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Abstract This work proposes a methodological approach to redistribute popula-

tion data obtained from polygonal census tracts into population density surfaces

(grids) based on a cell space database. The methodology was first developed for the

municipality of Marabá, Pará state, in the Brazilian Amazon. We used a dasymetric

method to eliminate areas of environmental restriction to human presence; then

integrated environmental data indicative of human presence to generate a potential

surface of population occurrence; and finally, census population count data were

redistributed into cells. The methodology was subsequently adapted for 13

municipalities of the Sustainable Forests District (SFD) of BR-163, generating

population distribution surfaces for 2000 and 2007. The evolution of the resident

population over the SFD-BR163 showed spatial patterns compatible with the

occupation process described in the literature and verified by fieldwork. To be

applied over other areas, the proposed methodology must be adapted with local

parameters but in this way, population density surfaces can be useful as an addi-

tional data source to study population and environment relationships.

We are pleased to have this work included in the memorial issue to Professor Daniel Hogan. INPE, the

Brazilian National Institute for Space Research had been running a Remote Sensing and Geoinformation

graduate program since 1972. It was the year of 1999 when for the first time the late Professor Daniel

Hogan approached our research group at INPE. In particular, INPE had been heading national

environmental monitoring programs and projects on GIS and Satellite Image Processing open

technologies. Professor Daniel, as we liked to call him, came to know INPE’s headquarters at São José

dos Campos, São Paulo, and talk about the possibilities of engaging ourselves in a cross-disciplinary

conversation with demographers. As a start point, he right away invited us as institutional speakers for a

scientific session he would organize for the ABEP 2000 meeting. In September of 2000, the MR 6

session—sustainability indicators was held and headed by him and we were there giving a talk on:

computational and mathematical challenges involved in the production and representation of spatially
aware sustainability indicators: patterns, process, and territory for a very mixed audience.
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Introduction

The pressure of a growing population on natural resources has been a central issue

in demographic and environmental studies (Ehrlich 1968; McMichael 1993).

Instead of discussing demographic patterns and processes as a consequence of

environmental conditions, human presence, and activities are typically viewed as

responsible for environmental change (Hogan 1989). Recently, the predominant

approach to population–environment-development research has become more

moderate; demographic pressure is no longer viewed as the principal determinant

of environmental problems, but instead as a factor interacting with social, economic,

and political realities (Hogan 2000, 2001). Hogan (2007) emphasized the importance

of including environmental issues in population research, further stating that the

relationship is reciprocal. The work presented here has been motivated by this call to

better integrate demographic and environmental factors within environmental social

science through advancement in integration of remotely sensed data.

Remote sensing has contributed significantly to studies integrating human

dimensions (demographic and social data) and biophysical parameters in the

Amazon region (Frohn et al. 1996; Wood and Skole 1998; Liverman et al. 1988;

Walsh 2010). In particular, analyses of changes in land use and land cover have

enabled the integration of remote sensing and socio-demographic research,

combining image-processing techniques with social science analytical methods

(McCracken et al. 2002).

For land cover and landscape research, the unit of observation is the pixel, while

the resolution, scale, and information available from spectral bands are functions of

the remote sensors selected. On the other hand, social science data typically come

from field surveys and/or official censuses, in which the observation unit defines the

research subject (e.g., events, individuals, households, social groups, and

Every since we have been in all ABEP meetings and have developed a close link with the field of

demography, in particular with the studies dealing with population, space, and environment. Also, at the

time of his first visit, Silvana Amaral, this paper’s first author, was engaged in her Ph.D. research at the São

Paulo State University (USP), starting working with a night light satellite sensor. The meeting with

Professor Daniel opened a research avenue of possibilities in exploring remote sensing integrated with GIS

and spatial analytical tools for advancing new methods and methodologies for mapping and explore

population spatial distribution models and assess its patterns. Her thesis: Geoinformation for Demographic

Studies: Spatial Representation of Population Data in the Brazilian Amazônia (Geoinformação para

Estudos Demográficos: Representação Espacial de Dados de População na Amazônia Brasileira),

represented the first time that someone from INPE’s staff would take a subject linked to the population

studies. When she finished, in 2003, Professor Daniel was there as member of her Ph.D. committee. This

paper actually is a fine proof of the intense and permanent influence that Professor Daniel has impressed in

our personal and institutional lives. Since our very first meeting with Professor Daniel, the population

studies has gain its own roots at INPE and in its institutional projects and its graduate programs. INPE has

been involved with population studies, in particular exploring new possibilities and methodologies that

deal with remote sensing data and spatial–temporal analysis that can be of use for enhancing our

understanding of the complex relationships that hold the population and environment research agenda.
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communities). Therefore, when choosing the geographical scale for an integrated

analysis, one should consider the following: who are the social actors of interest,

and what is the spatial dimension in which these actors should be considered? In

addition, studies that aim to capture the implications of land use change in

agricultural frontier areas should also focus on changes in the demographic

composition, a comparison that requires compatible scales. These themes assume

particular relevance in the Amazon region due to the close relationships among

urban development dynamics, land concentration processes, and rural depopulation.

The historical process of colonization in the Brazilian Amazon as related to

demographic changes and patterns of change in land use and cover has been

examined primarily based on household units (Moran et al. 1994, 2003; Moran and

Brondizio 1998; McCracken et al. 1999). Cohort, age, and period effects have been

analyzed to interpret landscape changes, mainly deforestation rates and secondary

succession. Despite their undeniable contribution to the literature, such detailed

studies describe local processes; yet because of the regional heterogeneity of the

Amazon, are unsuitable for generalization.

For human population studies on analytical scales larger than the family unit,

population data from official censuses are often used. In Brazil, the information for

decennial censuses and population counts are collected by taking the residence as

the sampling unit (IBGE 2010); however, population data have also been published

using the census tract1 as the spatial unit (i.e., the information about inhabitants

collected by residence is spatially aggregated in census tracts). Still, the physical

borders of Amazon municipalities have changed over the past decades, leading to

changes in the borders of the census tracts. Thus, comparisons between spatial

analysis and census/counting population data are not straightforward. Moreover, as

census tracts spatially delimit geographical areas, they can be represented as

polygons in a planar subdivision (layers) in Geographical Information Systems. This

representation can be easily superposed over remote sensing images for comple-

mentary visualization of physical environment and population distribution. As

census tract areas contain aggregate information, one cannot easily attribute

population data to an image pixel, especially for such heterogeneous areas as rural

census tracts in the Amazon.

As human activities alter the landscape, remote sensing and ancillary geograph-

ical data can be used to analytically redistribute population inside a census tract

(Gallego and Peedell 2001; Linard et al. 2011). This work aims to contribute to that

effort. Here, we present a methodological approach to redistributing census tract

population data in a cellular space on a geographical database. Cell spaces enable

researchers to represent population density in an intermediary spatial unit between

pixels and census tract polygons.

First, to create a population density surface from census tract population counts,

we developed a methodology for Marabá, a municipality in the state of Pará, Brazil.

1 Census tract is the territorial unit for census operations, defined by IBGE (Instituto Brasileiro de

Geografia e Estatı́stica), with physical limits identified in contiguous areas and respecting the political and

administrative division of Brazil.
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Then, we presented population density surfaces generated for the BR-163

Sustainable Forest District (SFD-BR163) for 2000 and 2007. This political division

comprises 13 municipalities in the west of Pará, where human activities and

environmental changes demand continuous studies and monitoring. We discuss the

population density surfaces in comparison to fieldwork observations, as well as the

evolution of the population distribution in SFD-BR163 based on population density

surfaces obtained for 2000 and 2007.

Census data representations

Demographic data collected in decennial censuses are usually modeled as statistical

surfaces (DeMers 1999) and commonly represented using choropleth maps (Harvey

2008). The main disadvantage of using choropleth maps is that data aggregated by

census tracts assume that the population is distributed homogeneously throughout

the unit, which is never the case (Tobler 1979). Choropleth models and some other

surface interpolation approaches result in allocation of a non-zero population

density value to every location. A way to improve the spatial detail of choropleth-

based population maps is to use more detailed maps representing the distribution of

human-built objects and activities (Bajat et al. 2011).

One prominent interpolation method for population data is dasymetric mapping,

defined generally as the use of an ancillary data set to disaggregate coarse resolution

population data to a finer resolution (Eicher and Brewer 2001). Basically, the

dasymetric method aims to use any available spatial information that can provide

further insight into the probable structure of source zones and thus can be

informative for redistributing population counts (Langford 2003).

The increasing availability of remotely sensed imagery has driven much recent

research on population interpolation using the dasymetric mapping method. Recent

research suggests that dasymetric mapping can offer more accurate population

estimates than many areal interpolation techniques that do not use ancillary data

(Mrozinski and Cromley 1999; Gregory 2002; Mennis 2003). Other researchers also

find that dasymetric mapping gives the best estimated result among all other popular

methods tested (Fisher and Langford 1995, Mrozinski and Cromley 1999; Mennis

and Hultgren 2006).

Classified remotely sensed imagery has been commonly used as the source for

ancillary data. The land cover map is another useful GIS layer; it is crucial for the

disaggregation of population data (Gallego and Peedell 2001; Linard et al. 2011).

Dobson et al. (2000) say that the land cover map may be the best single indicator of

population density. Dasymetric modeling methods based on land use data require

the definition of relative weights associated with land use classes (Hay et al. 2005).

These weights are first calculated for regions where high-resolution census data are

available and then applied to other similar regions (Gallego 2010). Langford (2007)

uses cartographic materials over multi-spectral satellite imagery for dasymetric-

based population interpolation. Reibel and Bufalino (2005) use road networks as the

ancillary predictor to downscale demographic distribution.

Gridded population distribution data are increasingly being used for resource

allocation, disease burden estimation, and climate change impact assessment
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(among other applications) at global, national, and local scales (Linard et al. 2011).

Detailed and spatially disaggregated population data are essential resources in

assessing the number of impacted people when making decisions related to

developmental or health issues (Bhaduri et al. 2002; Dobson et al. 2000; Hay et al.

2005). Furthermore, gridded population distribution data have applications in

analyzing the impacts of climate change (McGranahan et al. 2007; Nicholls et al.

2005). The vulnerability of people to natural disasters has also been quantified (Balk

et al. 2005; Maynard-Ford et al. 2008).

The methodology proposed in this paper, which is based on work by Amaral

(2003), presents a refined model of spatial distribution of population that is specific

to the Amazonian region. The model considers how spatial variables influence the

spatial distribution of population and how environmental factors may exclude

settlement. Another positive aspect is the use of cells to represent and aggregate

data, which allows temporal analysis independent of possible changes in political

and administrative boundaries (dismemberment of municipalities, for example) and

enables integration with other demographic, social, and environment data.

Study area

We first developed this methodology for Marabá, a single municipality in the state

of Pará. We then considered regional features and adapted this methodology to

apply it over a broader area. This larger area is also a geopolitical unit; SFD-BR163

includes 13 municipalities in Pará (PA) state (Fig. 1a).

Marabá occupies 15,111.26 km2 and is located in the southeast of PA state. It is a

regional capital whose urban center is on the confluence of the Tocantins and

Itacaiunas rivers and the PA-150 and Transamazônica roads. Marabá experienced

intense migratory flux from the state of Maranhão in the 60s and from southeast

states in the 70s (De Reynal et al. 1995). Population mobility has slowed recently

and has become essentially rural-to-urban or rural-to-rural migration (Oliveira et al.

2001).

The Sustainable Forest District of the BR-163 (SFD-BR163), along the federal

road linking Cuiabá (Mato Grosso state) to Santarém, in western PA state (Fig. 1b),

was created in 2006 as the first SFD established in Brazil. An SFD is a geo-

economic and social complex to promote integrated local development based on

forestry activities. Public policies from different government sectors have been

proposed to promote forestry activity on a sustainable basis; such policies include

land policy, infrastructure, industrial development, public areas management,

technical assistance, and education (MMA 2006).

The SFD-BR163 is 190,000 km2 in size and is comprised of the municipalities of

Altamira, Aveiro, Belterra, Itaituba, Jacareacanga, Juruti, Novo Progresso, Óbidos,

Placas, Prainha, Rurópolis, Santarém and Trairão, among which only Trairão,

Rurópolis, and Belterra are completely encompassed by its boundaries. This SFD

includes a wide variety of environments and occupations. Some regions that have

been occupied for more than 300 years (Coudreau 1977), while others are still in the

process of consolidation or agricultural frontier expansion. The municipality of
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Fig. 1 Study sites: a the municipality of Marabá and the Sustainable Forest District/BR-163 in PA state,
b municipalities and census tracts of the SFD-BR163. Source MMA (2006)
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Novo Progresso is one of the latter and has shown high rates of deforestation. The

proportion of deforested areas in this municipality rose from 4% (1,691 km2) in

2000 to 14% (5,264 km2) in 2009 (INPE 2009); in Belterra, close to Santarém

municipality, this proportion increased from 15% (671 km2) to 18% (797 km2) over

the same period.

In recent decades, the population of the municipalities in SFD-BR163 has

significantly increased. At the same time, there has been a process of dismember-

ment and the creation of new municipalities. Figure 1b shows the current political

division of the municipalities that constitute the SFD-BR163 and its census tracts

(IBGE 2010). In 1980, the SFD-BR163 region was composed of the municipalities

of Altamira, Aveiro, Itaituba, Santarém, Prainha, Óbidos and Juruti. In the 1991

Census, IBGE registered Rurópolis as a new municipality, and in the 2000 census,

the municipalities of Belterra, Jacareacanga, Novo Progresso, Placas, and Trairão

were registered. Half of the municipalities in this SFD were created during the

1990s. In contrast to the overall trend, the population of Novo Progresso decreased

in its population in that decade; in general, population growth and deforestation

rates are directly proportional.

Marabá was first chosen as study site because it was one focal area of GEOMA

Network (DOU 2004), which supported fieldwork for the first methodological

portion of the study. With the creation of SFD-BR163 in PA state, the opportunity

arose to study the influence of public policies in a geo-economic and social

complex. We then adapted and applied the methodology to this wider study area as

part of the Cenários (Luizão 2008) and LUA/IAM (Camara 2009) Projects, which

also address the spatial representation of population density and its temporal

evolution.

Methodology

A model to disaggregate population data inside the census tracts

In this work, population is represented by the resident population count provided by

the Brazilian Institute for Geography and Statistics (IBGE—Instituto Brasileiro de

Geografia e Estatı́stica) census. Rather than representing the population distribution

based on census tracts limits (polygons) that contain information about the entire

population in these geographical areas, the population distribution will be

represented by a continuous surface (cell space) in which the population value

will be attributed to cells. We generated a population density surface for the

municipality of Marabá using a dasymetric method and a model based on

environmental data indicative of human presence. Adapting this methodology to

regional features, two population density surfaces were created for each of the 13

municipalities of SFD-BR163, corresponding to the 2000 and 2007 populations.

Disaggregating population data from census tract (polygons) to cell space

(surface) requires the construction of a subjacent surface with modeling describing

the factors that determine population distribution (Goodchild et al. 1993). We
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assumed that there are spatial variables related to the absence or presence of human

settlement that could be used to indicate how the population is distributed (Fig. 2).

The method consists of three basic steps: (1) a dasymetric method (Mennis 2003;

Sleeter 2004) to eliminate the areas of environmental exclusion of human presence

(cells), using a map of land use cover classifications as a reference; (2) a

multivariate interpolation method to generate a potential surface of settlement

occurrence, using fuzzy inference over environmental data indicative of human

presence (Zadeh 1988; Meirelles 1997); and (3) the redistribution of population

count values to each cell, proportionate to a potential occurrence of population

defined from (2).

For the Amazonian region, there are extensive areas of water and forest land

cover where settlement is unlikely. We propose the use of ordinary digital

classification of remote sensing images as thresholds settings to identify water

bodies and forest land cover. The dasymetric method, applied next, consisted of

removing cells where water bodies and/or forest occupied at least 95% of the

population density surface in Marabá.

The multivariate interpolation method proposed to generate a potential surface of

population occurrence can be summarized into five general steps (Fig. 3):

1. Selecting spatially explicit variables (environmental data indicative of human

presence) related to population distribution (indicator variables);

2. Identifying the relationship between indicator variables and population

distribution: this relation is quantified based on observed/previous population

data and indicator variable frequency for the study site;

3. Creating a geographical database with indicator variable layers in cellular

spaces: the study area is divided by regular cells containing a single value for

each indicator variable;

4. Standardizing indicator variables based on fuzzy inference: the original value of

every indicator variable in a cell is simplified considering fuzzy inference and

are then represented in the interval of zero to one values, enabling continuous

classification;

Fig. 2 General procedure to disaggregate population counts within census tracts. Adapted from Amaral
(2003)
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5. Defining operators between indicator variables: the variables are combined

based on operators (averages, minimum values, etc.) to generate an adjacent

model that enables the distribution of a proportional population value for every

cell belonging to a certain census tract.

These steps are presented in detail below.

Selecting environmental variables related to human population presence

Different factors may determine the presence of human populations in a specific

region, including historical processes, accessibility, availability of natural resources,

presence of urban facilities and infrastructure and local physical characteristics,

among others. The relative importance of each factor is also a fundamental variable

that may vary according to local conditions. As an example, the global population

distribution model proposed by Landscan used the following as indicator variables:

land cover classes, distance to roads, slope classes, and the presence of night lights

from the DMSP/OLS sensor (Bhaduri et al. 2002).

Access to the Amazon region (and ease of transportation within the region) has

historically been a major factor associated with human presence, as described by

Machado (1999). Until the 50s, occupation in the Amazon region was limited to the

coastal zone and riverside areas along the main navigable rivers and a few ‘‘terra

firme’’ areas (Costa 1997). The economy was based on extractive activities,

especially on rubber extraction. In the recent Amazon colonization process, the first

roads, along with the construction of the new Brazilian capital, the city of Brası́lia,

Fuzzy Pertinence Values

Indiccator variables selection

Variables  x  population

Relation between variables

Indicator variables layers

Adjacent surface 

Empirical and literature

Potential Population

references

Quadratic Function

Spatial Operators

Spatial 

RS & GIS

Population Density 

Accesibility
Land cover
Land form

Surface

Average,
Weight average,
Fuzzy operators,

Fig. 3 The multivariate interpolation method to generate the potential surface of population occurrence.
Source Adapted from Amaral (2003)
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under the Juscelino Kubischeck government (1955–1960) signaled the beginning of

state intervention in the region with the National Development Plan (PDN).

Migratory flow and farmers had already been established for 10 years along Belém–

Brası́lia road (1960) when the Amazon Operation (1966) and the National

Integration Plan (PIN, in 1970) were implemented. Infrastructure such as roads, an

electricity power network and even natural resources inventories (RADAMBRA-

SIL) were provided from public funds in the 70s to stimulate migration and capital

flow for the new Amazon frontiers. Lands up to 100 km distant from federal roads

were allocated to small farm colonization settlement projects (Costa 1997). The

urbanization process also intensified following the regional colonization projects

and infrastructure investments, which brought migrants from the southern and

northeastern regions and changed the spatial occupation pattern. The riverine

settlements were overlapped and marginalized by the new circulation axis that

emerged from ‘‘terra firme’’ roads and villages (Godfrey and Browder 1996). From

1991 to 1996, new municipalities were created, and the population became

concentrated in urban nuclei of about 20,000 inhabitants. As a result, urban nuclei

were concentrated along rivers and roads axes. Becker (1998) more fully discusses

the Amazon colonization process.

The presence of roads is, at certain levels, also related to deforestation in the

Amazon (Skole and Tucker 1993; Alves 1999, 2002; Dale et al. 1994; Laurance

et al. 2002; Fearnside 2005). Alves (2002) revealed that most of the deforestation

detected from 1991 to 1996 (75%) occurred 50 km from the roads. Recently, Leite

et al. (2011) reconstructed a geographically historical database of land use in

Amazonia for the period of 1940–1995, through a fusion of historical census data

and a contemporary land use classification. They emphasize that the spatial pattern

of land use in Amazon region in this period was greatly influenced by roads and

pioneer occupation areas. Even though deforestation rates are not directly related to

total population counts or estimates (Geist and Lambin 2001), this type of land

cover change activity indicates human presence in rural areas (Wood and Skole

1998). It is important to emphasize that deforestation in Amazon is a complex multi-

factor process (Camara et al. 2005).

Considering these historical factors and data availability, five variables were

initially selected as indicators of human presence to disaggregate the population of

Marabá municipality: distance from roads, distance from rivers, distance from urban

nuclei, percentage of forest cover and slope. The three former items are related to

accessibility and infrastructure. The percentage of forest cover is related to human

activities, and slope (least important) is related to the general preference of human

settlements for flat terrains. The LandScan project (Dobson et al. 2000) observed

that most human settlements occur on soft slopes and flat land; in mountainous

regions, slope values are inversely related to population density.

Identifying the relation between indicator variables and population distribution

Once the indicator variables were selected, it was necessary to determine the

relationship between human presence and these indicator variables, identifying

thresholds to further allocate population in a disaggregated spatial unit. For this
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purpose, we studied the relationships between indicator variables and the location of

districts seats (for the Marabá study site) and communities (for SFD-BR163), which

were considered evidence of human presence.

Marabá study site

To transform each selected variable into a population indicator, the occurrence of

the districts2 in the municipalities was assumed to be evidence of human presence

related to population distribution. Each variable was studied individually to explore

its relationship with the distribution of all district seats in PA State. From the

frequency analysis of distance between district seats and rivers, it was observed that

90% of the districts are located up to 17 km from rivers; 50% are \3.5 km away

from a river, and the average distance is 6.81 km. (Fig. 4a). Regarding distance

from roads, 90% of the districts seats are \127 km far from roads and 50% are

\27.5 km away (Fig. 4b). PA State is mostly flat, with slope values ranging from 0

to 7.3%. It was observed that 90% of the district seats had an average slope of\2,

50% of the districts had average slopes of \0.27% (Fig. 4c).

Regarding distance from urban centers, a nearest neighbor distance analysis over

the district seats indicated that on average, such centers are 24.5 km distant from

each other. Between district seats, the shortest distance is 1.5 km and the longest

distance is 24.5 km.

Regarding the ‘‘forest percentage’’ variable in PA State, we assumed that areas

with more than 95% forest cover are not likely to contain human settlements. Areas

with\5% forest cover are strongly associated with human presence, and at 30% of

forest cover, the likelihood of population occurrence and absence is equivalent.

These forest percentage and human population occurrence are empirical values and

have to be locally adjusted for each study case.

SFD-BR163 study site

The frequency distribution of distance to rivers, which is one of the relationships

between the presence of settlements and an indicator variable (Fig. 5), indicated that

90% of the communities are up to 30 km from the rivers, 50% are\7.68 km away,

and the average distance between the communities and rivers is 9.7 km (Fig. 5a).

Concerning to the variable ‘‘distance to roads’’, 90% of the communities are

\29.9 km from roads, and 50% are \9.7 km from roads (Fig. 5b).

Descriptive statistics indicated that SFD-BR163 communities tend to be located

away from hillsides (Fig. 5c). About 90% of the communities are located among

more than 1,000 m of hillsides, and no settlement\200 m from a hillside. The areas

distant from the hillsides can be wetlands or plateaus, and they were mapped based

on Shuttle Radar Topography Mission (SRTM) data (Farr et al. 2007), according to

the vertical distance in relation to the drainage network, which was provided by the

HAND algorithm (Rennó et al. 2008).

2 According to IBGE (2000), districts in Brazil are administrative units of municipalities. Apart from the

municipal seat, every district seat has the status of village (‘‘vila’’).
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To define how the distance to the nearest communities influences populations, the

distance to the nearest neighbors was analyzed, considering the locations of all

communities of the SFD-BR163 municipalities. The shortest distance between

communities was 2 km, and the greatest distance was 100 km. On average, the

communities are 30 km distant from the nearest community.

The relationship between forest percentage and presence of population was set

empirically, as settlements and population nuclei are not commonly found in

regions of dense forest cover. Therefore, it was considered that over 99% forest

cover, there is no possibility of population occurrence; conversely, regions with

\30% forest cover are highly likely to contain settlements. The threshold of 50% of

forest cover marks regions where the potential of occurrence and non-occurrence of

settlement would be equal. In contrast to the Marabá procedure, several census

tracts were smaller than the cell resolution (2 9 2 km) for the SFD-BR163. Instead

of using the same threshold applied to Marabá (95% forest cover), which would

exclude small census tracts, a threshold of 99% forest cover was defined for the

SFD-BR163.

The cellular space on geographical database

According to the Brazilian Census (IBGE 2000), the municipality of Marabá

includes 168,020 inhabitants, distributed throughout 171 census tracts: 134,373

residents in urban areas (127 census tracts) and 33,647 people at the rural areas (44

census tracts). In the urban census tracts, there was an average of 1,058.1 inhabitants

(standard deviation, 324.8; median, 1,007), varying from 319 up to a maximum of

Fig. 4 Accumulated frequency of districts seats in PA state relating to their distance to rivers (a),
distance to roads (b), and average slope (c)

Fig. 5 Average distance to rivers (a), roads (b), and hillside (c) for the influence areas of the
communities (accumulated frequency)
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2,024 residents. In the rural census tracts, an average of 766.6 inhabitants (standard

deviation of 533.0, and median equals to 721), varying from a minimum of zero up

to 2,105 residents. Marabá’s census tracts have an average area of 387.47 km2,

varying from 1.17 to 1,955.21 km2. Rural census tracts in the east are dominated by

agricultural activities, mainly pastures. Census tracts in the west are dominated by

forest cover because of the presence of conservation units (national forests and

biological reserves). To represent the heterogeneity of Marabá’s census tracts, the

population density surface was generated using cells of 1 km 9 1 km. Only cells

completely inside the Marabá boundary limits were included in population counts at

the density surface.

All of the indicator variables and census tract population data formed a

geographical database at TerraView GIS System (Terraview 2010), taking cells as

units of analysis to generate the surface density. The ideas of cellular worlds

(Couclelis 1985, 1991, 1997) and a cellular geography (Tobler 1979) support the

theoretical debate in geography on representational perspectives for geographic

spaces.

The classification of ETM?/Landsat Images (WRS 224/64 from 2002/08/22 and

WRS 224/65 from 2002/08/13) mapped the classes ‘‘water’’ and ‘‘forest’’ for

Marabá, with 30 m of spatial resolution. When images were co-registered to census

tract limits, a positioning error of about one pixel (30 m) was found and projected to

the UTM/SAD69 geographical reference. A simple threshold algorithm over ETM?

spectral band 4 (0.750–0.900 lm, near-infrared) classified the water bodies by area.

Forest classification relied on a threshold algorithm over the ETM? normalized

vegetation index (NDVI) (Rouse et al. 1974), in which spectral information from

near-infrared (band 4) and visible (band 3: 0.630–0.690 lm) light were combined

[(band4 - band3)/(band4 ? band3)].

The general descriptive statistics related to the population in the census tracts of

SFD-BR163 are presented in Table 1. It comprises the rural census tracts of the

municipalities of Altamira, Aveiro, Belterra, Itaituba, Jacareacanga, Juruti, Novo

Progresso, Óbidos, Placas, Prainha, Rurópolis, Santarém, and Trairão.

As SFD-BR163 is a wider area, indicator variables were obtained from different

data sources than those used for Marabá (Table 2). The road network vectors

available in the Ecological Economic Macrozoning database (MMA/SDS 2002)

were used as a reference for the distance-to-roads variable, as computed for a

regular grid at a 500 m spatial resolution.

Table 1 General population

data information for

SFD-BR163

2000 2007

Number of census tracts 252 292

Minimum 0 0

Maximum 176,486 191,487

Sum 508,379 566,566

Mean 2,017.37 1,940.29

SD 11,777.78 12,205.85
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River limits provided by National Agency for Electrical Energy (ANEEL) were

used in calculating the distance to rivers. The location (points) of the districts seats

(IBGE 2000) were used to analyze the distance to urban centers. The grid containing

slope values (percentage) was calculated directly from the altimetry provided from

SRTM data.

The variables ‘‘distance to roads’’, ‘‘distance to rivers’’, ‘‘distance to urban

centers’’, ‘‘forest cover’’, and ‘‘distance to hillsides’’ were selected as indicator

variables to generate a potential surface of population occurrence according to

previous research on the occupation of this region (Alves et al. 2010; Amaral et al.

2005; Becker 2004; Furtado 2004; Pandolfo 1994). To evaluate the relationship

between each of the selected indicator variables and population values, all the

communities from the SFD-BR163 were studied, with 2 9 2 km cells of as the units

of analysis.

Standardizing indicator variables based on fuzzy inference

As each indicator variable has a different scale and range, it is necessary to

standardize the values to enable operations between the variables. As proposed by

Turner and Openshaw (2001), fuzzy pertinence functions (Zadeh 1988; An et al.

1991) can be useful in transforming environmental data (indicator variables) into

standardized variables expressing relationships to the occurrence of settlements.

The use of fuzzy sets for characterization of spatial classes is indicated when

dealing with ambiguity, abstraction, and ambivalence in mathematical or conceptual

models of empirical phenomena (Burrough and Mcdonnell 1998). In the concept of

the pertinence function, given the value ‘‘z’’, the function determines whether the

element evaluated belongs to a given set of analyses or not. Thus, fuzzy pertinence

functions were built from maximum, minimum, and average values of each variable

related to the presence of settlements. As a first approach, we proposed applying

quadratic functions for all variables. Taking the distance to roads (z) as an example,

the quadratic pertinence function was obtained as follows:

Table 2 Data Sources for indicator variables at SFD-BR163

Data Source Reference Analyzed

years

Deforestation Prodes (TM/Landsat 5)/INPE INPE (2009) 2000 and

2007

Communities Brazilian Institute of Environment and Renewable

Natural Resources—IBAMA and field work survey

IBAMA

(2010)

2008, 2009

and 2010

Roads Brazilian Institute of Geography and Statistics—IBGE IBGE

(2007)

2007

Rives Brazilian National Agency of Water—ANA ANA (2007) 2007

Geomorphology NASA/SRTM Farr et al.

(2007)

2000

Population Brazilian Institute of Geography and Statistics—IBGE IBGE (2000

and 2007)

2000 and

2007
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f ðxÞ ¼
0 if 4; 000 m

1=ð1þ aðz� bÞ2Þ
1 if z� 1; 000 m

8
<

:
ð1Þ

The beta (b) value corresponds to the value of the variable when the possibility of

having associated population is maximum (in the case of the fuzzy value, is equal to

‘‘1’’). The value of alpha (a) is obtained from the value of the variable where the

occurrence or non-occurrence of the population would have the same chance of

happening. In other words, alpha corresponds to the variable value where the fuzzy

pertinence function is equal to 0.5 and is given by the equation:

a ¼ 1

ðz� bÞ2
ð2Þ

where z is the value of the variable when f (z) = 0.5.

From the relationships between district seats and indicator variables (for Marabá)

and the communities (for SFD-BR163), fuzzy pertinence functions were obtained

(Table 3).

Table 3 Fuzzy inference values for the indicator variables identified for Marabá and SFD-BR163 study

sites

Indicator

variable

Marabá

values

SFD-BR163

values

f (z) Marabá

alfa

SFD-BR163

alfa

Marabá

beta

SFD-BR163

beta

Distance to roads (m)

B 1,000 900 1 1.48E -

09

1.98E - 08 1,000 900

= 27,000 9,702 0.5

[ 40,000 29,900 0

Distance to rivers (m)

B 1,000 900 1 2.96E -

08

5.95E - 08 1,000 900

= 6,810 7,686 0.5

[ 17,000 30,300 0

Distance (m) to districts—Marabá; communities—SFD

B 1,500 2,000 1 1.89E -

09

1.28E - 09 1,500 2,000

= 24,500 30,000 0.5

[ 140,000 100,000 0

Forest cover (%)

B 5 3 1 16 2.50E ? 01 0.05 3.00E - 01

= 30 5 0.5

[ 99 99 0

Average slope (%) Marabá distance to hillside (m) SFD-BR163

B 0.27 1,000 1 10.4,058 4.00E - 06 0.27 1,000

= 0.58 500 0.5

[ 3.5 200 0
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Combining indicator variables

After the fuzzy pertinence function was obtained for each indicator variable, it was

necessary to the relationships among the variables. Establishing these relationships

is a fundamental step in modeling the adjacent surface, which represents population

occurrence. In the absence of a robust conceptual model, or of a standard surface

that could be used to infer the relationship between variables, we proposed to apply

the following: fuzzy operators (minimum, maximum, and gamma), simple average,

and weighted average. In contrast to the computation of a simple average, where

each variable has the same importance, in computing the weighted average, a

weight has to be assigned determining the relative importance of each variable. In

this work, we used the hierarchical analysis procedures (Saaty 1978) to determine

the variable weights based on a paired comparison of all indicator variables.

These operators will generate a final value related to the potential of population

occurrence provided by the indicator variables interactions, for each grid cell,

composing the adjacent surface model.

Finally, to disaggregate population from census tracts to cells, the total

population count had to be redistributed taking only the valid cells into account.

Each grid cell had a potential of population occurrence assigned from the operators

between indicator variables. As census tracts are represented by several cells, the

population count for each cell was distributed as follows:

Pgridi
¼ PCTI

� Fgridi

FgridI

� �

ð3Þ

where Pgridi
population count to be attributed to a grid cell i, PCTI

population count

for the census tract I, to which the grid cell i belongs, Fgridi
value resulted from the

operation over the spatial indicator variables for the grid cell i (as weight average or

fuzzy operators over fuzzy indicator variables), FgridI
sum of all Fgridi

where i is a

valid grid cell for the census tract I.
At the end of the procedure, population density initially depicted by the limits of

census tracts (polygonal) is presented in regular cells, according to defined

relationships between indicator variables and population presence.

Results and discussion

Population density surfaces

Five different population density surfaces were produced as result of the proposed

methodology for the municipality of Marabá, according to the operator used to

integrate indicator variables (simple average, weight average, fuzzy minimum,

fuzzy maximum, and fuzzy gamma operators).

To analyze the surface results, in the absence of population data distributed in a

more detailed spatial unity as census tract (2000), we took resident population data

from the National Institute of Colonization and Agrarian Reform (INCRA—Instituto
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Nacional de Colonização e Reforma Agrária) for the official settlement projects in

2003 (Projetos de Assentamentos—PA) (MDA 2003) as a reference. Figure 6 presents

the PAs limits over the original census tract representation.

When a settlement project (PA) is created, INCRA officially registers its

geographical limits and the number of families that were settled in the area. In this

paper, the population density for each official settlement project in Marabá was

calculated by dividing the total number of residents by the area of the settlement.

Because population data from PA (2003) and census tracts (2000) differ in temporal

reference and spatial limits, they cannot be used to directly compare the population

density values; however, it was useful to compare the surface results. In comparing

these results, it was necessary to take the following into account: the population

value for a PA is the total population of inhabitants for that area; population density

in 2003 in the PAs is a result of the population density in 2000; we are considering

population density as uniform inside a PA. There was 48 PAs, with population

counts varying from 20 up to 373 inhabitants, and population density values from

0.28 up to 8.5 inhabitant/km2.

A confusion matrix was obtained from the intersection of PA population density

choropleth map with population density surfaces, considering intervals of popula-

tion density. A value of global accuracy was calculated by dividing the total number

of grid cells showing population density at the same population density interval in

PA population density by the total number of grid cells related to PA areas. This

global accuracy, given by the percentage of area correctly classified for each

surface, was used only as a reference to compare the population density surfaces.

We considered that the density population value inside a PA is uniformly

distributed, while each PA is composed of several cells that presented heteroge-

neities in population density surfaces.

Fig. 6 Original density population from IBGE 2000 census tracts (IBGE 2000) and INCRA settlements
projects localization
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From the global accuracy (Table 4), the fuzzy gamma operator yielded better

performance (18.8%) than the other operators; however, this result was related to

coincidence from areas of extreme population density values. A population density

surface from the gamma operator gives a good representation of the lowest and

highest population density areas, but not of the gradient of population density based

on spatial heterogeneity.

The global accuracy, obtained from the simple average operator (14.3%), was

related to intermediate population density ranges and was superior as a measure to

the global accuracy for population density from the original census tract

representation (Fig. 7a). From the visual analysis, the simple average operator also

provided the best population distribution for the entire Marabá municipality,

presenting more heterogeneity than weighted average surface (Fig. 7b) and the other

fuzzy operators. The weighted average operator did not accurately consider the

importance of forest cover. The minimum and gamma fuzzy operators were

sensitive to the presence of zeros, while the maximum fuzzy operator incorporated

little variability into the census tracts, generating density surface that slightly

differed from the original census tract polygonal representation.

From this first result, the simple average operator was the better approach to

generating population density surfaces and representing the heterogeneity of

population density in Marabá. We adapted the methodology and used it to infer

population distribution surfaces for a wider region, enabling the analysis of temporal

evolution of the population distribution along SFD-BR163.

The resulting population density surfaces, which show the evolution of the spatial

distribution of population for SFD-BR163 for 2000 and 2007, are presented in

Fig. 8. Fieldwork was conducted in October 2010 to assess the accuracy of the

population distribution surface, verifying geographical coordinates and population

values for 98 communities in the study area (Fig. 8b). Population data for 19

communities were collected (Table 5) by interviewing residents, community

leaders, health agents, and workers at the local education authority. Using field

work data as the standard, the population density surface generated by the weighted

average operator yielded better results than the surfaces obtained from maximum

fuzzy, minimum fuzzy, gamma fuzzy, and simple average operators. The total

difference between the predicted and declared population was 8%. In general,

greater differences were found in estimates of small communities (Table 5). These

results can be considered a good approximation, taking into account that the surface

was produced using 2007 Population Counting data and that the fieldwork

Table 4 Global accuracy (%)

for the comparison between the

population density surfaces and

the resident population data

from INCRA settlement projects

Population density surface Global accuracy (%)

Simple average 14.3

Weighted average 10.4

Minimum fuzzy 10.4

Maximal fuzzy 9.5

Gamma fuzzy 18.8

Census tracts 11.8
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population values were obtained from key informants and not estimated based on

systematic survey data.

Considering the proposed methodology for disaggregating population values

from census tracts into a cell space database, our observations from the Marabá and

SDF-BR163 study sites make it clear that certain considerations are especially

important. First, when selecting the indicator variables is necessary to take into

account the particular process by which occupation grows in the region. As Marabá

and SDF-BR163 are both in the Para state, and as both are involved in the process of

Fig. 7 Population density surface obtained for Marabá from weight average operator (a), and simple
average operator (b)
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Fig. 8 Spatial distribution of
population on SFD-BR163 for
2000 (a) and 2007 (b) with the
location of communities verified
during fieldwork (black points)
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frontier expansion in the Amazon, the same indicator variables could be used for

both. Even in the Amazon region, if the methodology were to be applied to the state

of Amazonas, for instance, rivers navigation condition should probably be added as

indicator variable.

Second, the evidence of human population used to estimate the relationship

between population distribution and the indicator variable must also be defined for

each area of interest. We used district distribution for Marabá and the presence of

communities for SFD-BR163, with different implications for fuzzy inference

(Table 3). The better the data used as evidence of population distribution, the more

appropriate population density surfaces will be obtained. Obviously, the data used

will also depend on data availability; we used districts for Marabá surfaces because

community data were not available for the 2000 census.

Third, the quality of environmental data used as indicator variable will impact the

quality of the final population density surface. As for any modeling process, the

output is directly dependent on the quality of input data. In this context, remote

sensing data can be a useful data source when working on large areas, such as

‘‘distance to hillside’’ from SRTM/NASA or deforestation mapping from Landsat/

TM images from Prodes Project (Table 2), which was used in this work.

Fourth, we tested five different operators with the indicator variables. For

Marabá, the simple average operator provided the best estimate of population

Table 5 Population estimates obtained from key informants in the field (2010) and from the population

density surface (2007) for communities visited during the fieldwork

Community Fieldwork

population—2010

Population density

surface population—2007

Differences (%)

129 do Bode 413 342 71 (17.2)

São Jorge 3,000 2,111 889 (29.6)

Galiléia 200 124 76 (38.0)

Divinópolis 3,000 2,464 536 (17.9)

Itapacuru 50 27 23 (46.0)

Itacimpasa 800 733 67 (8.4)

Nova Canaã 225 255 -30 (-13.3)

Nova Esperança 800 936 -136 (-17.0)

Bela Vista do Caracol 9,000 8,897 103 (1.1)

Jamanxim 3,500 2,990 510 (14.6)

Moraes Almeida 3,000 2,989 11 (0.4)

Alvorada 5,000 4,852 148 (3.0)

Água Azul 800 832 -32 (-4.0)

Santa Júlia 800 640 16 (20)

Três Bueiros 750 697 53 (7.1)

Riozinho 600 521 79 (13.2)

Santa Luzia 240 198 42 (17.5)

Aruri 200 163 37 (18.5)

Tucunaré 70 45 25 (35.7)
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density, whereas for SFD-BR163, the weight average operator was the best fit.

Considering that simple average is an operation that gives equal weight to every

indicator variable, we can infer that average operators performed better than fuzzy

operators. The simple average was first chosen also because it is easier to

implement, understand, and interpret.

Finally, it is always important to have field information or another data source to

validate the population density surfaces. For Marabá, data from INCRA settlements

projects were used as a general reference for operator comparison. In the SFD-

BR163, we managed to collect field information about the resident population,

enabling direct comparison between population values from fieldwork and

population density surface. The proposed methodology can also be used to optimize

fieldwork effort: rather than conduct a wide survey for an entire low area,

population density surface can be used to stratify the area, reducing the number of

points to be visit in the field.

Ultimately, we are not proposing a method to estimate new population values but

a consistent criterion for disaggregating population counts from census tracts,

represented by polygons delimiting areas of different sizes, into cell spaces that are

smaller and present regular spatial resolution. Obviously, several other methodol-

ogies could be applied (REFS); however, our proposal seeks to use simple spatial

analysis and geographical information tools to represent knowledge about how

population is distributed inside census tracts.

The representation of population data by population density surfaces allows, in

addition to other modeling purposes, the analysis of temporal evolution of

population distribution and the study of population–environmental relations, even if

the limits of census tracts differ between census surveys.

Ultimately, we are not proposing a method to estimate new population values,

rather just a consistent criterion to disaggregate population counts from census

tracts, represented by polygons delimiting areas of different sizes, into cells space

that are smaller and present regular spatial resolution. Obviously, other method-

ological approach could be applied; however, our proposal seeks to use simple

spatial analysis and geographical information tools to represent the knowledge

about how population is distributed inside census tracts. The representation of

population data by population density surfaces allows, in addition to other modeling

purposes, the analysis of temporal evolution of population distribution and the study

of population–environmental relations, even if the limits of census tracts differ

between census surveys.

Evolution of population density in the SFD-BR163

The recent demographic dynamics in agricultural frontier areas in SFD-BR163

municipalities is treated as evidence of the occupation processes, demonstrating,

among other things, their ability to attract and retain population. Table 6 shows the

evolution of the total population in the DFS-BR163 between 2000 and 2007 as well

as population growth, considering exclusively population values for cells within the

limits of SFD-BR163. In 2000, the population of the SFD-BR163 municipalities

was estimated at 476,656 inhabitants, and it reached 532,457 inhabitants in 2007, a
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cumulative increase rate of 11.7% for the analyzed period. Although the

environmental conditions represented by the indicator variables influenced popu-

lation distribution in the same way in 2000 as in 2007, the pattern of population

distribution has changed. Instead of the intensification of population density in

previously occupied areas, the population is scattered over the territory of SFD-

BR163 (Fig. 8).

There was some concentration of inhabitants in the northern region, along the

Amazonas River and in the vicinity of Santarém; however, the concentration of

population along the axis formed by Rurópolis–Itaituba–Trairão, following

Transamazônica and BR-163 highways observed in 2000 was substituted by larger

areas with low population density. This change may be associated with the

population decrease observed in Trairão.

Table 6 shows the evolution of the total population in the municipalities near the

BR-163 highway between 2000 and 2007, as well as population growth that

considers exclusively the population values for the cells inside the limits of SFD-

BR163. In 2000, the population of the municipalities (considering only the

population count for cells inside the borders of SFD-BR163) was 476,656

inhabitants, and it reached 532,457 inhabitants in 2007. This change represents an

accumulated increase rate of 11.7% at the period.

In Jacareacanga municipality, there was a high population increment taking the

period 2000–2007 (Table 6). However, the latest published demographic census

Table 6 Total resident population for municipalities of SFD-BR163 for 2000 (IBGE Demographic

Census 2000), and 2007 (IBGE—population count 2007), and the results from density surfaces for those

cells of municipalities contained in SFD-BR163 physical limits

Locality Municipality

2000

Municipality

2007

Cells inside

SFD-BR163

2000

Cells inside

SFD-BR163

2007

Cells inside

SFD-BR163

2007–2000

%

Brazil 169,799,170 183,987,291 8.36

PA state 6,192,307 7,065,573 14.10

Altamira 77,439 92,105 3,286 5,548 2,263 68.87

Aveiro 15,518 1,883 11,954 17,238 5,283 44.19

Belterra 14,594 12,707 14,573 12,707 -1,866 -12.80

Itaituba 94,750 118,194 95,653 117,450 21,797 22.79

Jacareacanga 24,024 37,073 12,919 19,515 6,596 51.06

Juruti 31,198 33,775 28,980 33,909 4,928 17.00

Novo Progresso 24,948 21,598 24,666 21,583 -3,083 -12.50

Óbidos 46,490 46,793 2,919 1,291 -1,628 39.28

Placas 13,394 17,898 5,170 7,200 2,031 88.11

Prainha 27,301 26,436 1,404 2,640 1,237 26.68

Rurópolis 24,660 32,950 26,011 32,950 6,939 4.00

Santarém 262,538 274,285 233,057 242,380 9,322 14.04

Trairão 14,042 16,097 14,064 16,039 1,975 -55.77

SFD-BR163 total 565,907 641,737 476,656 532,457 55,802 11.71
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summary (IBGE 2010) have pointed out that the Jacareacanga’s population was

14,000 residents, instead of the 24,000 counted by the population counting of 2007

(IBGE 2007). Because of these discrepant values, a consultation was carried out

with the IBGE population office and it was reported that there were problems with

the 2007 Population Counting in Jacareacanga. IBGE field team had to be replaced

by a team from Itaituba. Because they didn’t know well the region, there were

double counting, resulting in overestimation of population in 2007 for this

municipality.

The effect of conservation units in the SFD-BR163 becomes evident when

population surfaces are compared. In the southern SFD, in the municipality of

Altamira, the population started to occupy the east side of BR-163 highway, while

in the west side, the population in Novo Progresso decreased. Most areas without

settlement correspond to a conservation unit of restricted use such as National Parks

or Indian Land. The areas where the population has spread out or concentrated

during the analyzed period corresponded to unused public land or conservation units

that allow sustainable use.

The resident population generally increased in the municipalities, with exception

of Aveiro, Belterra, and Novo Progresso. Aveiro is almost entirely contained by

conservation units. In the field, the local government explained that because they do

not have the legal land tenure for rural or for urban areas, the most common

economic activities, such as agriculture or cattle ranching, are restricted. They are

not even allowed to build a hospital or any other public urban infrastructure

necessary for settlement.

In Belterra, land ownership became concentrated when soybean producers came

to the Santareno Plateau. Small producers sold their properties for grain production

and migrated to urban areas (Coelho 2008). In the population density maps, this

transition is expressed by the growing number of residents in the city of Belterra and

the disappearance of denser areas closer to this city.

According to information collected from the fieldwork interviews, Novo

Progresso received an intense immigration flux in the 2000s (Fig. 9). Men at

working age (20–40 years old) went to Novo Progresso to work in the numerous

sawmills in the city. With the intensification of the battle against deforestation and

illegal timber practices and the creation of several conservation units in 2006, the

population of this city faced a reduction of about 3,000 inhabitants from 2000 to

Fig. 9 Age pyramids for Novo Progresso in 2000 (a) and 2007 (b). Source IBGE (2000) and (2007)
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2007. These individuals were mostly men, as indicated by the demographic

pyramid.

Conclusions

This paper proposed a methodology to disaggregate population data provided in

census tracts into smaller spatial units based on ancillary environmental data and

geoinformation techniques. The results suggest it is possible to recover the

heterogeneity of census tracts when the relations between the indicator variables and

population occurrence are defined with criterion and local particularities are taken

into account. The methodology developed for the municipality of Marabá was

adapted to the Sustainable Forest District of BR-163 municipalities. As the area of

interest was expanded, the cell size was enlarged, and the pattern of population

distribution was obtained from the presence of communities. Data from fieldwork

indicated an adequate fit between the population count predicted from the

population surface and the total population for the communities along BR-163

highway.

The population density surfaces enabled the interpretation of the distribution of

human presence in terms of the territory to be potentially occupied. The model

allocates no population in areas where there is no possibility of human presence,

such as in rivers, dense forests cover, sand islands, etc. Moreover, representing

population in cell spaces enables monitoring of the population over the time. Even if

the limits of municipalities or census tracts change, what is very common in such

dynamic regions as Amazon, the distribution can be represented and compared in a

cell space.

The evolution of the resident population over the DFS/BR-163 territory from

2000 to 2007 showed spatial patterns comparable to the occupation process

described in the literature and reported in the field. Therefore, since the proposed

methodology can be adapted to represent the population distribution of other areas,

population density surfaces can be useful as additional data source to study

population and territory dynamics.

The proposed methodology can be improved using knowledge about the spatial

indicator variables and human presence relationships. With population data from the

2010 census, we will be able to represent population density evolution over a

10-year period and better monitor the impacts of the creation of a sustainable forest

district on regional population distribution. Such methodological advancements, we

hope, better pave the way toward the more integrated population and environment

scholarship as envisioned by, and in honor of, Professor Daniel Hogan.
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Furtado, C. (2004). Formação econômica do Brasil. São Paulo, SP: Companhia das Letras.

Gallego, F. J. (2010). A population density grid of the European Union. Population and Environment, 31,

460–473.

Gallego, J., & Peedell, S. (2001). Using CORINE land cover to map population density. In Eurostat, DG

Agriculture, DG Environment, Joint Research Center, European Environment Agency (Ed.),

Towards agri-environmental indicators: Integrating statistical and administrative data with land
cover information, Topic report 6/2001 (pp. 94–105). Copenhagen: European Environment Agency.

Geist, H. J., & Lambin, E. F. (2001). What drives tropical deforestation? A meta-analysis of proximate
and underlying causes of deforestation based on subnational case study evidence. LUCC report

series no. 4. Louvain-la-Neuve, Belgium: LUCC International Project Office.

Godfrey, B. J., & Browder, J. O. (1996). Disarticulated urbanization in the Brazilian Amazon. The
Geographical Review, 85(3), 441–445.

Goodchild, M. F., Anselin, L., & Deichmann, U. (1993). A framework for the areal interpolation of

socioeconomic data. Environment and Planning A, 25, 383–397.

Gregory, I. N. (2002). The accuracy of areal interpolation techniques: Standardizing nineteenth and

twentieth century census data to allow long-term comparisons. Computers, Environment and Urban
Systems, 26, 293–314.

Harvey, F. (2008). A primer of GIS: Fundamental geographic and cartographic concepts. New York: The

Guilford Press.

Hay, S. I., Noor, A. M., Nelson, A., & Tatem, A. J. (2005). The accuracy of human population maps for

public health application. Tropical Medicine and International Health, 10(10), 1073–1086.

Hogan, D. J. (1989). População e Meio Ambiente. Textos NEPO, 16, 86. Campinas: Núcleo de Estudos
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brasileiro (pp. 13–58). Campinas, SP, BR: Núcleo de Estudos de População-NEPO/Unicamp.
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Instituto Brasileiro de Geografia e Estatı́stica.

IBGE (Instituto Brasileiro de Geografia e Estatı́stica). (2010). Censo Demográfico 2010. From http://
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