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A B S T R A C T

When examining the relationship between landscape characteristics and water quality, most previous studies did not pay enough attention to the spatial aspects of
landscape characteristics and water quality sampling stations. We analyzed the spatial pattern of total nitrogen (TN), total phosphorus (TP), chemical oxygen demand
(COD), and suspended solids (SS) in the Han River basin of South Korea to explore the role of different distance considerations and spatial statistical approaches to
explaining the variation in water quality. Five-year (2012 through 2016) seasonal averages of those water quality attributes were used in the analysis as the response
variables, while explanatory variables like land cover, elevation, slope, and hydrologic soil groups were subjected to different weighting treatments based on distance
and flow accumulation. Moran's Eigenvector-based spatial filters were used to consider spatial relations among water quality sampling sites and were used in
regression models. Distinct spatial patterns of seasonal water quality exist, with the highest concentrations of TN, TP, COD, and SS in downstream urban areas and the
lowest concentrations in upstream forest areas. TN concentrations are higher in dry winter than the wet summer season, while SS concentrations are higher in wet
summer than the dry season. Spatial models substantially improved the model fit compared to aspatial models. The flow accumulation-based models performed best
when the spatial filters were not used, but all models performed similarly when spatial filters were used. The distance weighting approaches were instrumental in
understanding watershed level processes affecting source, mobilization, and delivery of physicochemical parameters that flow into the river water. We conclude that
a consideration of the spatial aspects of sampling sites is as important as accounting for different distances and hydrological processes in modeling water quality.

1. Introduction

Various watershed level factors and in-stream processes affect the
physical, chemical, and biological characteristics of water flowing in
the river. Over the years, several sources, mobilization, and delivery
paths and processes have been examined using different GIS-based
analytical methods and spatial statistical approaches. These approaches
were designed to more accurately understand, explore, and model
water quality (Lintern et al., 2018a; Mainali, Chang, & Chun, 2019).
Water flowing from different landscape features in the watershed car-
ries their characteristics to the surface water bodies and affects the
source, mobilization, and delivery process of different salts and nu-
trients to surface water bodies (Allan, 2004; Lintern et al., 2018a).
Spatial distribution of the various components of the landscape, in-
cluding land cover types, topography, and soil types affect the eco-
system function of the landscape and the water quality of the river basin
they drain to. There are several types of metrics available, which can be
extracted using a land cover map of the watershed to analyze the spatial
pattern of the landscape characteristics. Most of the traditional studies
use lumped values (i.e., usually percentage or the average of a specific
attribute within a watershed) as a predictor of water quality.

To establish a better connection between landscape matrices and
water quality, researchers have developed a distance-based and

hydrological feature-based weighting of the landscape matrices
(Liberoff et al., 2019; Peterson, Sheldon, Darnell, Bunn, & Harch,
2011). The distance-weighting approaches assume that the landscape
characteristics close to the stream or sampling stations exert more in-
fluence on stream quality than the regions far away. The distance
weightings are generally implemented by providing higher weights to
the factors (e.g., land cover type, population density) close by sampling
station or rivers while providing lower weights to those that are farther
away using a mathematical equation. The weighted values are then
used to explore their effects on stream attributes like water quality or
stream biological characteristics (Peterson et al., 2011).

Many studies use connectedness of the different landscape attributes
to the sampling site or the river either using straight line distance or the
distance-based on the flow length or flow accumulation. King et al.
(2005) used an inverse distance weighted approach to model different
water quality attributes. The distance weighted approach has been re-
cently reinvigorated by researchers ushering to development in GIS
methodology and improved understanding of the importance of hy-
drological processes. Peterson et al. (2011), for example, employed this
approach and calculated weighted landscape metrics based on the Eu-
clidean distance from the river and sampling station, and also weight
based on the flow length and flow accumulation. Grabowski, Watson,
and Chang (2016) modified some of the metrics used by Peterson et al.
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(2011) by incorporating additional watershed permeability and runoff
characteristics and reported that the Euclidean distance-based model
worked best in modeling water temperature regime in a small wa-
tershed of Oregon USA. Watson and Chang (2018) found that the ef-
fectiveness of distance weighting of the predictor variables depends on
the types of the response variable (derivatives of the stream tempera-
ture) and timescale under investigation.

Different regression modeling approaches like ordinary least
squares, multiple regression, and mixed models have been used to
model water quality using landscape-level explanatory variables. These
methods are parametric and cannot be used when model residuals
suffer from spatial autocorrelation (Anselin, 1988). A spatial regression
approach should be used when a dependent variable is spatially auto-
correlated, or the model residuals suffer from spatial autocorrelation
(Anselin, 1988; Bini et al., 2009). Several spatial statistical methods,
including spatial lag and error models, spatial eigenvector-based
models, geographically weighted regression, spatial kriging, spatial
autoregressive models, and spatial stream network-based models are
available to model the relationship between landscape variables and
water quality (Isaak et al., 2014; Mainali et al., 2019).

Our objective of this work is to model water quality parameters by
exploring the role of different landscape factors and distance. We first
use the eigenvector-based spatial filtering of the variables, which uses
straight-line distance-based approach to constructing the eigenvector-
based spatial filters to account for the spatial interrelationships in re-
gression modeling when any of the variables suffer from spatial auto-
correlation or the model itself suffers from the residual spatial auto-
correlation (Getis & Griffith, 2002; Mainali & Chang, 2018). This
approach has been used to model soil attributes (Kim et al., 2016), plant
diversity (Kim & Shin, 2016), crime pattern (Chun, 2014), in the epi-
demiology (Jacob et al., 2008), and recently to model water quality
trends (Mainali & Chang, 2018). Additionally, we test the distance
weighted approach of landscape representations and attempt to in-
corporate the spatial relations of sampling sites in such models using
eigenvector-based spatial filters in the water quality modeling in the
Han River Basin, South Korea. We seek to answer the following research
questions.

a. How are the seasonal and spatial patterns of total nitrogen, total
phosphorus, chemical oxygen demand, and suspended solids con-
centrations in this basin?

b. What landscape variables affect different water quality parameters
in the basin by season?

c. Do inclusions of the Euclidean distance-based and hydrological
distance-based weighting improve model performance over lumped
attributes in this basin?

d. How can ‘space’ be included as Eigenvector-based spatial filters in
such modeling?

2. Methods

2.1. Study area

We analyze water quality data of the Han River Basin (HRB), the
largest river basin in South Korea (Fig. 1). This basin was selected be-
cause it has diverse landscape characteristics, and water quality has
been a big concern for people, industry, and environment (Korea
Ministry of Environment, 2016; Mainali & Chang, 2018). The Han River
stems from the mountainous region in the east and flows through
agricultural and industrial areas in lowlands in the west. Water quality
gradually degraded from upstream to downstream as the river passes
through surrounding agricultural and urban areas. In particular, the
water quality of some tributaries has not yet met Korean national en-
vironmental standards (Mainali & Chang, 2018). Because the main-stem
Han River serves as a primary source of water for the residential and
industrial areas of downstream, maintaining good water quality has

been a significant concern.
According to the land cover data of 2010, this basin is covered by

77% forest, followed by 13% agriculture, and 4% urban land cover. The
HRB consists of approximately 67% poorly drained, 15% well-drained,
and 18% moderately drained soil (WAMIS, 2018). It receives approxi-
mately 1200 mm of annual rainfall, with most of it falling during the
summer monsoon season. The river discharge also shows a high intra-
annual variability following the precipitation pattern (Bae, Jung, &
Chang, 2008; Mainali & Chang, 2018).

2.2. Data sources and processing

2.2.1. Water quality data
The water quality data used in this work were obtained from the

Korea Ministry of Environment Web Portal (Korea Ministry of
Environment, 2016). Details of water sample collection and processing
methodologies are available in Chang (2008), Korea Ministry of
Environment (2016), and Mainali and Chang (2018). We analyzed 110
stations monthly for water quality parameters -total phosphorus (TP:
mg/L), total nitrogen (TN: mg/L), chemical oxygen demand (COD: mg/
L), and suspended solids (SS: mg/L). These parameters represent the
physical, chemical, and ecological aspects of water quality. We calcu-
lated the seasonal average (fall, winter, spring, and summer) of five
years of data from 2012 through 2016 for subsequent analysis. Seasonal
average values were plotted in the map to explore their spatial patterns
while a Kruskall-Wallis H-test was performed to test whether water
quality values were significantly different in different seasons. All
analyses were performed in R software version 3.6.1 (R Core Team,
2019).

2.2.2. Landscape variables
We used land cover types, elevation, slope, and soil types as the

explanatory variables at the watershed level (Table 1). These variables
have been most commonly used to explain water quality parameters in
the literature (Mainali et al., 2019). They are significant factors influ-
encing the source, mobilization, and delivery of different water quality
components in the watershed (Allan, 2004; Lintern et al., 2018a).

2.2.3. Explanatory variables extraction and distance weighting treatments
As shown in Fig. 2, we developed four models with different dis-

tance weighting schemes (Eq. (1)). Model 1 is a traditional model that
uses average values of explanatory variables within each watershed.
Models 2 through 4 represent different ways of treating distance. Model
2 is based on the Euclidean distance from the sampling sites, while
Model 3 is based on overland distance from the river. Model 4 uses
weights based on flow accumulation. We modified a method employed
by Grabowski et al. (2016) and Watson and Chang (2018) to derive
watershed attributes based on different distance considerations. We
provided different weighting schemes to different land-use types
(urban, agriculture, and forest) and soil types in addition to elevation
and slope in this work, unlike previous works that mostly used curve
numbers in their analysis.

The python-based tool we used delineates the sub-watershed for
each of our water quality data points using standard ArcHydro method
of subwatershed delineation (Watson & Chang, 2018). This method
involves creating flow accumulation and flow direction rasters using
the digital elevation model (Grabowski et al., 2016). The flow lengths
were then calculated using the tool of the same name available in
ArcHydro toolset. Following the method by Grabowski et al. (2016) and
Watson and Chang (2018), “overland flows are calculated by manip-
ulating the input elevation dataset through the use of a mask that
weights stream-defined cells as zero-distance.” We created a separate
raster for each land cover type by assigning a value of 1 for a specific
land cover type of interest and value of 0 for other land cover types. A
similar method was applied for soil types also. The elevation and soil
raster data sets were, however, not modified as they have numerical
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Fig. 1. Map of study area showing sampling stations.

Table 1
Different explanatory data types used in this analysis.

Data type Source Resolution Unit Descriptive statistics

Land cover (EGIS Korea, 2017) 30 m Percentage Forest 77%, Agriculture 13%, Urban 4%, other 6%
Elevation (EGIS Korea, 2017) 30 m Meter 0 to 1700 m, 405 ± 290 m
Slope Derived from elevation 30 m Degree 0 to 87 degrees, 18.8 ± 11.6
Soil types (EGIS Korea, 2017) 30 m Percentage Soil1 (well drained) 15%, soil2 (moderately drained) 18%, soil3 (poorly drained) 67%
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values for each raster cell. The tool finally uses an algebraic expression
as in Eq. (1) to derive weight for each land cover type, elevation, slope,
and soil type.

=
∑ ∗

∑
Weighted Average

x w
w

i i

i (1)

For location i, x is the value of the landscape variable in question
(e.g., numerical value of land cover, elevation, or slope) and wi is the
respective weight (Watson & Chang, 2018).

A total percentage of each land cover type, soil type, and an average
of elevation and slope were calculated as the explanatory variables for
model 1. Model 2 and 3 also used the same characteristics of land cover
types, soil types, slope, and elevation but weighted them using straight

line distance from the station and flow length, respectively. Model four
involved weighting the same variables with the flow accumulation
raster and deriving statistics for each sub-basin.

From the map of sub-basins used in this analysis, it is evident that
there are some overlapping watersheds. Because overlapping water-
sheds are aggregated differently, they provide a different set of in-
formation. In other words, the effect of overlapping watershed fades
away as distant regions have minimal weights, and regions close to
sampling sites have higher weights.

2.2.4. Regression analysis
A stepwise multiple regression model was run for each seasonal

water quality parameter using each model type. The response variables

Fig. 2. Graphical representation of different distance weighting treatment of watershed-level predictor variables.
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were log transferred prior to the regression analysis because all of our
data failed to comply with the assumption of the normal distribution as
tested by the Shapiro-Wilk test. Variable inflation factor (VIF) was
calculated for each explanatory variable, and variables showing high
VIF (> 10) were not included in the subsequent analysis. We compare
model strengths across different seasons, model types (distance
weighting), and spatial considerations. Model performance matrices
like model strength (R2), Akaike Information Criteria (AIC) values, and
parameter estimates of the explanatory variables were used for this
comparison.

2.2.5. Spatial-filtering based regression
We tested the residual spatial autocorrelation of each regression

model. As the role of landscape attributes are incorporated via distance
weighting of the predictor variables, spatial patterns of the water
quality sampling stations were considered as Moran's Eigenvector-based
spatial filters (Getis & Griffith, 2002; Griffith, 2010). The spatial-fil-
tering process starts with creating a weight matrix among the sampling
stations based on a neighborhood criterion. In this approach, the
maximum distance to select a neighborhood is determined so that every
data point has at least one neighbor. This spatial configuration matrix is
transformed to generate a set of n-1 eigenvectors. Because using all
eigenvectors lead to model overfitting and misspecification only a set of
candidate eigenvectors were selected. We used an algorithm that can
reduce residual spatial autocorrelation and incorporate the spatial
structure of the dependent variable under consideration (Chun, Griffith,
Lee, & Sinha, 2016; Tiefelsdorf & Griffith, 2007). The Eigenvector
Spatial Filtering can be expressed as in Eq. (2) (Chun et al., 2016;
Mainali & Chang, 2018).

= + +Y Xβ E β εk ε (2)

In this equation, Y is a dependent variable, X denotes a matrix of
independent variables. Ek denotes the selected matrix of eigenvectors, β
is a set of regression coefficients for predictor variables, βε is a set of
regression coefficients for selected eigenvectors, and ε is random noise
(error) (Chun et al., 2016). This analysis was performed using the
spatialfiltering function of spdep package in R software (Bivand, 2017; R
Core Team, 2019).

3. Results

3.1. Spatial and seasonal patterns of different water quality parameters

3.1.1. Spatial pattern
Total nitrogen (TN), total phosphorus (TP), and chemical oxygen

demand (COD) concentrations are higher in the regions close to urban
centers, including the Seoul metropolitan area in all seasons (Fig. 3).
The suspended solids (SS) also showed similar patterns during fall,
spring, and summer, while it did not show any specific spatial patterns
during the summer when flow is high.

3.1.2. Seasonal pattern
The water quality parameters also showed distinct seasonal patterns

when water quality parameters across all the stations were compared
seasonally. TN concentration is highest during winter. The seasonal
differences are significant as reported by Kruskal Wallis H-test statistics
(p < .0001, Fig. 4). TP concentration, however, is the highest in
summer, followed by the fall season. Winter and spring season con-
centrations are similar. The differences are statistically significant with
TP as well (p < .05). COD concentration is the highest during the
summer season. Fall and spring season COD concentrations are com-
parable, while winter season concentration is the lowest. The seasonal
differences are significant with COD as well (p < <0.0001), with a
generally higher concentration in summer. SS concentration is the
highest in summer, followed by spring and fall, while winter season
concentration is the lowest (p < .0001).

3.2. Model results

3.2.1. Total nitrogen (TN)
The explanatory variables were most successful in explaining the

variations in TN concentration in spring followed by winter, while fall
and summer strengths were lower for aspatial models across different
distance weight treatments (Fig. 5a, Table 2). Across different model
types, when spatial filters were not used, model 4 (flow accumulation
weighted) predicted the TN concentration higher than any other model
types. However, the eigenvector-based spatial filters significantly im-
proved model strengths across all seasons and distance weighted
treatments, resulting in less noticeable differences of model strength
among different model types. All the models (except for the summer of
model 4) showed significant residual spatial autocorrelation, suggesting
a need for a spatial regression.

Elevation and agricultural land cover are loaded as negative ex-
planatory variables across most of the seasons and model types for TN
concentration (Table 3). Soil type 2 (moderately drained) was also in-
cluded positively in model 2 and model 3. However, in model 4 (flow
accumulation weighted), agricultural and forest land covers were
loaded as negative explanatory variables, while well-drained soil (soil1)
was included as a positive variable across all seasons and spatial
treatments.

3.2.2. Total phosphorus (TP)
A set of variables explained TP concentration across different sea-

sons with R2 values ranging from 0.4 to 0.6. When spatial filters were
used, the R2 values increased across all seasons and weight treatments.
TP model strengths were highest in fall and spring for all model types
related to aspatial models. But in the winter season, the aspatial model
in model 2 is the highest (Fig. 5b, Table 2). The spatial filtering-based
models substantially increased the model strength for all seasons, and
the R2 values are similar across different model types in spatial models.
All the models showed significant residual spatial autocorrelation,
prompting a need for a spatial regression to account for spatial de-
pendencies.

As in the rest of other parameters, elevation was consistently se-
lected as the negative variable across all seasons and spatial filtering
treatments in model 1, model 2, and model 3 (Table 4). Another vari-
able soil2 (moderately drained soil) was occasionally loaded in some
seasons in model 2 and model 3. In model 4 (flow accumulation
weighted), the size variable was negatively loaded for fall and spring
models, forest land cover was negatively loaded for all seasons, and
well-drained soil (soil1) was positively loaded for most of the seasons.

3.2.3. Chemical oxygen demand (COD)
The strength of explanatory variables to model COD concentration

(R2) is lowest for fall, while they are similarly higher in winter, spring,
and summer seasons (Fig. 5c, Table 2). When aspatial models were run
during the fall season, model 4 showed the highest R2 values for as-
patial models. The strengths of model 2 and model 3 were lower in
aspatial models, while those of model 1 and model 4 were similar.
When spatial eigenvector-based filters were used, the model strengths
improved significantly higher than aspatial models for all distance
weighted treatments. All the models showed significant residual spatial
autocorrelation, suggesting a need for a spatial regression. In all seasons
model, strengths were higher for model 1 (lumped attribute), although
not significantly, than other distance weight treatments.

Elevation and size of the watershed were significant explanatory
variables of COD concentration in models 1 through 3, while percen-
tage agriculture, forest, and soil type one were identified as significant
variables in flow accumulation based models (Table 5). Although none
of the land cover variables significantly predicted COD concentration
across models 1 through 3, a few of the variables were loaded with
model 4 (Table 2). Both agricultural and forest land covers were ne-
gatively associated with COD concentration, while the presence of the
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well-drained soil at the high flow accumulation area was positively
related to COD concentration.

3.2.4. Suspended solids (SS)
The explanatory variables used in this work successfully modeled SS

concentration across different seasons. The model strengths were sub-
stantially higher in winter and spring, while summer season model
strengths were the lowest across all distance weight and spatial filtering
treatments (Fig. 5d, Table 2). The flow accumulation-based model
(model 4) consistently showed the highest model strengths across dif-
ferent seasons when spatial filtering was not used. The spatial filtering
increased model strengths substantially and leveled the effects of dis-
tance weight treatments in all seasons. All the models except for spring
and summer in model 4 showed significant residual spatial auto-
correlation, indicating a need for a spatial regression.

Elevation and agricultural land cover are reported as the significant
predictor of SS concentrations in models 1 through 3. Model 4 (flow
accumulation-based models) were loaded with the forest land cover in

all seasons and soil1 (well-drained soil) in winter in addition to agri-
culture land cover in fall and summer seasons (Table 6). The agri-
cultural land cover was loaded as a positive variable for fall for model 4.
As expected, flow accumulation weighted forest land cover types are
significant negative explanatory variables for most of the seasons, sig-
nifying the importance of forest in ameliorating sediment loss from the
landscape, especially when they are close to the stream (Hoyer &
Chang, 2014).

4. Discussions

4.1. Spatial and seasonal patterns of different water quality parameters

We report higher values of different water quality parameters in the
western region of the watershed around the Seoul metropolitan region,
except for summer season SS. The distinct spatial patterns of different
water quality parameters can be attributed to differences in land cover
(Chang, 2008), topography (Mainali & Chang, 2018), restoration

Fig. 3. Spatial patterns of different water quality parameters by season (TN: Total Nitrogen, TP, Total Phosphorus, COD: Chemical Oxygen Demand, SS: Suspended
Solid).
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(Hong, Chang, & Chung, 2019), and policy and political regimes
(Chang, Park, & Bae, 2019) in the Han River basin in South Korea.
These various factors affect source, mobilization, and instream move-
ment of different water quality parameters, leading to the varying
spatial pattern in the watershed (Lintern et al., 2018a). A recent study
has also reported that the number of stations exceeding the poor

category of water quality during the last five years was concentrated
around the Seoul Metropolitan area (Mainali & Chang, 2018). These
higher values of TN, TP, and COD in and around the major metropolitan
regions can be attributed to increased urbanization (Bae & Chang,
2019). At the same time, the water quality of these urban regions have
somewhat improved over time, probably due to stream restoration and

Fig. 4. Seasonal differences of different water quality parameters (TN: Total Nitrogen, TP: Total Phosphorus, COD: Chemical Oxygen Demand, SS: Suspended Solid).

Fig. 5. R2 values by season and spatial considerations. A: Aspatial model, S: Spatial model including spatial filters. Model 1: Aspatial Lumped Model, Model2: Inverse
distance weighted model, Model3: Overland flow weighted model, Model4: Flow accumulation weighted model.
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implementation of strict water quality guidelines by the government
(Mainali & Chang, 2018). Recent research demonstrates increased in-
terest in local stream environments by stakeholders, and various stream
restoration projects are underway, especially in more developed regions
in the Seoul metropolitan area (Hong et al., 2019).

4.2. Water quality models

Our result shows that forest land cover types are negatively asso-
ciated with TN concentration when they are treated with flow accu-
mulation-based weighting schemes. As expected, forest land cover,
when located close to streams, significantly reduces the nutrient flow to
streams (Kuglerová, Ågren, Jansson, & Laudon, 2014). Agricultural and
urban land covers are typically associated with the high nitrogen con-
centration in streams (Galloway et al., 2003; Mainali & Chang, 2018;
Xu, Yin, Ai, Xin, & Shi, 2016). However, low nitrogen flow from agri-
cultural lands to the river during some seasons may be associated with

the following three factors. First, water is held in agricultural land
during the rice sowing period. Second, nitrogen may be unavailable in
the agricultural areas land due to a lack of application of nitrogen-based
fertilizers or manure. Third, there may have been meager rainfall to
wash nitrogen from croplands.

Our result suggests that the presence of forest land cover in the high
flow accumulation area (vicinity of the stream) significantly reduces TP
concentration. But, it also shows that those areas need to have well-
drained soil. An increase in phosphorus with fine-grain soil has been
reported in Finland (Röman, Ekholm, Tattari, Koskiaho, & Kotamäki,
2018). Previous studies identified the importance of forest in amelior-
ating phosphorus loads in stream water, while agricultural land cover is
the primary source of phosphorus to the water (Ockenden et al., 2017;
Powers et al., 2016).

Although none of the land cover variables significantly explained
the variation of COD concentration across models 1 through 3, a few
explanatory variables were included with model 4, signifying the

Table 2
Mean and standard deviation of R2 values by each parameter (COD: Chemical Oxygen Demand, SS: Suspended Solid, TN: Total Nitrogen, TP: Total Phosphorus, SD:
Standard Deviation).

Parameters Values Model1 Model2 Model3 Model4

Aspatial Spatial Aspatial Spatial Aspatial Spatial Aspatial Spatial

COD Mean 0.46 0.77 0.4 0.74 0.38 0.72 0.59 0.72
SD 0.03 0.08 0.05 0.1 0.05 0.1 0.09 0.08

SS Mean 0.37 0.6 0.28 0.51 0.27 0.47 0.46 0.56
SD 0.13 0.11 0.13 0.13 0.13 0.13 0.14 0.13

TN Mean 0.32 0.67 0.33 0.68 0.31 0.67 0.54 0.63
SD 0.09 0.05 0.08 0.04 0.08 0.04 0.07 0.06

TP Mean 0.46 0.75 0.5 0.73 0.43 0.72 0.57 0.67
SD 0.06 0.01 0.13 0.03 0.06 0.02 0.04 0.05

Table 3
Model attributes of TN.

Season Sp/As rSAC R2 AIC Intercpt elev*10−3 size*10−32 ag for soil1 soil3 Significant eigenvectors (ev)

Model1 F A 0.41* 0.21 143 1.75 −1.04
S −0.09 0.66 60 1.75 −1.04 −0.87 1.99ev2, 2.2ev4, −0.7ev16, 0.6ev10

W A 0.42* 0.36 141 2.15 −1.4
S −0.06 0.71 63 2.15 −1.4 −0.7 2.02ev2, 1.83ev14, −0.7ev16, 0.6ev30

Sp A 0.36* 0.42 142 2.09 −1.5 −0.99
S −0.07 0.7 78 2.09 −1.5 −0.99 1.8ev4, −0.7ev16, 0.7ev10

Su A 0.33* 0.27 131 1.68 −1.1 −1.17
S −0.06 0.61 71 1.68 −1.1 −1.17 1.88ev4

Model2 F A 0.4* 0.24 141 1.59 −1.2 −1.17 1.09
S −0.12 0.67 56 1.63 −1.3 −0.99 1.23 2.23ev2, 2.18ev4, −0.6ev16

W A 0.39* 0.37 141 1.99 −1.7 1.05 1.08
S −0.07 0.71 65 2.03 −1.7 −0.90 1.29 2.32ev2, 1.8ev4, −0.6ev16, 0.7ev10

Sp A 0.34* 0.41 143 1.95 −1.8 −1.19 0.84
S −0.09 0.7 78 1.99 −1.9 −1.01 1.05 2.2ev2, 1.7ev4, 0.69ev10

Su A 0.32* 0.29 129 1.5 −1.3 −1.29 1.05
S −0.09 0.63 67 1.55 −1.37 −1.16 1.21 1.8ev4, 0.7ev23

Model3 F A 0.4* 0.22 143 1.53 −1.17 −0.8 0.9
S −0.09 0.64 66.7 1.53 −1.19 −0.73 0.88 2.19ev2, 2.16ev4, −0.6ev16

W A 0.4* 0.35 144 1.94 −1.56 −0.77 0.97
S −0.11 0.7 69 1.93 −1.59 −0.68 0.93 2.28ev2, 1.74ev4, −0.68ev16

Sp A 0.35* 0.39 148 1.87 −1.7 −0.8
S −0.13 0.69 81 1.87 −1.74 −0.75 0.7 2.19ev2, 1.7ev4

Su A 0.32* 0.26 133 1.43 −1.2 −0.91 0.92
S −0.09 0.63 66 1.43 −1.2 −0.85 0.89 1.74ev2, 1.8ev4, 0.69ev23

Model 4 F A 0.16* 0.49 98 1.76 −0.7 −0.81 −1.6 0.84
S −0.01 0.66 75 1.93 −0.76 −1.3 2.06 1.1ev2, 2.02ev4, 0.7ev10

W A 0.19* 0.57 100 2.1 −7.8 2.10 −1.8 0.73
S −0.09 0.65 87 2.2 −9 0.69 −1.5 0.9ev2, 1.69ev4, 0.77ev10

Sp A 0.1* 0.62 99 1.93 −1.93 −0.83 −1.6 0.9
S 0.03 0.66 94 2.04 −1.12 −0.8 −1.3 0.9ev2, 1.45ev4, 0.7ev10

Su A 0.1* 0.48 96 1.69
S −0.04 0.53 93 1.84 −0.85 −1.4 0.73 1.57ev4

* refers to p ≤0.05 for residual spatial autocorrelation. The only direction of parameter estimates are provided. F- Fall, W- Winter, Sp- Spring, Su- Summer. A-
Aspatial model, S- Spatial model. elev- elevation, ag- agriculture land use, for- Forest. soil1- well-drained, soil 3- poorly drained.
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importance of land cover, especially in relation to the hydrological
processes (Table 2). Both agricultural and forest land covers negatively
affect COD concentration, while the presence of the well-drained soil at
the high flow accumulation area positively affects COD concentration.
In this watershed and others in the region, COD concentration is usually
related to urban areas (Chang, 2008; Chen & Lu, 2014; Liu et al., 2017),
which is manifested in our result as negative loading of flow accumu-
lated forest and agriculture land cover in the absence of significant
urban land cover. High flow accumulation is usually along the stream in
riparian areas. The forest cover in those areas always helps by ameli-
orating the flow of nutrient loading to the surface water bodies con-
sistent with our result (Brogna et al., 2017; de Mello, Valente, Randhir,
dos Santos, & Vettorazzi, 2018).

The agricultural land cover was loaded as a positive explanatory
variable for fall for most of the model types and seasons, suggesting the
role of agricultural practices in increasing suspended solid concentra-
tion in the river. The importance of forest in ameliorating sediment loss
from the landscape, especially when they are close by the stream, has
been seen in this result as well because flow accumulation weighted
models suggested forest land cover as significant negative predictors.
Chang (2008) also reported a lower SS concentration in the forested
catchment at the watershed as well as a riparian buffer scale in the
study basin.

4.3. Distance weighting and spatial consideration

Consistent improvements in model performance as we include flow
accumulation-based distance weighting treatments might be attributed
to the fact that the major process of mobilization and delivery of these
parameters are captured in the model. Past research consistently
showed that the distance weighting treatment generally improves the
model performance of water quality parameters (Grabowski et al.,

2016; King et al., 2005; Peterson et al., 2011). However, the most ef-
fective distance weighting treatments differ by the types of parameters
being modeled and/or season at which water attributes from a stream
are collected. For example, fish indicators and physicochemical para-
meters were better modeled with the inverse distance weighted and
hydrologically active inverse-distance metrics than with the simple
Euclidean distance weighted matrices. However, the opposite was the
case for invertebrate assemblages (Peterson et al., 2011). Grabowski
et al. (2016) also concluded that the spatially explicit landscape in-
dicators (aka distance weight treatments) that also account for wa-
tershed processes improved the predicting power of the regression
models. Watson and Chang (2018), however, reported mixed results of
the weighting schemes, with model results varying along with the water
quality parameters and seasons.

Most of the nutrients and salts are delivered to rivers via an over-
land flow in a drainage basin. The overland flow accumulates towards
the proximity of the river. The current study shows that when we
provide higher weight towards different parameters based on flow ac-
cumulation, they can explain water quality parameters better than
other weight treatments. We also need to pay attention to which ex-
planatory variable weights produced the most robust models. In this
work, we notice that these variables are different for different para-
meters, and they differ by seasons as well. This finding is congruent
with the general understanding of the effects of these factors on river
water quality in this watershed and other parts of the world (Chang,
2008; Lintern et al., 2018b; Mainali & Chang, 2018; Pratt & Chang,
2012).

Most of the models showed significant residual spatial auto-
correlation in our analysis. When Grabowski et al. (2016) tested for the
same, they did not report any significant spatial autocorrelation. Recent
studies have reported that the residual spatial autocorrelation can be
due to spatial autocorrelation of dependent variables, the scale of

Table 4
Model attributes of TP.

Season Sp/Asp rSAC R2 AIC Intercept elev*10−3 size*10−32 ag for soil1 soil2 soil3 Significant eigenvectors (ev)

Model1 F A 0.32* 0.50 197 −2.19 −2.5
S −0.08 0.75 264 −2.19 −2.8 2.9ev2, 2.8ev4

W A 0.38* 0.43 3.4 −2.29 −2.9
S −0.07 0.73 228 −2.28 −2.9 4.2ev2, 4.07ev4, −1.8ev16

Sp A 0.35* 0.52 283 −1.95 −3.7
S −0.09 0.76 213 −1.94 −3.1 3.5ev2, 3.16ev4

Su A 0.34* 0.40 259 −2.14 −2.3
S −0.12 0.74 180 −2.14 −2.6 2.6ev2, −1.3ev14, −1.3ev16

Model2 F A 0.33* 0.47 272 −2.38 −3.2
S −0.07 0.74 202 −2.37 −3.4 1.35 3.6ev2, 2.7ev4, −1.54ev16

W A 0.28* 0.68 310 −1.75 −3.6
S −0.1 0.74 224 −2.54 −3.7 1.9 5.05ev2, 3.83ev4, −1.9ev16

Sp A 0.36* 0.48 291 −2.19 −3.7
S −0.06 0.75 218 −2.19 −3.8 1.43 4.3ev2, 2.9ev4

Su A 0.32* 0.36 269 −2.22 −2.7
S −0.11 0.69 200 −2.22 −2.8 3.13ev2, 2.6ev4, −1.4ev16

Model3 F A 0.33* 0.47 273 −2.49 −3.15
S −0.09 0.72 209 −2.49 −3.23 1.12 3.6ev2, 2.5ev4, −1.8ev16

W A 0.4* 0.39 312 −2.65 −3.4
S −0.08 0.71 237 −2.65 −3.5 1.6 4.9ev2, 3.73ev4, −1.9ev16

Sp A 0.35* 0.48 294 −2.31 −3.6
S −0.09 0.74 226 −2.3 −3.67 4.2ev2, 2.9ev4

Su A 0.33* 0.36 268 −2.29 −2.67
S −0.12 0.70 197 −2.29 −2.7 3.1ev2, −1.3ev14, −1.48ev16

Model4 F A 0.08* 0.56 254 −2.3 −1.9 −2.5 1.59
S 0.003 0.73 241 −2.54 −2.2 −2.3 1.12 2.3ev4, −1.4ev16, −2.5ev1

W A 0.27* 0.54 282 −2.24 −3.4 1.9
S 0.08 0.66 259 −2.4 −3.03 2.3ev2, 3.6ev4, −1.4ev16, −2.2ev1

Sp A 0.21* 0.62 260 −2.5 −2.4 −0.37 −2.71
S 0.09 0.67 252 −2.72 −2.7 −2.5 1.87 1.2 2.4ev4, −1.99ev1

Su A 0.2 0.55 230 −2.45 −2.54 2.12
S 0.09 0.6 227 −2.6 −2.45 1.74 0.85 −1.25ev14, 1.94ev4, −1.56ev1

* refers to p ≤0.05 for residual spatial autocorrelation. F- Fall, W- Winter, Sp- Spring, Su- Summer. A- Aspatial model, S- Spatial model. elev- Elevation, ag-
Agriculture land use, blt- Built up area land use, for- Forest. soil1- well drained, soil2- moderately drained, soil 3- poorly drained.
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analysis, inability to account for predictor variables with spatial
structure, or inappropriate sampling design due to a model mis-
specification (Bini et al., 2009; Mainali & Chang, 2018; Miralha & Kim,
2018; Thayn & Simanis, 2013). While analyzing the same set of data for
the ‘spatial autocorrelation of the temporal trends,’ Mainali and Chang
(2018) reported the significant autocorrelation in most of the temporal
trends. Most of their models (they did not use any distance weight
treatment) also suffered from residual spatial autocorrelation. We posit
that the residual spatial autocorrelation reported in this analysis is due
to the inherent properties of the data set as there is significant spatial
clustering of seasonal water quality parameters associated with the
agriculture or urban land use (Chang, 2008; Mainali & Chang, 2018).

Our results show that the distance-weighted treatments did not have
any significant association with the model strength when spatial filters
were used. However, most of the variables were loaded in the flow
accumulation-based model (model 4) even without the spatial filters
and hence helped explain the effect of various landscape matrices on
water quality. These matrices, along with the process of flow accumu-
lation (as in model 4), collectively explain the source, mobilization, and
delivery process of different water quality parameters. This is not
possible in other models where different explanatory variables suffer
from multicollinearity, and only a couple could be loaded in each
model.

5. Conclusions

We found significant spatial patterns of different water quality
parameters with a high concentration of chemical oxygen demand,
suspended solids, total nitrogen, and total phosphorus in the southwest
area of the basin around the Seoul metropolitan area and other urban
centers. Water quality parameters also showed seasonal patterns with

the highest concentration in winter, spring, or summer season de-
pending on the parameters. Collectively, land cover, soil, and topo-
graphical variables could explain the variation of these parameters,
successfully explaining 50 to 80% of variations in water quality. The
strengths of these models were highest when flow accumulation-based
weightings were used for the predictor variables. When spatial filters
were used in conjunction with the distance weighting, all distance
weighting-based models showed similar model strengths, which were
generally higher than only distance weighting treatments. We conclude
that the distance weighted treatments and eigenvector-based spatial
filtering approaches could be used complimentarily to understand the
spatial patterns of water quality parameters as well as to explore wa-
tershed level processes affecting them. Although we do not anticipate
these relations to be universal, we recommend considering ‘space’ with
spatial statistical methods while modeling water quality using
(weighted) landscape matrices.
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