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Abstract

Objectives

Xinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted

using geographical information system (GIS) technology to improve the understanding of

geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to

search for targeted interventions.

Methods

Numbers of reported pulmonary TB cases were collected at county/district level from TB

surveillance system database. Population data were extracted from Xinjiang Statistical

Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using

global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used

to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model

(SLM) and geographically-weighted regression (GWR) models were used to explore the

socio-demographic predictors of pulmonary TB incidence from global and local perspec-

tives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.

Results

Incidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend

from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010

and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative

(SS-) TB incidence (p<0.0001). Spatial autocorrelation analysis showed the presence of

positive spatial autocorrelation for pulmonary TB incidence, SS+TB incidence and SS-TB

incidence from 2005 to 2013 (P <0.0001). The Anselin’s Local Moran’s I identified the “hot-

spots” which were consistently located in the southwest regions composed of 20 to 28
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districts, and the “coldspots” which were consistently located in the north central regions

consisting of 21 to 27 districts. Analysis with the Getis-Ord Gi* statistic expanded the scope

of “hotspots” and “coldspots” with different intensity; 30 county/districts clustered as “hot-

spots”, while 47 county/districts clustered as “coldspots”. OLS regression model included

the “proportion of minorities” and the “per capita GDP” as explanatory variables that

explained 64% the variation in pulmonary TB incidence (adjR2 = 0.64). The SLMmodel

improved the fit of the OLS model with a decrease in AIC value from 883 to 864, suggesting

“proportion of minorities” to be the only statistically significant predictor. GWRmodel also

improved the fitness of regression (adj R2 = 0.68, AIC = 871), which revealed that “propor-

tion of minorities” was a strong predictor in the south central regions while “per capita GDP”

was a strong predictor for the southwest regions.

Conclusion

The SS+TB incidence of Xinjiang had a decreasing trend during 2005–2013, but it still

remained higher than the national average in China. Spatial analysis showed significant

spatial autocorrelation in pulmonary TB incidence. Cluster analysis detected two clusters—

the “hotspots”, which were consistently located in the southwest regions, and the “cold-

spots”, which were consistently located in the north central regions. The exploration of

socio-demographic predictors identified the “proportion of minorities” and the “per capita

GDP” as predictors and may help to guide TB control programs and targeting intervention.

Introduction
Since the World Health Organization adopted the “declaration on the global TB emergency” in
1993, great achievements have been made over the past two decades. However, tuberculosis
(TB) remains a major global health problem; in 2012, there were an estimated 8.6 million new
TB cases and 1.3 million deaths due to tuberculosis [1]. This is a significantly large number of
patients and deaths for a curable disease. The 22 high burden countries (HBCs) accounted for
over 80% of the world`s TB cases, and China ranks second, accounting for 12% of global inci-
dence [1]. From 2000 to 2010, the prevalence of active TB and sputum-smear positive (SS+)
TB in China has declined from 466 /100000 to 459/100000 and from 169/100000 to 66/100000
respectively, according to the fifth national TB survey of 2010 [2]. However, the survey also
reflected some problems existing in the current work of TB control in China, such as uneven
distribution of TB cases. The prevalence of SS+ TB in the western area was 1.7 times that of the
central region and 2.4 times that of the eastern region [2]. Xinjiang is one of the high TB bur-
den provinces of China, in which there are more than 28,000 new TB cases and greater than
7,500 deaths each year [3]. The prevalence of active TB in Xinjiang has increased from 653/
100000 in 2000 to 1526/100000 in 2010 according to the fifth national TB survey. Although the
prevalence of sputum-smear positive (SS+) TB has decreased from 231/100000 in 2000 to 196/
100000 in 2010, the current rate remains significantly higher than the national average. The
prevalence of TB in Xinjiang also has large regional differences. Southern regions of Xinjiang
have higher-TB burden regions, due in part to a less-developed economy and poverty [4].

Understanding such spatial variations in TB prevalence and its determinants within a social,
spatial, and temporal context is crucial for improved targeting of interventions and resources.
Geospatial analytical methods, such as geographic information systems (GIS), are essential
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tools for helping to achieve such understanding. There are increasing numbers of studies that
use geospatial analytical methods in understanding TB or other public health problems [5–7],
however, there are no related studies on geospatial distribution of TB in Xinjiang so far.

One reason for the limited use of GIS includes the scarcity of reliable, spatially-coded data.
A web-based surveillance system has been applied for infectious disease surveillance in China
since 2004, which has increasingly improved the efficacy and the speed of disease surveillance.
Thus, the TB surveillance data in Xinjiang has been more reliable and accurate since 2005.
Therefore, the main objectives of this study were to: (1) use GIS to analyze the TB surveillance
data of Xinjiang from 2005 to 2013, (2) understand the geospatial characteristics of TB notifica-
tion rates and (3) identify the social and demographic predictors of TB incidence.

Methods

2.1 Data sources and variable definitions
Xingjiang Uyghur Autonomous region is the largest political subdivision of China, with an area
of 1.66 million km2 and 22.33 million population in 2013. Xinjiang is divided into 14 prefectures
(2 prefecture-level cities, 7 prefectures, and 5 autonomous prefectures). Then, these prefectures
are further divided into 94 county/districts. Northern Xinjiang includes 7 prefectures, such as
Urumqi, Karamay, Changji, Ili, Tarbagatay, Altay, and Bortala. Eastern Xinjiang includes 2 pre-
fectures (Turpan and Kumul) and Southern Xinjiang includes 5 prefectures (Bayangol, Aksu,
Kizilsu, Kashgar, and Hotan). The location of 94 county/districts is displayed in S1 Fig.

Numbers of reported TB cases for Xinjiang were collected at the county/district level from
the internet-based National Infectious Diseases Reporting System (NIDRS), Chinese Center
for Disease Control and Prevention. It is mandatory for all health care providers (hospitals,
clinics, institutions of disease prevention and control and other designated health care estab-
lishments) to report all active pulmonary TB cases in a timely manner and directly via the
NIDRS portal. The majority of reported TB cases are pulmonary, because reporting of pleural
TB and extra-pulmonary TB is not mandatory. Therefore, analysis of this study was based on
the pulmonary TB cases only.

The following four incidence rates were calculated by taking the population of each county/
district in the same year as denominator respectively: the incidence of pulmonary TB, sputum
smear positive TB (SS+TB, including sputum smear positive and/or culture positive), new SS+
TB (SS+TB cases without TB treatment history) and sputum smear negative TB (SS-TB). Pop-
ulation data such as “population at year-end”, “male population”, “minority nationalities popu-
lation”, “rural population”, “land area (sq.km)”, “death rate”, “per capita GDP (yuan)” were
collected from the Xinjiang Statistical Yearbook, covering the years 2006 to 2014. In general,
the yearbook is a record of information from the prior year Population density (population at
year-end / land area), proportion of male (male population / population at year-end), propor-
tion of minorities (minority nationalities population/ population at year-end), proportion of
rural population (rural population / population at year-end), death rate and per capita GDP
were analyzed as predictors of pulmonary TB incidence.

Ethics: The data from Statistical Yearbook are publicly available. The data from TB surveil-
lance system were aggregated secondary data without any personal information and thus,
informed consent was not needed. The study was approved by the Ethics Committee of The
First Affiliated Hospital of Xinjiang Medical University.

2.2 Spatial analysis
2.2.1 Spatial Autocorrelation Analysis. Spatial autocorrelation statistics have been com-

monly used to assess the degree of clustering, randomness or a fragmentation of a spatial
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pattern. Spatial autocorrelation includes global spatial autocorrelation which estimates the
overall degree of spatial autocorrelation for a dataset, and the local spatial autocorrelation
which identifies the location and types of clusters. The two most common spatial autocorrela-
tion measures for continuous data are Moran`s I and Geary`s C statistics. Moran`s I is gener-
ally preferred over Geary`s C, because the values of the former are more intuitive (ie, positive
values for positive autocorrelation and vice versa) [8]. Moran`s I was also found to be generally
more robust [9]. Therefore, the global Moran`s I and Anselin`s Local Moran’s I statistics were
respectively used to assess the global and local spatial autocorrelation of TB incidence in this
study. Moran’s I statistics were calculated after log transformation of TB incidence to meet the
criteria of normal distribution of the variable.

Global Moran’s I is computed as follows:

I ¼
n
Xn

i¼1

Xn

j¼1

w
i;j
zizj

S0
Xn

i¼1

z2i

where Zi, Zj are the deviations of an attribute for feature i and j from its mean ðxi � �XÞ and
ðxj � �XÞ, wij is the spatial weight between feature i and j, n is equal to the total number of fea-

tures, and S0 is the aggregate of the all spatial weights S0 ¼
Xn

i¼1

Xn

j¼1

w
i;j
.

Positive values indicate presence of positive spatial autocorrelation, which means the TB
incidence should be similar among the neighboring districts comparing to the non-neighbor-
ing districts; zero means total spatial randomness; and negative values indicate dissimilar val-
ues clustered next to one another [10]. The absolute value of global Moran’s I indicates the
strength of spatial autocorrelation. The statistical significance of Moran’s I is tested by Z score
and P value. P<0.05 leads to rejection of the null hypothesis and indicates the presence of spa-
tial autocorrelation.

Anslin`s Local Moran’s I is computed as follow:

Ii ¼
xi � �X
S2i

Xn

j¼1;j 6¼i

wi;jðxj � �XÞ

where xi and xj are the attributes for feature i and j, �X is the mean of corresponding attribute,
Wij is the spatial weight between feature i and j, n is equal to the total number of features, and

S2i ¼

Xn

j¼1;j 6¼i

ðxj � �XÞ
2

n�1
� �X 2.

A positive value for I indicates that a feature has neighboring features with similarly high or
low attribute values; this feature is part of a cluster. A negative value for I indicates that a fea-
ture has neighboring features with dissimilar values. In either instance, the p-value for the fea-
ture must be small enough for the positive or negative spatial autocorrelation to be considered
statistically significant. The types of spatial autocorrelation include “hotspots” (high values
next to high, HH), “coldspots” (low values next to low, LL) and high amongst low, HL or vice
versa, LH [11].

Presence of local clustering was further assessed using the Getis-Ord local statistic to pro-
vide additional information about the intensity and stability of core hotspot/coldspot clusters
[12, 13]. The statistical significance of a Z-score assigned to each district identified the presence
and intensity of local clusters of hotspots and coldspots of TB incidence, relative to the
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hypothesis of spatial randomness. The Getis-Ord Gi� index is calculated as:

G�
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where xj is TB incidence for district j, wij is the spatial weight between districts i and j, n is the
total number of districts (31), and

�X ¼

Xn

j¼1

xj

n
; S ¼
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:

2.2.2 Spatial Regression Analysis. The study assumed that the predictors of pulmonary
TB incidence have some lag effects. For example per capita GDP in 2005 was not only influenc-
ing the incidence of pulmonary TB in that year, but also affecting the incidence in the following
years. Therefore, the study annualized the average values that were used when exploring the
predictors of pulmonary TB incidence to increase the stability of data and minimize the poten-
tial bias [14]. The average incidences of pulmonary TB at each county/district over the 9-year-
period were also calculated. This was helpful to alleviate the variation of incidence in small
populations and districts.

Spatial data exhibits two properties that make it difficult to meet the assumptions and
requirements of traditional (nonspatial) statistical methods, like ordinary least squares (OLS)
regression [15]. One is spatial autocorrelation of variables, which makes it impossible to meet
the criteria of independence of the data values. Another is non-stationary relations (spatial var-
iation) of explanatory variables, which indicate varied behaviors in different parts of the study
area. Global spatial regression models such as spatial lag model (SLM) and spatial error model
(SEM) are used to effectively deal with the first characteristic (spatial autocorrelation) by isolat-
ing the spatial components of each input variable and put it back into the regression model as a
new variable to account for spatial effects. However, those global models could not explore the
spatial variation in the relations between TB incidence and the predictors. Geographically-
weighted regression (GWR) model, however, could be used to explore spatial variation (non-
stationarity) in the relations and provide more detailed information. GWR is a local regression
model which creates an equation for every feature (each county/district, in this case) and cali-
brates with it using nearby features. The closer features have a larger impact on calibration
than features that are further away. Because each feature has its own equation, coefficients are
allowed to vary over space [16]. GWRmodel has been increasingly used in spatial epidemiol-
ogy [17, 18].

Although the OLS model is not proper for spatial data, it is always the proper starting point
for all spatial regression analyses. In the first step, OLS regression was conducted and results
were evaluated according to the OLS requirements [19]: coefficients for model explanatory var-
iables should be statistically significant and have the expected sign (+/-); explanatory variables
must be free from multicollinearity; the model should not be biased (heteroscedasticity or non-
stationarity); residuals must be normally distributed with a mean of zero; the model cannot be
missing key explanatory variables; and residuals must be free from spatial autocorrelation [15].
In the next step, SLM was chosen as the global spatial regression model based on Lagrange
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Multiplier (LM) test statistics [20]; both LM-Lag and LM-Error are statistically significant. Of
the robust forms, only the Robust LM-Lag statistic is statistically significant (p< 0.01), while
the Robust LM-Error statistic is not (p = 0.90). SLM directly incorporates spatial autocorrela-
tion into the model by including a spatial lag term (ρ). Formally, this model is y = ρWy+Xβ+ε,
where y is a vector of observations on the dependent variable, Wy is a spatially lagged depen-
dent variable for weights matrix W, X is a matrix of observations on the independent variables,
ε is a vector of error terms, ρ and β are regression coefficients. In the third step, GWR was used
as local spatial regression model to explore the spatial variation in the relations between pulmo-
nary TB incidence and predictors. In this method, the critical part lies in the optimal band-
width allocation. This paper chose the Akaike Information Criterion (AIC), which was fixed by
the maximum likelihood principle to determine the optimal bandwidth. Moran's Index was
used to test spatial autocorrelation of residuals. Log-Likelihood and AIC value were used to
compare the fitness of OLS and SLM [20], while adjusted R2 and AIC value were used to com-
pare the fitness of OLS and GWR [21].

The software SPSS 17.0, ArcGIS 10.2.2 (ESRI Inc., Redlands, CA, USA) and GeoDa (https://
geodacenter.asu.edu/software) were used for data analysis. County boundary electronic map
of Xinjiang Autonomous Region at 1:100,000 scale was intercepted from a county boundary
map of China from the National Geographic Information System database (http://nfgis.nsdi.
gov.cn).

Results & Discussion

3.1 Trend of pulmonary TB incidence from 2005 to 2013
The annualized average incidences of pulmonary TB, SS+TB, and new SS+TB over the 9 year-
period were 132.59, 63.17, and 50.36 per 100,000 respectively. From 2005 to 2013, the inci-
dences of SS+TB and the new SS+TB have decreased respectively from 92/100,000 to 39/
100,000 and from 76/100,000 to 30/100,000. Both of the SS+TB and new SS+TB incidence rate
demonstrated a statistically significant trend in decline from 2005 to 2013 (χ2linear = 8896 and
8471 respectively, P<0.0001). The SS-TB incidence was relatively stable from 2005 to 2010 and
showed a statistically significant rising trend since 2011 (χ2linear = 1894, p<0.0001). The statis-
tically significant trend in decline of pulmonary TB incidence (χ2linear = 1211, p<0.0001) from
2005 to 2011was mainly caused by the decline of SS+TB cases, while the rising trend of pulmo-
nary TB incidence since 2011 (χ2linear = 914, p<0.0001)was due to the increase of SS-TB cases
(Fig 1).

The dramatic decline of SS+TB and new SS+TB incidence reflects the effectiveness of TB
control and implementation of DOTS strategy over the past two decades. However, the TB
incidence rates of Xinjiang were still significantly higher than the national average for each
year [22]. For example, the incidence rates of total TB and SS+TB in China were 78.1 and 31.9
per 100,000 in 2011 [22], while these incidences in Xinjiang, in the same year, were 108.1 and
43.9 per 100,000 respectively. According to the results of fifth national TB survey in 2010, the
prevalence of total TB and SS+TB in Xinjiang was three times the value of the national average
prevalence [4]. Therefore, TB control in Xinjiang remained an arduous task.

The rising trend of pulmonary TB incidence since 2011 which is caused by the increase of
SS-TB incidence is mainly due to the standardized diagnosis and improved notification of
SS-TB in recent years, especially since the fifth national TB survey in 2010. Previously, the
focus was on the control of SS+TB relative to SS-TB in the initial implementation of many TB
control projects to control the main source of infection. However, SS-TB patients also play a
great role in TB epidemic which accounts for 40~60% of all TB cases and half of them will be
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converted to SS+TB without treatment [23]. Therefore, recently the government is making bet-
ter efforts to improve the job of diagnosing and reporting of SS-TB cases.

3.2 Distribution of pulmonary TB incidence at district/county level
The incidence of pulmonary TB in Xinjiang had large regional differences. The ranges of annu-
alized average incidence of pulmonary TB and SS+TB were 17 to 338/100,000 and 10 to 168/
100,000 respectively. The pulmonary TB incidence of the highest TB burden counties was 15 to
20 times of the incidence of the lowest TB burden counties. In general, the southern Xinjiang
(southern part of Tianshan mountains), especially the southwest part of Xinjiang, had a high
incidence of pulmonary TB and SS+TB. Most of the counties of Aksu, Hotan, Kashgar and
Kizilsu prefectures had more than 150/100,000 pulmonary TB incidence and more than 90/
100,000 SS+TB incidence. On the other hand, some counties at the northern end of Xinjiang,
such as Jemnay County, Burqin County, Hoboksar Mongol Autonomous County and Urhe
District had higher TB incidence rates. (Figs 2–5).

3.3 Global spatial autocorrelation analyses
The global spatial autocorrelation analysis showed the presence of positive spatial autocorrela-
tion (global Moran’s I> 0) in pulmonary TB, SS+TB and SS-TB incidence from 2005 to 2013

Fig 1. The trend of pulmonary TB incidence from 2005 to 2013.

doi:10.1371/journal.pone.0144010.g001
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(P<0.0001, see Table 1). There was a significant temporal variation in the spatial autocorrela-
tion of SS+TB incidence, the absolute value of global Moran’s I has decreased from 2005~2013
(t = -0.811, P = 0.008). However, there was no statistically significant trend on the global Mor-
an’s I of pulmonary TB and SS-TB incidence (t = 0.145 and 0.618 respectively, P>0.05)
(Fig 6).

This result is consistent with other studies, in which spatial analysis of global TB distribu-
tion [24] or national distribution [25], even the distribution in a city [26] also showed signifi-
cant spatial autocorrelation. Therefore understanding the spatial characteristics of TB
distribution provides useful information for the development of more targeted TB control poli-
cies. One thing worth mentioning is that Moran’s I value of SS+TB had a significant declining
trend from 2005 to 2013. The absolute value of global Moran’s I indicates the strength of spatial
autocorrelation. And a decrease in strength of spatial autocorrelation for SS+TB suggests a
decrease in regional differences of SS+TB. Reducing the regional difference of disease distribu-
tion and achieving health equity is one of the goals of public health effort. This may be partially

Fig 2. The incidence of pulmonary TB cases in Xinjiang, from 2005–2009.

doi:10.1371/journal.pone.0144010.g002
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due to the free treatment policy for SS+TB patients and greater attention given by the govern-
ment to SS+TB control. However, such a trend did not appear in pulmonary TB and SS-TB
incidence. Therefore more importance should be attached to the SS-TB control especially in
the high TB burden counties.

3.4 Positive and negative spatial autocorrelation of pulmonary TB
incidence
Local spatial analysis revealed a statistically significant clustering of districts into ‘hotspots’ and
‘coldspots’ of pulmonary TB incidence, showing a significant change over time (Figs 7 and 8).
The Anselin’s Local Moran’s I showed that the core clustering of high TB incidence districts
next to high ones (HH) consistently located in the southwest regions composed of 20 to 28 dis-
tricts from 2005 to 2013. HH clusters in 2005 to 2008 included most of the counties of Aksu,

Fig 3. The incidence of pulmonary TB cases in Xinjiang, from 2010–2013.

doi:10.1371/journal.pone.0144010.g003
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Hotan Prefecture, some counties of Kashgar and Kizisu Kirgiz Autonomous Prefecture. Since
2009, HH clusters moved toward southwest more obviously, including most of the counties of
Kashgar, Hotan and Kizisu Kirgiz Autonomous Prefecture, no longer or partly including the
counties of Aksu Prefecture.

Analysis also showed a core “coldspot” cluster of low-next-to-low (LL) districts consistently
located in the north central regions consisting of 21 to 27 districts. LL clusters included all dis-
tricts of Urumqi City, Chanji Hui Autonomous Prefecture, Karamay City (except Dushanzi
district), some counties in northern part of Bayangol Mongol Autonomous Prefecture, Usu
City, Turpan City, and Shawan County.

Statistically significant spatial outliers (HL, LH clustering) were evident only for a few years.
Urhe District of Karamay City had exceptionally high TB incidence next to a low incidence
neighborhood (HL cluster) from 2006 to 2008 and 2011, because a small population (about
2,000) of the district caused the big variation in TB incidence. Hoboksar Mongol Autonomous

Fig 4. The incidence of SS+TB cases in Xinjiang, from 2005–2009.

doi:10.1371/journal.pone.0144010.g004
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County had also been a HL cluster from 2007 to 2011 and 2013. Mongolkure County, Aksu
City and Taxkorgan Tajik Autonomous County had a significantly low incidence surrounded
by high incidence districts (LH cluster) only in 2008, 2012, and 2013, respectively.

Analysis with the Getis-Ord Gi� statistic provided more information that indicates the
intensity and the stability of core hotspot/coldspot clusters. Primary (GiZScore>2.58 SDs), sec-
ondary (GiZScore = 1.96–2.58 SDs), and tertiary (GiZScore = 1.64–1.96 SDs) intensity clusters
from 2005 to 2013 are presented in Figs 9 and 10. Hotspot/coldspot clusters of annualized aver-
age incidence of pulmonary TB are described in Table 2.

Hotspot analysis was conducted separately for SS+TB and SS-TB incidences. Hotspot/cold-
spot clusters for SS+TB and SS-TB incidence were almost at the same location with pulmonary
TB incidence. Hotspots located in the southwest region included Hotan, Kashgar, and Kizilsu

Fig 5. The incidence of SS+TB cases in Xinjiang, from 2010–2013.

doi:10.1371/journal.pone.0144010.g005
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Kirgiz Autonomous Prefecture, while coldspots were located in the north central regions (S2–
S5 Figs).

The analysis using the Getis-Ord Gi� statistic expanded the scope of the “hotspots” and the
“coldspots” with different intensities. Thirty county/districts clustered as “hotspots”, while 47
county/districts clustered as “coldspots”. These two big clusters seem to be separated by

Table 1. Results of the global spatial autocorrelation analysis of pulmonary TB incidence from 2005–2013.

Year Pulmonary TB incidence SS+ TB incidence SS- TB incidence

Moran`s I Z P Moran`s I Z P Moran`s I Z P

2005 0.695 18.497 <0.0001 0.729 19.389 <0.0001 0.264 7.132 <0.0001

2006 0.736 19.328 <0.0001 0.749 19.712 <0.0001 0.590 15.560 <0.0001

2007 0.728 19.130 <0.0001 0.755 19.873 <0.0001 0.523 13.821 <0.0001

2008 0.713 18.746 <0.0001 0.636 16.757 <0.0001 0.563 14.847 <0.0001

2009 0.623 16.429 <0.0001 0.344 9.464 <0.0001 0.470 12.525 <0.0001

2010 0.599 15.818 <0.0001 0.496 13.088 <0.0001 0.404 10.804 <0.0001

2011 0.612 16.108 <0.0001 0.258 7.026 <0.0001 0.455 12.148 <0.0001

2012 0.810 21.228 <0.0001 0.426 11.327 <0.0001 0.775 20.336 <0.0001

2013 0.786 20.634 <0.0001 0.421 11.013 <0.0001 0.741 19.449 <0.0001

Annualized average incidence 0.78 20.733 <0.0001 0.717 18.843 <0.0001 0.696 18.277 <0.0001

doi:10.1371/journal.pone.0144010.t001

Fig 6. The trend of Global Moran`s I value for pulmonary TB incidence from 2005 to 2013.

doi:10.1371/journal.pone.0144010.g006
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Tianshan Mountains in Xinjiang. Xinjiang is the largest political subdivision of China, account-
ing for more than one sixth of China's total territory and a quarter of its boundary length. It is
divided into two basins by Tianshan Mountains, Dzungarian Basin in the north and Tarim
Basin in the south. Southern Xinjiang is higher in temperature and lower in precipitation com-
pared to the northern regions because of the Taklimakan Desert, which is China's largest desert
located in the center of the Tarim Basin south of the Tianshan Mountains. Climate differences
between northern and southern Xinjiang influence the agricultural products, which contributes
to the poverty in southern Xinjiang. Poverty is one of the possible reasons apart from climate
factors, lead to high TB incidence in southern Xinjiang. Additional factors leading to high TB
incidence include: underdeveloped economy, poor traffic conditions, and uneven allocation of
public health resources. Taking traffic conditions for example, railway transportation to Hotan
was not possible until 2011 [27]. Another important reason may be the fact that the southwest
regions of Xinjiang border some of the high-TB burden countries like Afghanistan, Pakistan,
and India. Therefore, the high TB burden of those countries may also affect the southwest

Fig 7. Clusters of the Anselin Local Moran’s I analysis, from 2005–2009.

doi:10.1371/journal.pone.0144010.g007
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parts of Xinjiang. Some studies showed that different genotypes of Mycobacterium tuberculosis
have different virulence and transmission advantages [28]. Thus, the different strains of Myco-
bacterium that cause tuberculosis in different regions are a possible explanation for regional
differences of pulmonary TB incidence.

3.5 Socio-demographic predictors of pulmonary TB incidence
Six independent variables such as “population density”, “proportion of male”, “proportion of
minorities”, ‘proportion of rural population”, “death rate” and “per capita GDP” were selected
according to our review of the relevant epidemiological literature and the availability of rele-
vant data at county/district level. Two variables were found to be statistically significant predic-
tors for pulmonary TB incidence in OLS regression model. The “proportion of minorities” had
a positive effect on pulmonary TB incidence, while “per capita GDP” had a negative effect. This
model met most of the requirements of the OLS method: the robust probabilities for the

Fig 8. Clusters of the Anselin Local Moran’s I analysis, from 2010–2013.

doi:10.1371/journal.pone.0144010.g008

Socio-Demographic Predictors and Distribution of Pulmonary Tuberculosis (TB) in Xinjiang, China

PLOS ONE | DOI:10.1371/journal.pone.0144010 December 7, 2015 14 / 22



explanatory variable coefficients were statistically significant (P< 0.05); Variance inflation fac-
tor (VIF) values were low (VIF< 2.0) indicating no problems with multicollinearity; The Joint
Wald Statistic indicated overall model significance (P< 0.01); The non-significant (P> 0.10)
Jarque-Bera diagnostic indicated model residuals were normally distributed. However, statisti-
cal significant autocorrelation in residuals (Moran`s I = 0.12, Z = 3.23, P = 0.0012) indicated
the spatial autocorrelations of variables and the non-stationary nature of OLS regression
model.

Spatial Lag Model (SLM) was used as global spatial regression model to deal with the spatial
autocorrelation of variables. The SLM results showed positive spatial autocorrelation of pulmo-
nary TB incidence (ρ = 0.3881, P<0.01); The “proportion of minorities” had a positive effect
on TB incidence in the SLMmodel (β = 1.7004, P<0.01), and the absolute value of the regres-
sion coefficient was decreased compared to the OLS model. The regression coefficient of the
“per capita GDP” no longer showed statistical significance (P>0.05) in the SLM model. The

Fig 9. Hotspot Analysis with Getis-Ord Gi* statistic, from 2008–2009.

doi:10.1371/journal.pone.0144010.g009
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decreasing values of Log-Likelihood and AIC also suggested the improvement of the model fit
in SLM compared to OLS (see Table 3). Moran’s I test statistic for residuals of the SLMmodel
was 0.0009, or essentially zero. This indicates that including the spatially lagged dependent var-
iable term in the model has eliminated all spatial autocorrelation, as it should.

A GWRmodel was used as local spatial regression model to deal with the non-stationary
nature of the OLS model. The GWR model improved the fit of OLS model with an increase of
adjusted R2 from 0.64 to 0.68 and a decrease of AIC value from 883.89 to 871.47. AIC is an
effective way to compare models, and a drop of even three points indicates an important
improvement in model fit. Although the model fit of GWR is weaker than SLM according to
AIC value, it was concerned the spatial variation of coefficient estimation. But the GWR model
also has a drawback that it depends on the calculation of distance weights which is very arbi-
trary for polygon-support data. The summary of the GWRmodel results was listed in Table 4.

Fig 10. Hotspot Analysis with Getis-Ord Gi* statistic, from 2010–2013.

doi:10.1371/journal.pone.0144010.g010
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The mapped coefficients for each county/districts (Fig 11) indicated where the explanatory
vaables were effective predictors of pulmonary TB incidence and where they were not. In Fig
11, the counties rendered using the darkest colors indicate where the coefficient is the largest.
The larger the coefficient is, the stronger the relationship is. Proportion of minorities, for exam-
ple, had a positive relationship to pulmonary TB incidence: as the proportion of minorities
increased, pulmonary TB incidence also increased. The “proportion of minorities” is a strong
predictor in the south central counties (Fig 11A). Per capita GDP had a negative relationship
to pulmonary TB incidence: as the per capita GDP increased, pulmonary TB incidence
decreased. Per capita GDP is a weak predictor in the eastern regions where the coefficient is
near zero and even slightly positive; however it is a strong predictor for the southwest regions
(Fig 11B). Standard residual of GWR was also mapped in Fig 11C. Red colors indicated under-
estimation of pulmonary TB incidence according to the regression equation while the blue col-
ors indicated overestimation. Under/overestimated counties were randomly located and the
Moran’s I for residuals of GWR model is not significant (P>0.05).

OLS, SLM and GWRmodels were used to explore the predictors of pulmonary TB inci-
dence. Results showed that the SLM and GWRmodels had a better fitness than the OLS model.
Proportion of minorities had a positive relationship to TB incidence and it was a strong predic-
tor especially in the south central counties. The minorities were lower in social status and eco-
nomic level. Therefore, the proportion of those populations had a positive correlation with

Table 2. Summary of hotspot/coldspot clusters of annualized average incidence of pulmonary TB in Xinjiang.

Types of
clusters

Intensity of
clusters

Numbers of
counties

County/districts

Hotspots Primary 28 Aksu City, Uxturpan County, Awat County, Kalpin County, Artux City, Akto County, Akqi County,
Ulugqat County, Kashgar City, Shufu County, Shule County, Yengisar County, Poskam County,
Yarkent County, Kagilik County, Makit County, Yopurga County, Payzawat County, Maralbexi
County, Taxkorgan Tajik Autonomous County, Hotan City, Hotan County, Karakax County,
Guma County, Lop County, Qira County, Keriya County, Niya County

Secondary 2 Onsu County, Xayar County

Coldspots Primary 40 Tianshan District, Shayibak District, Xinshi District, Shui Mogou District, Tou Tunhe District, Da
Bancheng District, Midong District, Urumqi County, Dushanzi District, Karamay District, Urhe
District, Bai Jiantan District, Changji City, Fukang City, Hutubi County, Manas County, Qitai
County, Jimsar County, Mori Kazak Autonomous County, Turpan City, Piqan County, Toksun
County, Kuytun City, Kunes County, Nilka County, Bortala City, Jing County, Araxang County,
Usu City, Dorbiljin County, Shawan County, Toli County, Yumin County, Hoboksar Mongol
Autonomous County, Burultokay County, Korla City, Yanji Hui Autonomous County, Hejing
County, Hoxud County, Bagrax County

Secondary 6 Lopnur County, Bugur County, Qinggil County, Koktokay County, Qoqak City, Barkol Kazak
Autonomous County.

tertiary 1 Tokkuztara County,

doi:10.1371/journal.pone.0144010.t002

Table 3. Summary of OLS and SLM regression model.

Model Parameter Coefficient Std.Error t / z Probability Log-Likelihood AIC

OLS Constant 11.2189 24.8464 0.45 0.65 -434.55 883.89

Proportion of minorities 2.1573 0.2593 8.32 <0.01

per capita GDP -0.0005 0.0003 -2.06 0.04

SLM Wy 0.3881 0.0946 4.10 <0.01 -427.61 864.48

Constant -22.5312 23.3347 -0.96 0.33

Proportion of minorities 1.7004 0.2583 6.58 <0.01

per capita GDP -0.0002 0.0003 -0.49 0.62

doi:10.1371/journal.pone.0144010.t003
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pulmonary TB incidence. Those results are consistent with other studies [29–31]. Per capita
GDP had a negative relationship to pulmonary TB incidence and it was a strong predictor for
the southwest regions. As we know TB is a poverty related disease, so it is not necessary to
explicitly explain the negative correlation of per capita GDP with TB. However, both of the
“proportion of minorities” and “per capita GDP” included in the regression model as signifi-
cant factors indicated that minorities were high risk population without the confounding of
their economic status. Genetic factors could be an explanation because results of some studies
showed the genetic susceptibility to TB in minorities [32–34].

Based on the results of this study, we suggest that the government’s future efforts in TB con-
trol should give more priorities to southern Xinjiang. Providing free treatment for all TB
patients (not only for SS+TB patients) in southwest regions could be considered when making
public health policies, because the economic status was a strong predictor of the pulmonary TB
incidence in the southwest regions. Furthermore, it is necessary to conduct research on the
genetic susceptibility of minorities, in particular the Uygur population, which is the major pop-
ulation in southern Xinjiang.

Limitations
This study contributed significantly to spatiotemporal analysis of TB incidence of Xinjiang, yet
it also has limitations. First, the data was extracted from official surveillance which cannot
exclude the possibility of underreport of cases in some regions. Cases may be missed by routine
notification systems, because persons afflicted with TB often do not seek care or if they seek
care, remain undiagnosed or are diagnosed by private providers that do not report TB cases to
local or national authorities. Second, this is an ecological study which is exploring the associa-
tion at a group level, so ecological fallacy is the critical limitation of this study. The best solu-
tion to the ecologic fallacy is multi-level modelling which includes both individual and
ecological-level variables [35]. However this study uses only the ecological variables in the
model. When studying the social and ecological factors, ecological studies were preferred com-
pared to non-ecological studies and ecological fallacy can be weakened by combining secular
variations [36]. In this regard, the present study was conducted to explore the socio-demo-
graphic factors for the spatial heterogeneity of pulmonary TB incidence by annualized average
values of variables. Thirdly, the ecological factors related to pulmonary TB incidence have not
been well studied because of unavailability of many factors at county/district level. We
intended to widely explore the predictors of TB incidence, including demographic variables
(such as population density, proportion of rural population, proportion of minorities. . .), eco-
nomic factors (such as per capita GDP, per capita disposable income. . .), climate factors
(annual average temperature, annual total precipitation. . .) and health related factors (death
rate, numbers of beds/doctors per 10,000. . .). However, most of the variables were available
only at prefecture-level (n = 14), not at county/district level (n = 94). It is not proper to conduct
regression analysis for so many factors in a small sample size (14 prefecture divisions). Thus

Table 4. Summary of GWRmodel coefficients.

Parameter Minimum 25% quartile 50% quartile 75% quartile Maximum

Intercept -32.69 -14.66 1.76 11.32 139.38

Proportion of minorities 1.07 1.76 2.01 2.39 2.68

Per capita GDP -0.0027 -0.0001 0.0000 0.0001 0.0002

Condition number 6.39 7.25 7.81 13.49 29.99

Local R2 0.2506 0.5271 0.5972 0.6366 0.6940

doi:10.1371/journal.pone.0144010.t004
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we analyzed only six variables which were available at county/district level, and found two
important factors. The adjusted R2 of regression model was 0.64 for OLS and 0.68 for GWR

Fig 11. Coefficients of predictors and standard residuals of GWR. (A) Coefficients of proportion of minorities. (B) Coefficients of per capita GDP. (C)
Standard residual of GWR.

doi:10.1371/journal.pone.0144010.g011
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model, which means those two variables can explain more than sixty percent variations of pul-
monary TB incidence. Further research is needed to study the socio-economic and environ-
mental factors, with a focus on those factors that can be affected by intervention, and this will
be more conductive to guide policy formulation.

Conclusions
SS+TB incidence of Xinjiang had a decreasing trend from 2005 to 2013, but remains higher
than the national average in China. Spatial analysis showed that all of the pulmonary TB inci-
dence, SS+TB incidence and SS-TB incidence had a significant spatial autocorrelation each
year. Cluster analysis detected two clusters, the “hotspots” were consistently located in the
southwest regions and the “coldspots” were consistently located in the north central regions.
The exploration of socio-demographic predictors identified two predictors, “proportion of
minorities” that had a positive correlation with pulmonary TB incidence and “per capita GDP”
that had a negative correlation with pulmonary TB incidence. Proportion of minorities was a
strong predictor in the south central counties, while per capita GDP was a strong predictor for
the southwest regions. Therefore, we suggest that the government’s future efforts in TB control
should give more priorities to southern Xinjiang. Providing free treatment for all TB patients
(not only for SS+TB patients) in southwest regions could be considered when making public
health policies, because the economic status was a strong predictor of the TB incidence in the
southwest regions. Furthermore, it is necessary to conduct research on the genetic susceptibility
of minorities, in particular the Uygur population, which is the major population in southern
Xinjiang.
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