = u (25)

ε = ρWε+u. (26)

In other words, specifying a spatial autoregressive process for the error term is equiva-
lent to carrying out a standard regression on spatially filtered variables. However, un-
like the time series case, the spatial autoregressive parameter cannot be obtained from
a straightforward auxiliary regression, but estimation must be carried out jointly with
that of the other model parameters. As a result, the spatial filter is mostly a convenient
interpretation, but not a solution to the estimation problem.

Similar to the approach taken in (22), the spatial lag model (1) can be expressed
as a spatial filter as well. However, the filter only pertains to the left hand side of the
equation, as in

(I −ρW)y = Xβ+u. (27)

This can be interpreted as a way to clean the dependent variabley of the effects of spa-
tial correlation, while maintaining the “correct” (i.e., consistent and efficient) estimates
for β. However, as in the spatial error model, it is not possible to estimate the parame-
ter ρ separately from the other parameters of the model, so that there is no gain in the
estimation. Moreover, model (27) relates deviations from a spatial mean iny to levels
for X, which may not be appropriate in many contexts. It should only be considered as
a last resort, when there is no substantive basis for a lag model, but strong empirical
evidence in its favor, such as indicated by the results of model diagnostics. Typically,
however, other problems, such as scale mismatch, a poor selection of the weights and
more serious misspecifications are likely to be the culprit and should be considered
before resorting to an interpretation of the lag model as a spatial filter.

4 Inferential Framework

In this section, I review some issues that are seldom made explicit in applied work,
but that are fundamental for the statistical inference in spatial econometrics. Three
aspect in particular are considered, the data model underlying the statistical analysis,
the choice of spatial weights and distance decay functions, and the asymptotic approach
toward inference.

4.1 Data Model

In his classic text, Cressie (1993) outlines a taxonomy for spatial statistical analysis,
distinguishing between point pattern analysis, geostatistical models and so-called lat-
tice or regional models. In point pattern analysis, the main interest focuses on the
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locationof the observations as such, and whether this suggests clustering or other non-
random patterns. Since point pattern analysis is seldom used in economic analysis, it
will not be further considered here.16 Instead, the focus is on the distinction between
the geostatistical and lattice approaches and the contexts in which they are appropriate
in applied econometrics.

The fundamental difference between the geostatistical and lattice approaches can
be related to the notion of adata modelfrom the computer data base and geographic
information science literatures. A data model is an abstraction of reality in a form
amenable for analysis by a computer. In dealing with spatial data, the basic distinction
is betweenobjectsandfields(Goodchild 1992).17

Objects are discrete entities and are typically represented in a geographic informa-
tion systems (GIS) as points, lines and polygons (in a so-called vector GIS). In eco-
nomic analysis, these objects correspond to economic agents or “jurisdictions,” with
discrete locations in space, such as addresses, census tracts and counties. In contrast,
fields pertain to continuous spatial distributions, represented as surfaces (in a so-called
raster GIS). In economic analysis, one can envisage fields as price or risk surfaces, for
example in the study of land values, crop yields or air quality.

Sometimes it is not immediately obvious whether an object or field approach is
more appropriate. For example, land values could be studied as characteristics of dis-
crete spatial objects (parcels) or could be viewed as samples from a continuous land
value surface. Similarly, location-specific yield measures in a precision agriculture
application could be conceived of as samples from a continuous yield surface, or, al-
ternatively, be associated with a regular lattice overlaid on the field. The implications
of the choice of framework for statistical inference are far-reaching.

Of the two, the object view and associated lattice data perspective seem to be the
more natural for the study of discrete economic agents, and is the one typically associ-
ated with spatial econometrics. However, unlike “standard” econometric analysis, the
observations in a spatial analysis of objects are no longer a representativesamplefrom
a population of objects. Instead, they consist of a single data point on the complete
spatial patternamong them.

For example, a cross-sectional data set on economic variables for U.S. states is not
a sample from a population of imaginary states, but its spatial pattern (e.g., as shown
by a map for state incomes) is a single observation from all the possible stochastic
patterns that an underlying mechanism may generate. In order to carry out statistical
inference, a notion of a superpopulation or spatial random process is required (e.g., a
Markov random field, MRF). This assumes the existence (conceptually) of a stochastic
process that may generate many possible spatial patterns, of which the observed data is
one. The objective of the analysis is then to characterize the spatial process by means
of the observed spatial pattern. Both a spatial lag and a spatial error specification can
be accommodated in this framework.

A number of unusual features of this approach are worth pointing out. Since the
complete spatial pattern is the observation in lattice models, missing values are hard

16Apart from Cressie (1993), early comprehensive reviews of point pattern statistics are provided in Ripley
(1981), Diggle (1983) and Upton and Fingleton (1985). A “modern” approach, based on Bayesian hierarchi-
cal modeling is outlined in Wolpert and Ickstadt (1998), Ickstadt and Wolpert (1999) and Best et al. (2000).

17See also Egenhofer et al. (1999) for a recent overview.
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to deal with.18 In other words, a fully filled out space must be observed, without any
“holes.” For example, in the analysis of land values or crop yields for parcels in a
region, this would require thatall the parcels in the region are observed.

Also, typically, the spatial units (such as U.S. states) are contiguous and exhaust the
space, so that a notion ofinterpolation is impractical. For example, it would be hard
to imagine predicting for a “state” in between Kansas and Colorado. Instead, spatial
prediction applies toextrapolation, or the application of a model estimated from the
observed spatial pattern to another set of spatial units, outside the observed set, or for
a different time period.

In a lattice approach, observations can be viewed as nodes on a network, with links
between them indicating the connectedness between nodes. This representation is very
general, and easily extends beyond a pure geographic setting to economic and social
networks (e.g., Friedkin 1998). It requires the formal specification of the network
structure, which is implemented by means of spatial weights (see section 4.2).

A slightly different case occurs where a sample of discrete units is observed, each
with a relevant set of “neighbors,” as in some cluster sample designs. For example,
this may occur for a data set of land use by parcel, where each observation is matched
to its nearest neighbors. While similar to the lattice setup, an important distinction is
that the values for the neighbors are assumed known, and the pattern for the neigh-
bors themselves is not explained. More precisely, theconditionaldistribution of land
uses, conditional upon that observed for the neighbors is being modelled, not the joint
distribution of all the land uses in the system. This important distinction was also
encountered in the discussion of spatial latent variable models.

When the data model is a field, a geostatistical perspective is appropriate, since it
views the observations as sample points from a continuous surface. The objective of a
geostatistical analysis is to infer the spatial distribution for the surface from informa-
tion provided by the pairwise association between the sample points, expressed as a
function of the distance that separates them (for extensive reviews, see, among others,
Cressie 1993, Goovaerts 1997, Chilès and Delfiner 1999, Stein 1999) .

The geostatistical perspective is a natural framework when dealing with an incom-
plete set of spatial observations, where the objective is to predict values for unobserved
locations. This focus on spatialinterpolation(kriging), is a distinctive characteristic of
geostatistics, and contrasts with the emphasis on estimation and inference in the lattice
perspective. For applied econometric work, it is important to note that in a geostatis-
tical approach to spatial regression models, the main interest therefore lies in optimal
prediction (rather than estimation), exploiting the spatial patterns in the error term. In
a geostatistical approach, there is no direct counterpart to a spatial lag model or spatial
reaction function.

An additional aspect of the geostatistical perspective is that the choice of the num-
ber and location of sample points becomes part of the analysis, in contrast to the lattice
perspective, where the locations are given and fixed. The optimal design of spatial
sampling networks is a topic that is receiving increasing attention, particularly in the

18Note that this pertains to a classical statistical analysis. In a Bayesian viewpoint, both data and parame-
ters are considered to be random, so that missing values can be incorporated in the same way as unobserved
parameter values. A review of issues pertaining to “data augmentation,” although without treating spatial
aspects of the issue can be found in Tanner (1996).



Spatial Regression Models 14

Table 1: Implications of Data Models
Object Field

GIS vector raster
Spatial Data points, lines, polygons surfaces
Location discrete continuous
Observations process realization sample
Spatial Arrangement spatial weights distance function
Statistical Analysis lattice geostatistics
Prediction extrapolation interpolation
Models lag and error error
Asymptotics expanding domain infill

area of environmental monitoring.19

In applied work, it is important to select the proper data model for the analysis.
Primarily, this boils down to making a distinction between a design consisting of dis-
crete objects and a design that is conceptualized as a sample from a continuous spatial
surface. In many applications in applied econometrics, the latter is artificial when it
comes to modeling economic agents. However, when the set of spatial observations
is incomplete (i.e., with missing values or holes in the layout), the geostatistical/field
approach is the only one that remains internally consistent. Also, a hybrid form is pos-
sible, when some of the explanatory variables are “interpolated” from a geostatistical
model, but the model itself pertains to discrete agents, leading to a spatial errors in
variables specification (see Anselin 2001c).

The contrast between the two data models is summarized in Table 1 .

4.2 Spatial Weights

A fundamental problem in the analysis of spatial correlation in a pure cross-sectional
setting is the lack of identification of the parameters of the complete covariance matrix.
The covariance matrix containsn potentially different variance termsσ2

i as well as
n(n− 1)/2 off-diagonal termsσi j (= σ ji , since the covariance matrix is symmetric).
Clearly, a single cross-section ofn observations contains insufficient information to
allow for the estimation of the individual variance-covariance terms. Asymptotics don’t
help, since the problem gets worse as the sample size grows (anincidental parameter
problem). In sum, it will be necessary to impose a structure on the variance-covariance
and to express it as a function of a small number of estimable parameters. In spatial
regression analysis, this is approached from two main perspectives, matching the data
models outlined in section 4.1. In a geostatistics-inspired approach, the covariance is
specifieddirectlyas a function of the distance between pairs of observations. Different
specifications for this distance decay function have been employed, but most are some
variant of a negative exponential model. Examples and a discussion of estimation and

19Some recent reviews of the salient issues can be found in Arbia and Lafratta (1997), Müller (1998), and
Wikle and Royle (1999), among others.
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Table 2: Spatial Weights Matrix
0 1 0 1 1 0 0.00 0.33 0.00 0.33 0.33 0.00
1 0 0 1 1 0 0.33 0.00 0.00 0.33 0.33 0.00
0 0 0 0 1 1 0.00 0.00 0.00 0.00 0.50 0.50
1 1 0 0 1 0 0.33 0.33 0.00 0.00 0.33 0.00
1 1 1 1 0 0 0.25 0.25 0.25 0.25 0.00 0.00
0 0 1 0 0 0 0.00 0.00 1.00 0.00 0.00 0.00

identification issues can be found in Cook and Pocock (1983), Mardia and Marshall
(1984), Dubin (1988, 1992), Dubin et al. (1999), and Anselin (2001a), among others.

In contrast, using an object view and corresponding lattice model, the covariance
structure followsindirectly from the specification of the spatial weights matrix that
underlies a spatial process model (Markov random field). Different specifications for
the weights and their consequences are reviewed in the remainder of this section.

Before proceeding with this, it is worthwhile to briefly consider a third way of
imposing structure, referred to in the literature asspatial error components. The full
covariance structure follows from decomposing the error term intocomponentsand im-
posing a model for the variance and covariance of these terms. This approach is preva-
lent in hierarchical and multilevel modelling, where one error component is association
with a model for (excess) heterogeneity and the other with a model for spatial varia-
tion, following the suggestion of Besag et al. (1991). Examples of the incorporation of
spatial random effects in hierarchical Bayesian models in biostatistics are reviewed in,
among others, Waller et al. (1997a,b) and Best et al. (1999). Applications using a mul-
tilevel modelling framework are illustrated in Langford et al. (1999a,b), Leyland et al.
(2000) and Leyland (2001). Error components were introduced in spatial econometric
specifications by Kelejian and Robinson (1995).20

Formally, the spatial weights matrix is an×n positive matrix (W) which specifies
“neighborhood sets” for each observation. In each rowi, a non-zero elementwi j defines
j as being a neighbor ofi. By convention, an observation is not a neighbor to itself, so
that the diagonal elements are zero (wii = 0). Note that this definition is much broader
than the term neighbor suggests. In most applications in applied econometrics, the
neighbors arecontiguousspatial units, as in Figure 1, but this can be easily generalized
to any network structure. For example, in Figure 2, the six observations are nodes on a
network and the existence of a neighbor relation matches the links between the nodes.21

The layouts in both Figure 1 and Figure 2 yield the same 6 by 6 spatial weights matrix,
illustrated on the left hand side of Table 2 (from Anselin and Smirnov 1996). This is
usually referred to as abinary contiguity matrix, since the weights are set to one for
neighbors, and zero for others. For ease of interpretation and to make the parameter
estimates between different models more comparable, the spatial weights matrix is
typically row-standardized, as shown on the right hand side of Table 2. Each element
in the standardized matrix,ws

i j = wi j /∑ j wi j , is between 0 and 1, which suggests that

20See Anselin and Moreno (2003) for a review of some technical issues associated with specifying and
testing for spatial error components.

21Figures 1 and 2 were first used as illustrations in Anselin and Smirnov (1996).
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Figure 1: Example Spatial Layout.

a spatial lag operation (pre-multiplying a vector of observations byW) corresponds to
an averaging of the neighboring values.22

The specification of the weights matrix is a matter of some arbitrariness and is
often cited as a major weakness of the lattice approach. A range of suggestions have
been offered in the literature, based on contiguity, distance, as well as more general
metrics.23

A number of issues related to the specification of spatial weights require careful
consideration in practice. First, even when the weights are based on simple contigu-
ity, different weights structures may result for the same spatial layout. In the classic
example of a regular square grid layout, the options are referred to as therook case
(only common boundaries), thebishopcase (only common vertices) and thequeen
case (both boundaries and vertices). Depending on the criterion chosen, a location will
have either four (rook, bishop) or eight (queen) neighbors on average (apart from edge
effects). This implies quite different covariance structures for the associated random
processes. Even in irregular spatial layouts, a decision must be made as to whether
units that only share a common vertex should be considered to be neighbors (queen) or
not (rook).

In practice, the construction of the neighbor structure of irregular spatial units is
based on the digital boundary files in a GIS. Imprecision in the storage of the polygons
and vertices can cause problems in this respect, yielding “islands” or other unexpected
connectedness structures when deriving the spatial arrangement from these boundary

22Note that the resulting matrix is no longer symmetric, since∑ j wi j 6= ∑i w ji , which needs to be accounted
for in the computations of maximum likelihood estimates.

23For more extensive reviews, see Cliff and Ord (1973, 1981), Upton and Fingleton (1985), Anselin (1988)
and Anselin and Bera (1998).
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Figure 2: Spatial Network Structure.

files. 24

A second type of problem occurs when the spatial weights are based on a distance
criterion, such that two unitsi and j are defined as neighbors when the distance between
them (or, for areal units, the distance between their centroids) is less than a given
critical value. When there is a high degree of heterogeneity in the spatial distribution
of points or in the areas of regions, there may be no satisfactory critical distance. In
those instances, a “small” distance will tend to yield a lot of islands (or, unconnected
observations). Also, a distance chosen to ensure that each unit has at least one neighbor
may result in an unacceptably large number of neighbors for the smaller units.

In empirical applications, this problem is encountered when building distance-
based spatial weights for U.S. counties (Western counties have much larger areas than
Eastern counties) or urban census tracts (core census tracts are much smaller than sub-
urban census tracts). Similarly, when modelling land use or land values based on parcel
data, problems will occur when the area of the parcels is highly variable. A common so-
lution to this problem is to constrain the neighbor structure to thek-nearestneighbors,
thereby precluding islands and forcing each unit to have the same number of neighbors.
Whether or not this is appropriate in any given situation remains an empirical matter.25

A third issue may arise when the weights are based on “economic” distance (Case
et al. 1993) or another general metric, such as derived from a social network structure
(Doreian 1980). Care must be taken to ensure that the resulting weights are meaningful,
finite and non-negative. In addition, the “zero-distance problem” must be accounted
for. The latter occurs when a distance measure, such asdi j = |zi − zj |, becomes zero,
due to rounding problems or because two observations show identical socio-economic

24In GIS terminology, the polygons should be “clean” before the topology can be “built”.
25One consequence of the choice of k-nearest neighbor weights is that the weights matrix becomes asym-

metric. This is qualitatively different from a row-standardized (asymmetric) matrix derived from a symmetric
contiguity matrix (for technical details, see Smirnov and Anselin 2001).
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profiles. As a result, inverse distance weights such aswi j = 1/di j are undefined.
It is also important to maintain the weights matrix asexogenous. When the same

variables are used to compute a general distance metric as are included in the model,
the weights are unlikely to remain exogenous. Consequently, the resulting model spec-
ification becomes highly non-linear with endogeneity that must be instrumented out.
Typically, this is not the result one has in mind when designing a weights matrix.

A slightly different type of “economic” weights follows when a block structure
is imposed, as in Case (1991, 1992). This is a form of hierarchical spatial model,
where all units that share a common higher order level are considered to be neighbors.
For example, this would make all counties in the same state neighbors, yielding a
block-diagonal spatial weights matrix. This structure precludes neighbors between the
higher order levels and between lower order units that may be contiguous across higher
order levels (such as neighboring counties in adjoining states). When implemented in
row-standardized form, this type of weight also has a peculiar side effect. Since each
weight in effect becomeswi j = 1/ng, whereng is the number of units in the higher
order level (counties in a state), the effect of each individual neighbor will disappear as
ng→∞. This happens in the limit, since the asymptotics operate on the cross-sectional
dimension. Consequently, in the limit, the weights matrix becomes effectively zero,
eliminating the effect of the spatial correlation.

Interestingly, this “economic weights” specification is the one employed in a recent
paper by Lee (2002), where it is argued that OLS is consistent for the spatial lag param-
eter (the standard result is that it is not). Given the peculiar structure for the weights,
this turns out to be a very special result, and does not pertain to the type of spatial “cor-
relation” typically implemented in empirical spatial econometric work. Also, it would
seem that the result is of limited practical use, since any type of meaningful correlation
structure shouldnot disappear in the limit.

The various weights specifications considered so far all share the property that their
elements are fixed. It is straightforward to extend this notion and to incorporate param-
eters in the weights matrix, for example when the weights reflect the notion of a poten-
tial (see section 2.2), as inwi j = 1/dβ

i j , or wi j = e−βdi j (see Anselin 1988, Chapter 3).

The generalized Cliff-Ord weights are another well-known example, withwi j = bα
i j /dβ

i j ,
wherebi j is the share of the common border between unitsi and j in the perimeter of
i (and, typically,bi j 6= b ji ), andα andβ are parameters (Cliff and Ord 1973, 1981). In
practice, these parameters are often set a priori, for example yielding a “gravity” like
model withwi j = 1/d2

i j .
26

However, when the parameters of the weights elements are jointly estimated with
the parameters in the model, the resulting specification is highly non-linear (for exam-
ples, see Anselin 1988, Bolduc et al. 1992, 1995). Moreover, when a scaling factor,
such as a spatial autoregressive coefficient, is included together with parameterized
weights, both sets of parameters are not necessarily identified. It is also important to

26Other examples found in the literature arewi j =
√

NiNj/di j , whereN stands for the population (or mass)
in an area (Ferrándiz et al. 1995), orwi j = NiNj/di j with a cutoff distance beyond which all weights are set
to zero (Ferŕandiz et al. 1999), or alsowi j = e−di j /δ (Best et al. 1999). In the latter example,δ was set to a
value of 33 to make the magnitude of the weight equal to 0.01 for two units that were the median inter-unit
distance apart.
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note that a weights matrix parameterized as a distance function isnot equivalent to the
direct representation model for thecovariance. The structure of the corresponding co-
variance depends not only on the weights, but also on the choice of the spatial process.
However, irrespective of the latter, there is no one-to-one match between the weights
and the covariance.

It is also important to keep in mind that weights that are a function of distance
depend on the scale of the distance metric. Ignoring thisscale-dependencemay lead
to unexpected results (such as as zero weights matrix) when the coordinate units from
which the distances are computed are non-standard.

There is very little formal guidance in the choice of the “correct” spatial weights
in any given application. When the focus is on a model for substantive spatial de-
pendence, care should be taken to match the spatial interaction patterns suggested by
the theoretical framework (for example, a spatial reaction function implying a specific
range of interaction). In other situations, the specification is much more ad hoc and
sensitivity analysis of the results is very important. In practice, model validation tech-
niques, such as a comparison of goodness-of-fit, or cross-validation, may provide ways
to eliminate bad choices. Fortunately, empirical investigations can increasingly exploit
both time and space dimensions (spatial panel data analysis), which opens up a number
of opportunities to relax the structure of the weights matrix and employ non-parametric
or semi-parametric methods to estimate a generic covariance structure, avoiding some
of the strong priors required in the cross-sectional setting.27

4.3 Asymptotics

Classical (as opposed to Bayesian) statistical inference in models that incorporate spa-
tial correlation is based on asymptotic properties.28 These properties only hold under a
fairly restrictive set of assumptions, or,regularity conditions, which impose constraints
on the degree of heterogeneity and range of dependence of the spatial stochastic process
that is considered to generate the data. Unlike what is often assumed, these regularity
conditions and the associated laws of large numbers (to prove consistency) and central
limit theorems (to ascertain asymptotic normality) are quite special andnot straight-
forward generalizations of the time series case of dynamic heterogeneous processes
(treated, for example, in P̈otscher and Prucha 1997). A few of the distinguishing char-
acteristics of asymptotics in space are worth considering.

In a spatial setting, there are two fundamentally different ways to grow the “sample”
to the limit (i.e., to obtainn→ ∞). These approaches match the two different data
models considered in the paper.

27See also Frees (1995), Driscoll and Kraay (1998) and Chen and Conley (2001) for a lattice perspective,
and Sampson and Guttorp (1992), Guttorp and Sampson (1994) and Damian et al. (2001) for a geostatistical
approach.

28In a Bayesian approach to spatial regression analysis, both the data and the model parameters are con-
sidered to be random variables. Inference is based on an analysis of the posterior distribution of the model
parameters, which is constructed by combining a prior distribution with a likelihood using Bayes’ theorem.
In spatial regression analysis, this requires the specification of priors for the structure and the parameters of
the spatial covariance matrix (in addition to the other model parameters). Recent overviews of this approach
are provided in Clayton and Kaldor (1987), Handcock and Stein (1993), Ecker and Gelfand (1997), LeSage
(1997) , Wikle et al. (1998), Best et al. (1999), Berger et al. (2001), and Damian et al. (2001), among others.
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In the field perspective and associated geostatistical approach to spatial modeling,
the asymptotics are based on a fixed region, from which an increasingly denser sam-
ple of points is taken, orinfill asymptotics (Cressie 1993). Intuitively, the denser and
denser samples provide more and more information on the spatial distribution of the
underlying surface. In contrast, in the object view and associated lattice model ap-
proach, there is no surface, and the asymptotics are obtained by adding more and more
discrete objects to the sample, or, byexpandingthedomain.

The two paradigms are not equivalent. In fact, properties that hold under one frame-
work do not necessarily hold under the other (Lahiri 1996). To illustrate this point, con-
sider a setting where the spatial weights matrix defines neighbors as those points within
a given fixed distance band. In an expanding domain framework, there is no problem,
since adding new objects only affects the neighbor structure for those observations at
the margin.29 In other words, the number of neighbors and the implied “range” of spa-
tial correlation is not (substantially) affected by growing the sample. In contrast, with
infill asymptotics, the sample would become increasingly denser, resulting in more and
more points meeting the critical distance criterion for each observation. Therefore, the
number of neighbors will increase with the sample size, effectively removing the spa-
tial correlation (for row-standardized weights) as the sample grows. This runs counter
to the regularity conditions required for expanding domain asymptotics.

In a nutshell, the regularity conditions required for the expanding domain asymp-
totics in lattice models boil down to limits on the heterogeneity of the process (variance
and higher order moments) and constraints on the range of spatial dependence. The
latter can be thought of as a formal expression of Tobler’s “first law of geography,”
according to which everything depends on everything else, but “close” things more so
(Tobler 1979). Similar regularity conditions are required in the geostatistical approach,
to ensure that the covariance structure that follows from the specified distance decay
function is positive definite (for technical details, see Cressie 1993). Formally, the con-
ditions pertain to summability and differentiability of the elements of the covariance
matrix. An extensive and unifying technical treatment of these issues was recently pro-
vided by Kelejian and Prucha (1998, 1999, 2001) (for antecedents, see also Magnus
1978, Mardia and Marshall 1984, Mandy and Martins-Filho 1994).

In applied spatial econometrics based on the lattice approach, sufficient condi-
tions are typically satisfied by limiting the number of neighbors in the weights and
ensuring this does not grow with the sample size. Conditions on the heterogeneity
are complicated by the fact that many spatial processes induce heteroskedasticity (or,
non-stationarity), which must be properly accounted for.30 In practice, weights based
on contiguity or similar principles (distance bands) will satisfy these regularity con-
ditions. Matters are less straightforward when complex weights are introduced (such
as parameterized distance functions) for which it is not always possible to establish

29However, as discussed in Anselin and Kelejian (1997), the fact that the weights change at the boundary
is a non-standard situation. As Kelejian and Prucha (1998, 1999) have pointed out, this requires the use of
triangular arraysas well as specialized central limit theorems in order to establish the asymptotic properties.

30Note that in some treatments stationarity is a crucial assumption, which rules out spatial processes that
induce heteroskedasticity. See, for example, the central limit theorems based on Bolthausen (1982) used as
the basis for the GMM estimator in Conley (1999). Also, note that in a geostatistical approach, there is no
such induced heteroskedasticity.
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that the regularity conditions are satisfied. Evidence of the violation of these assump-
tions is sometimes provided by “weird” results, such as negative variance estimates and
explosive spatial interaction functions.

5 Ecological Regression

In empirical practice, the estimation of models such as a spatial reaction function,
specified in the form of a spatial lag model (1), is often carried out for aggregate spatial
units of observation, such as counties or census tracts. In the statistical literature, this is
referred to asecological regression, and often criticized as yielding invalid inference,
the so-calledecological fallacyproblem. More precisely, the ecological fallacy pertains
to cross-level inference or cross-level bias. This is what happens when parameters and
other characteristics of a distribution are estimated at an aggregate level, but behavioral
and socio-economic relations are inferred for another, disaggregate level.

5.1 Ecological Fallacy

An enormous literature has been devoted to the problem of ecological fallacy in soci-
ology, political science and economics, going back to the classics of Gehlke and Biehl
(1934), Robinson (1950) and Goodman (1953).31 In economics, this issue is closely
related to the aggregation problem, or the extent to which micro-relationships can be
inferred from macro estimates (for recent review of the relevant issues, see Stoker
1993). In general, unless extremely rigid (and unrealistic) homogeneity constraints are
imposed, it is impossible to transfer findings from the macro level to a micro interpre-
tation.32

In practice, this is easily overlooked, but even in very simple situations, and with
a high degree of homogeneity, the ecological approach creates problems of interpreta-
tion. Consider a regression at the individual level, where individuals are stratified by
group, and both individual-level variates as well as group-wise aggregates are included
in the model (the example is adaptated from Greenland 2002, p. 390):

yik = α+xikβ+ x̄kγ+ εik, (28)

wherexik is a characteristic of individuali in groupk (e.g., income for householdi in
countyk) and x̄k = ∑i xik/nk (with nk as the group size) is the group average for that
characteristic (e.g., county average income). In the literature,β is referred to as the
individual effect andγ as the contextual effect.33 The corresponding macro regression
relates the group averages to each other, or

ȳk = α+ x̄k(β+ γ)+ ε̄k, (29)

31For recent overviews of this extensive literature, see also Achen and Shively (1995) and King (1997).
32In a very stylized setting, often used in voting rights analysis, King (1997) has suggested a “solution”

to this problem, which he refers to as “ecological inference” orei. The essence of this approach is to treat
the unobserved individual parameters in a random coefficient framework and to simulate their posterior
distribution, using additional information from individual-level constraints. For a discussion of the role of
spatial effects in this model, see Anselin and Cho (2002).

33For a related discussion of identification issues in economic models of interaction, see Manski (1993).
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with the group averages as̄yk = ∑i yik/nk. When the groups do not contain an equal
number of members, the error term in (29) will become heteroskedastic. In other words,
at the aggregate level, heteroskedasticity should be expected, and an i.i.d. assumption
for the errors is incompatible with the aggregation rule.

In addition, the coefficient of the averagex̄k in the aggregate model no longer allows
for the separate identification of the individual and contextual effects, but confounds
the two. More precisely, even when there is no within-group heterogeneity (all the
groups have the sameβ and γ coefficients), the estimate from the aggregate model
only corresponds with an individual-level coefficient when there is no contextual effect
(γ = 0). Similarly, it only corresponds to a “pure” contextual effect when there is no
individual effect (β = 0).34

5.2 Spatial Aggregation

In spatial analysis, an additional twist is added to the ecological regression problem, in
that it is not only the level of aggregation that matters, but also how “elemental units”
are combined spatially. This is referred to as the zoning problem or themodifiable areal
unit problem(MAUP), first illustrated by the “million or so correlation coefficients” in
Openshaw and Taylor (1979). Considerable attention has been paid to the interrelation
between MAUP and spatial correlation (Arbia 1989). More recently, statisticians have
approached this problem as a special case of thechange of support problem(COSP)
(see Cressie 1996, Gotway and Young 2002).

Extending the example in (28) with a spatial autoregressive term, some of the com-
plexities of spatial ecological regression become apparent. At the individual level, a
spatial lag specification would be

yik = ρ
n

∑
j=1

wi j y jh +α+xikβ+ x̄kγ+ εik, (30)

where it is important to note that the non-zero weights inwi j are not limited to neigh-
bors that belong to the same group. The specification in (30) is typically what one has
in mind when implementing a spatial reaction function for economic agentsi.

By comparison, a spatial lag specification at the aggregate level, for the groupsg,
with g = 1, . . . ,G, would be

ȳk = λ
G

∑
g=1

wkgȳg +α+ x̄k(β+ γ)+ ε̄k, (31)

with wkg as the elements of a group-level spatial weights matrix of dimensionG by G
that reflects the neighbor structure for the aggregate spatial units.

While the regressive part in (31) is a straightforward extension of the non-spatial
case, the autoregressive part isnot an aggregate of the spatial autoregressive terms
in (30). Several factors preclude a simple aggregation. Consider the case of an ag-
gregated spatial weights matrix based on simple contiguity that would be constructed
from collapsing the rows and columns for the elements in each group. Formally, this is

34See Greenland (2002) and also Stoker (1993) for a more elaborate discussion.



Spatial Regression Models 23

accomplished by means of ann by G aggregation matrixH, with elementshig = 1 for
i ∈ g and zero otherwise, such that

WG = H ′WnH, (32)

with Wn as the individual-level weights. This yields aG by G matrix with elements
wG

kg obtained as the sums of all the weightswn
i j for which i ∈ k and j ∈ g. If the original

weightsWn contained non-zero elements for agents in the same group, the aggregate
weights from (32) should have non-zero diagonal elements,wkk 6= 0. This is typically
ruled out (see section 4.2). Therefore, zero diagonals in the weights for an aggregate-
level model are inconsistent with a spatial aggregation of the individual spatial weights.

The aggregated between-group weightswkg (with k 6= g) are the sum of the weights
for individual agents that were cross-group neighbors in each group (the number of
weightswn

i j 6= 0 for which i ∈ k and j ∈ g). In a spatial aggregation over irregular units,
the share of such neighbors in each group is unlikely to be constant, yielding unequal
weightswkg for any givenk. In contrast, in a typical group-level application, contiguity
weights would be set equal for all elements in the same row, again violating the proper
spatial aggregation.

More importantly, the aggregate over groups of the individual-level spatial lag
terms is not equal to the spatial lag of the aggregate values. This can be traced back
to the aggregation over the reduced form (4). At the individual level, theyik are a
weighted average of thex j in the system, with the weights for eachi corresponding to
the row elements of the inverse matrixA = (I − ρW)−1. Formally, and ignoring the
structure of the error term, at the individual level,

yik =
n

∑
j=1

ai j (α+x jhβ+ x̄ jhγ )+e, (33)

where j is the index of the individual observation andh is a generic group indicator.
The summation in (33) is over allj and includes elements in groupk as well as in other
groups in the system. The weights inai j are unequal. The aggregation ofA by means
of the matrixH used above will yield a group level spatial multiplierAG = H ′AH. For
the same reasons as outlined for the spatial weights, the spatial multiplier matrix for the
groups ([I −λWG]−1) will be inconsistent with a spatial aggregation of the individual-
level weights. As a result, the group average of the individualyik obtained from the
reduced form will not equal thēyk from the group-level reduced form.

Given these problems, one might be tempted to dismiss spatial lag models esti-
mated for aggregate units. Clearly, a naive interpretation of the parameters of such a
model is misguided when they are considered as proxies for individual-level param-
eters that reflect substantive spatial dependence, e.g., as implied by a spatial reaction
function. However, there remain many contexts where the interest is in the aggregate
object considered in its own merit, and not as an aggregation of lower level units. For
example, in many applications of policy evaluation, the focus would be on state or
county-level economic indicators as such, without requiring an explicit link to the mi-
cro units. In such situations, there is no problem with the use of ecological spatial lag
models as specification of substantive economic relations.35

35See also Schwartz (1994), for related arguments in the public health arena.
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6 Conclusions

As a spatial perspective is becoming increasingly common in applied econometric
work, it is important to keep in mind the formal framework within which proper es-
timation and inference can be carried out. Different model specifications imply differ-
ent spatial correlation structures that may not always be compatible with the economic
theory behind the interaction model. The data are often problematic, and prevent the
use of an optimal spatial scale in many empirical situations. Choices must be made
about the data model and appropriate statistical paradigm. The specification of spa-
tial weights is often ambiguous and the conceptual interaction model does not always
match the formal simultaneous or conditional specification. Moreover, the danger of
ecological fallacy lurks everywhere.

With more user friendly software available, these important choices may be hidden
from the analyst, or a particular perspective forced on the unsuspecting practitioner.
The goal of this paper was to focus attention on a number of conceptual issues that
must be resolved in order to obtain a sound design for a spatial econometric analysis.
While the discussion was mostly informal, the main ideas remain valid and hopefully
will guide applied econometricians in future spatial work. A more technical treatment
is offered in a companion paper.
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