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ABSTRACT
Studies in transportation planning routinely use data in which location attributes are an 
important source of information. Thus, using spatial attributes in urban travel forecasting 
models seems reasonable. The main objective of this paper is to estimate transit trip production 
using Factorial Kriging with External Drift (FKED) through an aggregated data case study of 
Traffic Analysis Zones in São Paulo city, Brazil. The method consists of a sequential application of 
Principal Components Analysis (PCA) and Kriging with External Drift (KED). The traditional Linear 
Regression (LR) model was adopted with the aim of validating the proposed method. The results 
show that PCA summarizes and combines 23 socioeconomic variables using 4 components. 
The first component is introduced in KED, as secondary information, to estimate transit trip 
production by public transport in geographic coordinates where there is no prior knowledge 
of the values. Cross-validation for the FKED model presented high values of the correlation 
coefficient between estimated and observed values. Moreover, low error values were observed. 
The accuracy of the LR model was similar to FKED. However, the proposed method is able to map 
the transit trip production in several geographical coordinates of non-sampled values.

 OPEN ACCESS

1. Introduction

Travel demand forecasting models usually consider 
explanatory variables, such as Traffic Analysis Zone (TAZ) 
characteristics, urban environments, transport facil-
ities, travel features, and individual/household factors 
(Ortúzar and Willumsen 2011) to estimate the trip gen-
eration, trip distribution, mode choice, and route choice. 
These are the four major model components of a travel 
demand forecasting process known as the sequential 
Four-Step Model (Ortúzar and Willumsen 2011). The 
focus of this paper is the trip generation step. Trip gen-
eration estimates the number of trips to (attraction) and 
from (production) in a TAZ. More specifically, this study 
addresses the trip production. The aggregated trip pro-
duction model estimates the number of trips originating 
in a TAZ, whereas the trip attraction model estimates the 
number of trips to a particular TAZ.

The most common models to estimate trip gen-
eration are Multiple Linear Regression (MLR) and 
Cross-Classification (CC). These two methods can be 
acceptable to some extent in terms of transportation 
planning. However, some critical issues are found in 
each method. On one hand, in the case of MLR, the 
estimated number of trips is a continuous variable with 
the assumption of a normal distribution. On the other 

hand, the CC method estimates travel rates per group 
of households via the social and economic characteris-
tics of the household. However, the arbitrary choice of 
independent variables, and consequently the household 
strata, can be a critical problem (Chang et al. 2014).

Despite the mentioned limitations, MLR and CC are 
representative methodologies used for this step. They 
have been widely used for empirical studies and have 
shown acceptable efficiency for years considering the 
planning perspective, especially if information regard-
ing the spatial location of the variables is not taken into 
account. Considering technological progress and the 
availability of geo-referenced information, spatial anal-
ysis of transportation demand forecasting is a potential 
research subject (Páez et al. 2013).

Significant developments have affected the travel 
modeling approach and process, eg Geographic 
Information System (GIS) used in the forecasting pro-
cess. GIS allows the user to handle and access relevant 
data, and it employs a fundamental concept in geogra-
phy, ie nearer objects share more similarities than objects 
farther apart (Tobler 1979). As a consequence, similar 
variable values will tend to occur in nearby locations, 
eg a lower income municipality in a remote region may 
be neighbors with other low-income municipalities. 

http://creativecommons.org/licenses/by/4.0/
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This spatial clustering implies that many samples of 
geographic data will no longer satisfy the usual statisti-
cal assumption of independence of observations. Thus, 
the object localization is very important for spatial data 
analysis (Anselin 1992).

Studies in transportation planning routinely use data 
in which location attributes are an important source of 
information. These studies are associated with variables 
spatially positioned both in an absolute sense (coor-
dinates) and in a relative sense (spatial arrangement, 
distance), such as densities of residential and socioec-
onomic activities, proximity between TAZs, and the 
transportation network.

Regarding the spatial analysis of travel demand mod-
eling, some researchers have realized that travel behavior 
is correlated to spatial travel features. Bhat and Zhao 
(2002) highlighted the spatial aspects that need to be 
recognized when modeling travel demand and proposed 
a Multi-Level Mixed Logit Model to address these spatial 
issues. Bhat and Sener (2009) proposed a multivariate 
logistic distributed copula-based approach to address 
the spatial dependency and heteroscedasticity issues in 
binary discrete choice models in travel demand mode-
ling. Recently, Páez et al. (2013) introduced a new indi-
cator of spatial fitness that could be applied to discrete 
choice models to estimate door-to-door travel choices. 
Peer et al. (2013) used geographically weighted regres-
sion to estimate speed correlations across links and esti-
mated the departure time with choice models.

Concerning spatial statistics, Geostatistics, enables 
professionals to consider spatial autocorrelation when 
modeling a problem and to predict the value of a variable 
in locations where it is unknown or unobserved. Usually, 
Geostatistics is applied to the cases in which spatial con-
tinuity is apparent. Despite this limitation, geostatistical 
modeling has been used for spatially discrete data for 
many years (Goovaerts 2009). Generally, travel data are 
spatially discrete. To deal with this limitation, transporta-
tion variables need to be adapted, considering that they are 
generally discrete variables and have no spatial continuity.

In the literature, however, studies on the application 
of Geostatistics concerning transportation issues are 
mainly from traffic engineering. Miura (2010) presented 
an approach for predicting car travel time by Kriging. 
This prediction method was shown to be effective for 
urban districts with links having changeable travel 
times owing to congestion. Zou et al. (2012) proposed 
an improved distance metric called Approximate Road 
Network Distance for solving the problem of the inva-
lid spatial covariance function in Kriging caused by the 
non-Euclidean distance metric. Following this line of 
research, recent studies have shown that Geostatistics 
is able to estimate transportation demand variables and 
to explain the spatial distribution using maps of Kriging 
predicted values (Pitombo et al. 2010; Pitombo, Costa, 
and Salgueiro 2015; Pitombo et al. 2015).

The main aim of this paper is to estimate transit trip 
production using Factorial Kriging with External Drift 
(FKED) based on an aggregated data case study. The 
FKED method consists of a sequential application of 
Principal Components Analysis (PCA) and Kriging with 
External Drift (KED), in an aggregate analysis of TAZs 
in São Paulo city (Brazil). This article is organized into 
four sections besides this introduction. Section 2 pre-
sents the materials (techniques, study area, data-set) and 
the method. Section 3 presents the results, and finally, 
Section 4 describes the main conclusions.

2. Materials and method

2.1. Techniques: Geostatistics

Geostatistics was developed as an alternative method to 
explore events in which the values of a given variable are 
associated with geographic coordinates. This approach 
takes general spatial statistics into account because it 
estimates a continuous surface using a data-set that may 
be regularly or irregularly spatially distributed. The main 
point of using Geostatistics is to characterize the spatial 
(and/or spatial/temporal) dispersion of an event, assess-
ing uncertainty parameters, determining its spatial var-
iability, and obtaining a continuous surface estimation. 
Geostatistics is better defined as in the following steps: (1) 
variographic analysis, (2) cross-validation, and (3) Kriging.

The primary tool in geostatistical modeling is the 
semivariogram, which graphically represents a regional-
ized variable. The semivariogram function was originally 
defined by Matheron (1963) and is given by Equation 
(1), where N(h) is the set of all pairwise data values z(xi) 
and z(xi + h) at spatial locations i and i + h, respectively.

 

Moreover, the representation of an experimental sem-
ivariogram requires further understanding of graph-
ical aspects. Some measures include lag distance and 
tolerance, cut distance, and direction. Another step of 
variographic analysis is to model a theoretical semivar-
iogram based on the experimental one. The parameters 
obtained by this step are: the nugget (C0), the spatial 
variation/partial sill (C1), the sill (C), and the range (r). 
These parameters are better understood when they are 
graphically represented in the semivariogram (Figure 
1). Furthermore, the major and minor directions can be 
detected by analyzing semivariograms of all directions.

The next step of geostatistical modeling is the cross 
validation (fictitious test point), which comprises an 
analysis of errors, ie it measures the uncertainty of 
estimation. This test is performed by considering the 
observed and estimated values in previous sampled 
geographic coordinates. Cross-validation proceeds by 
successively removing each validated sample value and 
estimating a new value using (n－1) observations. The 
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difference between the estimated and observed value is 
given by Equation (2):

 

where Z(xa) is a sample value and Z*(x[a]) is an estimated 
value in location x[a] (Wackernagel 2003).

The geostatistical method follows the Kriging estima-
tion, which is a linear prediction represented by matrix 
calculus. The aim of Kriging is to predict estimates of one 
of more variables with a minimum error and variance 
(optimizing the model) using the parameters defined in 
the theoretical semivariogram of the major and minor 
directions, as illustrated in Figure 1. The most com-
mon univariate Kriging methods are Simple Kriging, 
Universal Kriging, and Ordinary Kriging. This paper 
uses the multivariate method of FKED, which is derived 
from Ordinary Kriging concepts to emphasize the ben-
efit of including explanatory variables in Geostatistics.

KED is a multivariate geostatistical method that com-
bines the use of multiple variables to co-estimate a cor-
related variable. FKED follows the same approach using 
auxiliary variables as the factors/components extracted 
from a Factorial Analysis or a PCA. This research paper 
uses PCA component 1 as the secondary variable to esti-
mate the correlated primary variable (transit trip pro-
duction) through the FKED approach. Therefore, both 
multivariate analysis methods, ie PCA and KED are 
sequentially described here.

FKED can be considered as a link between the clas-
sical multivariate analysis and the conceptual multi-
variate geostatistical method. PCA builds a number of 
components or regionalized factors, which reflect the 
main features of the multivariate information of an 
event (Goovaerts 1992), and which can estimate each 
weighting and the dependent variable through semivar-
iogram co-localization information. Specific tendencies 
concerning the occurrence of a phenomenon can be 
detected using the Factorial Kriging technique (Batista 
et al. 2001).

(2)Δ = Z
(

x
�

)

− Z∗(x
[a])

2.1.1. PCA
PCA is implemented to assess interrelations among a 
large number of variables and to understand the var-
iables in terms of their common dimensions, defined 
as components (Hair et al. 2010). The main idea of the 
PCA is to reduce the dimension of an associated data-
set into non-correlated factors (components), preserving 
its variance (Jolliffe 2002). The advantages derived from 
reducing the data are that relevant information about 
significant variables is retained, and there is an improve-
ment in complex data structures (Sanguansat 2012).

The mathematical formulation associated with PCA 
is based on a variance–covariance/correlation matrix 
(matrix S). The variance–covariance matrix is used for 
data in the same scale of measurement, while the corre-
lation matrix considers data measured at different scales. 
The variance–covariance denotes the data dispersion. 
Given a matrix S (m × n), m is the number of obser-
vations, n is the number of variables, and the principal 
components are yielded by the definition of the matrix 
S eigenvectors (v).

The eigenvectors (v) are calculated as a function of 
eigenvalues (λ) of the matrix S. I is the identity matrix, 
and the eigenvalues (λ) of the matrix S are scalars that 
satisfy the characteristic equation (Equation (3)).

 

Each eigenvalue is associated with an eigenvector, which 
can be obtained from Equation (4).
 

In the general case, the eigenvalue matrix is diagonal, 
where the number of eigenvalues is equivalent to a 
square matrix (n  ×  n). A new set of variables can be 
derived by multiplying the eigenvectors and the vectors 
of the original values. Hence, a square matrix A is com-
posed using eigenvectors as columns of the matrix. The 
new set of variables is a linear combination of the orig-
inal variables, derived from Equation (5).
 

where matrix A comprises the eigenvectors and X is 
the original data vector. The principal components are 
selected by verifying the fraction of the variance which is 
explained by a specific component. The higher its propor-
tion, the more relevant the component to the analysis is.

This paper uses component 1 as an input of second-
ary variable to estimate values from a KED method. 
Another point to be considered is that in this paper, the 
estimation by the principal components can be given 
by Equation (3) for a standardized case (Equation (6)):

 

(3)|S − �I| = 0

(4)(S − �I)v = 0

(5)W = XA

(6)Ŷ =
∑n

i=1

(

vi ×
Xi − X̄i

Si

)

Figure 1. Graphical parameters of a semivariogram.
source: adapted from Wackernagel (2003).
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where C is the covariance function and μ is the Lagrange 
multiplier that minimizes the estimation variance and 
both constraints (Equations (8) and (9)).

2.2. Study area and data-set

São Paulo is the most populated city in Brazil. Its met-
ropolitan area has a population of over 20 million res-
idents; however, approximately 11.5 million live in the 
city of São Paulo (IBGE 2010). This research assesses 
an origin–destination data-set based on a home inter-
view survey carried out in 2007. The original sample 
includes information from 30,000 households in the 
São Paulo Metropolitan Area (SPMA). The study area 
corresponds exclusively to the city of São Paulo divided 
into 320 TAZs, as shown in Figure 2.

The database consists of 23 socioeconomic varia-
bles (Table 1) associated with TAZ units in addition to 
variables related to trip production. For the purpose of 
applying FKED, the method considered the values of 
socioeconomic variables divided by the area of each TAZ.

2.3. Method

Figure 3 demonstrates the proposed method, where 
three main steps can be identified. The first step was 
followed to detect the components of the entire data-set 
and to define its nomenclature. As the second step of 
the method, PCA component 1 was used as input data 
of the secondary variable to estimate the FKED. Hence, 
the primary variable (recognized as transit trip produc-
tion) was seen as the most correlated variable with the 

where Ŷ is the estimated value for the dependent variable 
and vi is the eigenvector associated with the standardized 
value of each explanatory variable 

(

Xi−X̄i

Si

)

.

2.1.2. KED
Considering the integration of two correlated variables 
(Z(x) and Y(x)) that express the same attribute, Equation 
(7) defines the basic concept of the KED estimation as 
a linear function.
 

where Y(x0) is an external drift function to estimate the 
primary variable Z(x0) based on the estimated values 
x0. KED is given by two basic constraints (Equations 
(8) and (9)).
 

 

where xi is the observed value and wi is the weight of 
each value. The estimation variance, as well as the corre-
spondent weights, are yielded by means of the following 
matrix in Equation (10) (Wackernagel 2003).
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Figure 2. representation of the study area: (a) são paulo metropolitan area, (b) são paulo, Brazil.
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where RMSE is the root mean square error; xi is the 
estimated measure; yi is the observed measure; N is the 
number of measures, MSE is the mean squared error; 
MAE is the mean absolute error; PCC is the correlation 
coefficient; x̄ and ȳ are the averages; SDx and SDy are the 
standard deviations; SE is the standard error.

The computing applications used in this research 
were the IBM – Statistical Package for the Social Sciences 
(SPSS) Version 22 and the software GeoMS 1.0 for the 
geostatistical calculation and definition processes of 
experimental and theoretical semivariograms and 
Kriging. The software ArcGIS 10.1 was used in order to 
obtain graphical representations of the results.

3. Results and discussions

This section presents the main results obtained from the 
following steps:

•  The estimation of the FKED method in Section 3.1;
•  An LR estimation according to the traditional 

non-spatial approach in Section 3.2;
•  A comparison between the former and the latter 

validations in Section 3.3.

3.1. FKED

Considering the latent root criterion to extract the com-
ponents, PCA component 1 explains approximately 48% 
of the data variability in Table 2, which shows the com-
ponents, their variance percentages, cumulative variance 

(12)
RMSE =

�

∑
�

xi − yi
�2

N

(13)MSE =
1

N

∑
(

xi − yi
)2

(14)MAE =
1

N

∑
(

xi − yi
)

(15)PCC =
1

N − 1

∑ (xi − x̄)(yi − ȳ)
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secondary variable. Besides this, component 1 explains 
the variability of the entire data-set better.

The third step was related to variable estimation 
through traditional Linear Regression (LR) using the 
eigenvector of PCA component 1. LR models are justified 
to measure the increase in performance that the proposed 
method (FKED) can bring to transit trip production fore-
casting. Besides that, LR models are well recognized and 
can be easily used in travel demand forecasting, espe-
cially for trip generation. The comparison between both 
approaches (traditional non-spatial and spatial) was 
made considering various goodness-of-fit measures.

The relative error or percent error is a goodness-of-fit 
measure, used for a single pair of observed-estimated 
measures. The relative error (RE) is calculated as follows:

 

where xi is the estimated measure and yi is the observed 
measure.

The histogram of relative error reflects an aggregated 
way to represent this measure. It is a visual method for 
observing the existence of high frequencies of errone-
ous observations around null values (positively skewed 
distribution), which suggests that the model presents 
good predictive capability. For further analysis, other 
measures are assessed, such as those shown in Equations 
(12)–(18).

(11)RE =
xi − yi
yi

Table 1. set of original variables.

Variable’s relation Description
income Household income below $ 350

Household income from $ 350 to 700
Household income from $ 700 to 1400 
Household income from $ 1400 to 2626 
Household income above $ 2626 
average family income ($)

employment total employment
employment in the service sector
industries
commerce

population individuals aged under 10
individuals aged 11–17
individuals aged 18–39
individuals aged 40–59
individuals aged over 60
number of men
number of women
population

Vehicle ownership private cars
Households without cars
Households with one car
Households with two or more cars

education school enrollment

Figure 3. proposed method.
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features as explanatory variables to estimate trip pro-
duction is well known in the literature on travel demand 
(Chang et al. 2014; Schmöcker et al. 2005).

After selecting the secondary variable (PCA component 
1), the spatial distribution of the variables concerned was 
analyzed. Figure 4 presents the distribution of the popu-
lation density of each TAZ and the spatial distribution of 
PCA component 1, which expresses the low-income pop-
ulation. It can be observed that the central, central-north, 
east, and central-west areas have the highest population 
density (Figure 4(a)). The same distribution is noticed in 
the map of PCA component 1 (Figure 4(b)).

In this research, the semivariograms for the primary 
and secondary variables were obtained for an omnidi-
rectional case and the main direction of 90º, respectively. 
According to each direction, the semivariograms use pairs 
of observations in the respective directions. Axis y repre-
sents the variance, whereas axis x represents the distance 
(meters). The step to calculate the experimental semi-
variograms and obtain their parameters is a preliminary 
basis for defining the spatial characteristics of a variable. 
A good spatial structural semivariogram implies that the 
data can be represented through a theoretical model.

Figure 5 presents the theoretical omnidirectional 
semivariogram for the variable transit trip production (in 
Figure 5(a)) and the theoretical semivariogram for PCA 
component 1 in the 90º axis (in Figure 5(6)). The theoret-
ical semivariogram model was selected based on visual 
inspection of the empirical semivariogram. The points of 
the semivariogram represent the average of variance (γ) in 
each paired observation with a lag distance of h, while the 
line determined by the sill refers to the average variance 
of the points in the semivariogram. Table 4 shows the 
graphical parameters of the theoretical semivariograms.

The parameters presented in Table 4 with the data-set 
provide the input for weighting and calibrating a geo-
statistical model through FKED. In other words, the 
theoretical semivariograms of the primary and second-
ary variables are used to map the transit trip production 
estimations, which is the primary variable in the FKED 
and the one most correlated with the secondary variable 
(PCA component 1 called low-income population).

Figure 6 presents the map of the FKED estimation of 
the primary variable, featuring a spatial distribution pat-
tern similar to the maps of the population density and 
PCA component 1 (Figure 4). The Kriging map provides 
enough evidence to conclude that there is a larger transit 
trip production trend in areas with a low-income popula-
tion and higher population density. These areas are located 
mainly in the center, west and eastern parts of the city.

3.2. Linear Regression: traditional non-spatial 
approach

In this paper, PCA was used with LR to predict tran-
sit trip production. This variable was estimated based 
on PCA component 1 as the explanatory variable. This 

percentages and respective designations or nomencla-
tures considering the eigenvector matrix.

The designation or nomenclature of each component 
was determined by analyzing the eigenvector matrix, as 
presented in Table 3. The variables with larger compo-
nent scores depict the component to a greater extent. To 
determine the importance of each variable to each com-
ponent, the score for the cutoff point was set as greater 
than or equal to 0.80 (as shown in bold in Table 3).

PCA component 1 presents high values for eigenvec-
tors related to original variables such as the number of 
households with low income per TAZ, population, popu-
lation of younger individuals, and number of households 
without one car. This variable group is associated with 
low-income aspects. However, PCA component 2 con-
sists of original variables that represent the high-income 
population (high values of scores to variables as house-
hold income above $2626; number of private cars per TAZ; 
households with two or more cars). The original values 
of PCA component 3 are associated with employment 
features, such as total employment, employment in the 
service sector and commerce. Finally, the original variable 
school enrollment has a high score in PCA component 4, 
suggesting the nomenclature adopted in this paper. As 
previously mentioned, PCA component 1 was selected 
taking into account the explained variance and the cor-
relation with transit trip production. Using population 
Table 2. explained variance and description of the components.

Principal 
component

Explained 
variance (%)

Accumulated 
variance (%) Description

1 47.8 47.8 low-income population
2 22.8 70.6 High-income population
3 12.9 83.5 employment
4 4.2 87.7 school enrollment

Table 3. component scores for each component.

Variable (TAZ density per area)

Component

1 2 3 4
Household income below $ 350 0.87 –0.15 –0.09 0.01
Household income from $ 350 

to 700
0.94 –0.13 –0.07 –0.01

Household income from $ 700 to 
1400 

0.91 0.16 –0.03 0.03

Household income from $1400 
to 2626 

0.34 0.78 0.15 0.13

Household income above $ 2626 –0.14 0.93 0.13 0.02
total employment 0.00 0.19 0.93 0.21
employment in the service sector 0.00 0.19 0.93 0.21
industries –0.11 –0.06 0.65 –0.35
commerce 0.01 0.01 0.92 –0.03
average family income ($) –0.25 0.59 0.36 0.36
individuals aged under 10 0.93 0.04 –0.12 –0.04
individuals aged 11–17 0.91 0.11 –0.14 –0.06
individuals aged 18–39 0.90 0.36 0.07 0.09
individuals aged 40–59 0.66 0.71 0.07 0.07
individuals aged over 60 0.41 0.82 0.12 0.08
population 0.88 0.47 0.02 0.05
school enrollment 0.11 0.10 0.21 0.88
private cars 0.29 0.94 0.06 0.02
number of men 0.91 0.40 0.02 0.05
number of women 0.84 0.53 0.03 0.05
Households without cars 0.86 0.12 0.21 0.18
Households with one car 0.59 0.74 0.11 0.07
Households with two or more cars 0.01 0.94 0.01 –0.04
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be easier to implement and understand. (2) This is a 
non-spatial procedure and it is not possible to map esti-
mated values of urban trips.

3.3. Validation step

In order to evaluate the accuracy of both models, a val-
idation step was carried out, the results of which are 
shown in Table 6. For the FKED model, the values of 
the primary variable were estimated in known values 
of geographical coordinates through a cross-validation 
procedure. Afterward, statistical measures were calcu-
lated by observed and estimated values of the primary 
variable. For the LR case, the same goodness-of-fit 
measures were calculated by observed and estimated 
values. It can be observed that both procedures have 
similar error values and Pearson correlation and they 
could be considered reasonable for trip generation 
issues.

methodological step was used to compare the proposed 
spatial method to a usual approach in travel demand 
forecasting (LR). The parameters of the linear model are 
described in Table 5.

As expected, PCA component 1 (low-income popula-
tion) and transit trip production are directly related and 
the R2 value could be considered significant for travel 
forecasting. However, there are some drawbacks of this 
traditional approach: (1) For future estimations, the 
structure of this model is awkward for day-to-day use, 
because its explanatory variable is derived from PCA. A 
model which directly uses the original variables would 

Figure 4. Distribution of population density (a) and spatial distribution of component 1 (b) in são paulo.

Figure 5. theoretical semivariogram models for transit trip production (a) and for PCA component 1 (b).

Table 4. parameters of the semivariogram models.

Variables
Theoretical 

model C0 C1 Sill (C) Range (r)
component 1 spherical 0.003 0.046 0.049 9697.4
transit trip 

production
spherical 0.000 0.035 0.035 4249.9
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in a high frequency of null errors. According to Figure 9, 
which shows the relative error histogram, the errors tend 
to be higher than those seen in the former approaches.

Except for Figures 9, 7 and 8 illustrate the relative 
error distribution is very similar for both cases, using 
only PCA component 1. The relative error between the 
predicted and observed values in 320 TAZs presented 
a higher frequency around zero. Besides this, both 
approaches presented similar values for the goodness-of-
fit measures. However, traditional non-spatial methods 
do not have the ability to estimate values of the variable 
in different geographic coordinates, as well as the pre-
viously known coordinates (320 TAZs). Hence, this is 
the main advantage of the proposed multivariate spatial 
methodology.

4. Main conclusions and methodological 
limitations

This paper proposed the application of FKED to esti-
mate transit trip production. The method was formed by 
a sequential application of PCA and KED, on an aggre-
gate analysis of TAZs in the city of São Paulo, Brazil. 

In addition to the statistical measures presented in 
Table 6, the relative errors for all observations in the 
known geographical coordinates were calculated (320 
centroids of TAZs). The relative errors of the FKED 
case are presented in a histogram in Figure 7. It can be 
observed that there is a high frequency of observations 
around zero (positively skewed distribution), suggesting 
that the model has a good predictive capability.

Figure 8 illustrates the histogram of the relative errors 
when estimating the transit trip production through an 
LR approach using PCA component 1 as an explanatory 
variable. The results showed that both techniques can be 
used for trip production estimation. Performance meas-
ures, such as correlation analysis (r2 = 0.81) and error 
analysis, also indicated satisfactory results.

Furthermore, in a subsequent step, if a classical 
covariate selection (stepwise) was used to estimate the 
dependent variable through LR – in spite of using the 
PCA component 1, the explanatory variable would be rep-
resented as employment in the service sector. The correla-
tion would outperform the former approaches (achieving 
a determinant correlation of 0.9), but it would not result 

Figure 6. fKeD estimation of transit trip production.

Table 5. parameters of the linear model.

Model Independent variables
R2 0.66 coefficients t Sig.
sig. 0.000 constant 0.03 3.035 0.003
F 632.4 PCA component 1 0.69 24.970 0.000

Table 6. Validation results: statistical measures for fKeD and lr 
approaches.

Method MSE RMSE SD SE MAE PCC
fKeD 0.013 0.113 0.170 0.009 0.080 0.807
lr 0.012 0.109 0.153 0.009 0.075 0.814

Figure 7. relative error histogram of the fKeD estimation.

Figure 8. relative error histogram of the lr estimation.
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When performing point Kriging associated to areal 
data, a practical assumption was made that all habitants 
of the administrative area live in the same location and 
the measure refers to this specific location. This assump-
tion is reasonable whenever the aggregation units are 
small with respect to the spacing of the interpolation 
grid. However, it is not the case of the research presented 
in this paper. Therefore, for further analysis and stud-
ies, the authors strongly recommend the method pro-
posed by Goovaerts (2006) whereby the size and shape 
of administrative units, as well as the covariate densi-
ties, are incorporated into the filtering of noisy urban 
trip rates and the creation of isopleth urban trip maps. 
Furthermore, validation using an independent sample 
is recommended for future research, such as another 
region or another year.
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The proposed methodology and the results of this paper 
showed that the combined use of PCA and KED can 
be promising for studies on travel demand forecasting, 
specifically in the trip production step. The adopted 
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It is important to highlight that the proposed method 
is not only adequate for future estimations based on 
explanatory variables, but also provides a continuous 
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variables that influence transportation modeling. Table 
7 summarizes the drawbacks and benefits of each of the 
three methods used in this study.

Finally, it is important to mention that, for this study, 
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geographical units were considered to have the same size 
and shape. This enabled us to use geographic centroids in 
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Figure 9.  relative error histogram of the lr model using a 
stepwise covariate selection.

Table 7. advantages and disadvantages of the fKeD and lr 
approaches.

Approach Advantages Disadvantages
fKeD spatial multivariate 

analysis
secondary variable in 

fKeD derived from pca
future projections modifiable areal unit 

problem
maps estimated values

lr multivariate analysis explanatory variable in lr 
derived from pca

future projections Does not estimate using 
spatial associations

Does not produce a map 
of estimated values

modifiable areal unit 
problem

lr (stepwise) multivariate analysis Does not estimate using 
spatial associations

future projections Does not produce a map 
of estimated values

Uses original explanatory 
variables

modifiable areal unit 
problem
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