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Abstract. There is growing interest in the use of gridded population models which potentially offer
advantages of stability through time and ease of integration with nonpopulation data sources. This
paper assesses the accuracy of models of the type introduced by Martin in 1989. Population counts for
census output areas (OAs) are reallocated to a 100 m grid and then compared with true 100 m cell
population counts uniquely available from the 2001 Northern Ireland Census. This analysis is novel,
being the first large-scale assessment of gridded population models against true gridded population
counts. We find evidence that kernel width and cell size are more important than the distance-decay
parameter; that local mass preservation approaches are more appropriate in urban areas; but that the
spatial scale of input data is more important than model parameters. It is suggested that more
attention needs to be given to the varying spatial structures of population between places and that
incorporating this information through geostatistical approaches could yield further insights.

1 Introduction
There is a long history of modelling and mapping population data on regular
geographical grids instead of, or in addition to, spatially irregular units derived from
censuses and administrative systems. Important advantages of gridded population
models include stability through time and ease of integration with other georeferenced
data sources from environmental, physical, or social applications. In some countries,
such as Finland (Rusanen et al, 2001), gridded population data are a standard product.
However, in many others such as England and Wales, where gridded data are not
standard outputs, researchers must use some form of spatial reallocation to create
grid-based estimates from available point-referenced or area-referenced data. Many
different approaches can be used to this end. Some estimate population distributions
using remotely sensed data (eg, Bhaduri et al, 2007; Mesev, 2003). Major initiatives
have focused on the production of global-scale reference models such as that described
by Balk et al (2006) and Tobler et al (1997), which are available at relatively coarse
spatial resolutions. The assessment of these techniques falls outside the scope of this
paper which, instead, concentrates on the evaluation of gridded population models
using high-resolution ground-based data sources. We focus specifically on the approach
presented by Martin (1989) which is generally available for use by researchers to create
their own models from local data, thus increasing the need for understanding of model
performance. A key challenge for the assessment of all gridded models is that popula-
tion counts are not usually available in the same study region for both irregular zones
and a regular grid. This has presented long-term difficulties for those aiming to assess
the usefulness of gridded models. However, uniquely in the UK, census counts for
irregular zones and regular grids are available in Northern Ireland (NI).

The paper therefore addresses this challenge by comparing gridded population
models with true 2001 Census population counts for 100 m and 1 km cells from the
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NI Grid Square Product. It evaluates model parameters, assesses the effects of
geographical context (eg, urban or rural), and considers the importance of the under-
lying zonal geography. Previous studies (Martin, 1996) demonstrate the theoretical
advantages of gridded data over representations which seek, at one extreme, to allocate
populations to centroid points or, at the other, to distribute populations across irreg-
ular zones. Model evaluation was restricted by the absence of true gridded population
counts. Martin et al (2000) attempted more systematic evaluation using NI gridded
population data but were limited because only a small sample of grid-square counts
were available at that time. The present paper overcomes these deficiencies by generat-
ing point-referenced, gridded, and zonal (choropleth) representations from 2001 NI
Census data and assessing performance against the complete set of gridded population
counts. The analysis therefore provides empirical evidence to inform judgments of the
accuracy of gridded population models. This has relevance to places where no true
population count data are available for comparative purposes, with the caveat that the
detailed conclusions are restricted to the specific type of modelling algorithm used here.
The work is timely as there is an increasing interest in using gridded data to overcome
the problem of continually changing small-area census geographies, with a new round of
censuses internationally (Valente, 2010). Gallego (2010), for instance, uses land-use data
to inform the interpolation of population totals to grid squares across Europe, one
specific advantage being the continuity of gridded geographies across borders and
differing statistical reporting zones.

The remainder of the paper comprises five sections. In section 2 we review
the rationale and applications of gridded population modelling and in section 3 the
particular algorithm which is being evaluated here. Section 4 describes the NI context
and the data that are used for the analysis. Section 5 presents the implementation and
comparison between model outputs and true population counts. Finally, we conclude
by assessing the relative importance on model performance of the model parameters,
geographical context, and input data. These wider implications have relevance beyond
the specific NI context.

2 Applications of gridded population models
Numerous researchers choose to use gridded population models in order to overcome
some of the more severe weaknesses of conventional population representations using
irregular zonal boundaries. These are generally applications in which the spatial dis-
tribution of population has an important impact on the analysis, independent of the
zonal geography used. The literature sometimes refers to such methods as producing
population ‘surfaces’, although as few involve strictly continuous mathematical surface
functions, the term ‘gridded’ is adopted here. Tate (2000) summarizes their general
advantage as being a more realistic model of settlement pattern, reflecting density
changes that are hard to represent using area-based representations. Example applica-
tions based specifically on the technique evaluated here include investigation of social
class inequalities in the risk factors associated with flooding (Fielding, 2007); studies of
environmental equity and risk assessment (Brainard et al, 2002); population exposure
to transport of hazardous waste (Brainard et al, 1996; Lovett et al, 1997); more general
transportation cost modelling (Brainard et al, 1997; Martin et al, 2002), and as the
basis for cellular automata modelling of urban expansion (Wu and Martin, 2002).
Mesev et al (1995) adopt a hybrid approach in which the census-based gridded popula-
tion estimates are used to enhance the classification of urban areas from remotely
sensed data.

One benefit of gridded population models common across these applications is
that, at an appropriate spatial resolution, they are better able to convey the geography
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of settlement than zonal representations. Under most settlement patterns, particularly
in rural areas, many cells of a gridded model will have zero population, reflecting the
discontinuous nature of the population distribution. Moreover, many social and envi-
ronmental processes are continuous over space and so suitable for representation using
a regular grid. Remotely sensed data, for example, can readily be resampled onto a
regular gridded geography. A second benefit is comparability over time. The UK, in
particular, is subject to continual revision of census and administrative boundaries,
primarily due to policies related to electoral representation. Considerable effort is
being devoted to the maintenance of 2001 Census output areas (OAs) in 2011 to
minimise change, but there will still inevitably be mergers and splits necessitated by
substantial population changes (Cockings et al, 2009). It is therefore not possible to
compare the results of the last four UK censuses on a consistent small-area geography.
By contrast, gridded representations may be directly overlaid and reveal not only the
numerical change in population but also the changing spatial extents of populated
areas. In all these applications the comparability provided by gridded models is a key
benefit, both between different data sources and within sources over time. An inter-
esting further application, not considered here, is the modelling of more detailed
temporal changes in population such as day/night cycles (Bhaduri et al, 2007). Most
of the applications listed above also benefit from the abstract nature of the gridded
structure which allows the output of multiple data modelling exercises to be combined
using a common spatial framework. Others have identified the potential advantages
of such models, but were unable to make use of them due to specific data limitations
(eg, see Rosero-Bixby and Palloni, 1998; Verter and Kara, 2001).

Despite their evident utility in a range of applications, a fundamental challenge in
the calibration and evaluation of gridded population models from any source has been
difficulty in testing the outputs due to the absence of sufficiently detailed true counts.
Robinson and Zubrow (1997) used synthetic surfaces to evaluate the performance
of four algorithms, but production of synthetic surfaces which display the range of
characteristics encountered in a real-world settlement distribution is problematic.
The use of actual census population counts, as here, overcomes this difficulty.

3 Population modelling method
This paper employs a method, first presented by Martin (1989), for the construction of
gridded population estimates from zone centroids. Centroids are (x, y) point locations
identified as local centres of population: for example, the population-weighted centre
of a census reporting zone. This is by no means the only method for generating
gridded representations of socioeconomic data and various alternatives, driven by a
similar desire to overcome weaknesses of zone-based representations, may be found in
Goodchild et al, (1993), Langford and Unwin (1994), Tobler (1979), and Thurstain-
Goodwin and Unwin (2000). These all utilise some form of interpolation or dasymetric
allocation (Mennis, 2003) from centroid or area-referenced sources into grid cells.
Kyriakidis (2004) proposes a geostatistical framework for generation of population
surfaces by area-to-point Kriging and would prefer not to associate populations with
centroid locations; Yoo et al (2010) compare the Kyriakidis and Tobler methods. We
focus here on a method employing centroid locations because these are precisely the
type of geographical reference locations generated by contemporary population data
systems and they potentially offer greater geographical detail about population distri-
butions than zone boundaries alone. The impact of using centroids at different spatial
scales is one of the aspects to be investigated.

A more extensive review of the basic algorithm used here, including the concepts
of count redistribution and adaptive kernel width, together with their strengths and
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weaknesses as compared to conventional zonal mapping, is presented in Martin
(1996). That paper also discusses an extension in which population redistribution
is constrained within known zone boundaries. Tobler’s (1999) commentary on this
approach emphasises the redistribution of population to all cells in the output grid,
whereas our concern is with the creation of a spatially discontinuous representation, in
which the retention of empty (unpopulated) cells is an important feature of the result-
ing models. We assume the existence of population count data for irregularly sized
and shaped zones, which are represented by population-weighted centroid locations.
The basic approach is not to interpolate or smooth the centroid populations but rather
to redistribute the fixed total count of population from the point locations into the
surrounding grid cells. To determine the weighting of each cell with respect to a
centroid, we employ a locally adaptive kernel weighting function as illustrated concep-
tually in figure 1, showing a distance decay function centred on a centroid j. A review
of the general principles of such approaches is provided by Lloyd (2011). The notation
used in the figure relates to the following explanation.

Figure 1. Redistribution of population counts from centroid j to cells within kernel width k,
using distance-decay parameter o.

The method was first applied to enumeration districts (EDs) from the 1991 UK
Census and a series of national gridded models assembled by Bracken and Martin
(1995). Each centroid is treated as a local summary point for the more detailed, but
unknown, actual population distribution and a zone may be represented by more than
one centroid if such data are available. Modelling proceeds by processing each centroid
in turn and estimating a local weighting function for this redistribution. The process is
governed by an initial user-defined kernel width, within which the mean intercentroid
distance is determined. The kernel width is then locally adapted to equal this distance
and weights assigned to local cells according to a distance-decay function. In the
construction of the 1991 UK models, w;;, the weighting of cell i with respect to centroid
Jj, is determined by:

K-

w= () w
where k is the kernel width and d;; is the distance between the centre of cell i and
centroid j. Beyond the adjusted kernel width d > k, all weights are zero: w; = 0. All
that is required is a function that reduces the weighting from a peak at the centroid
location to zero at the edge of the kernel, and many such functions exist. That given
here is based on Cressman (1959). Thiebaux and Pedder (1987) add the exponent o in
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order to offer control over the shape of the distance-decay function within the extent of
the spatial kernel. This function is convenient for experimentation in that it permits
variation in the steepness of the distance decay within the kernel simply by varying o.
Values of 1 result in an approximately uniform decline from centroid to kernel edge,
while values less than 1 produce flatter kernels with sharper decline at the edge and
values greater than 1 produce more peaked functions with rapid decay away from the
centroid. The total population recorded at each centroid is then redistributed in
proportion to the weights assigned to cells within the kernel, and all other centroids
are processed in the same way. The total population received by cell i is thus the sum
of its weighted population from all centroids:

N
Bo= Y Pwy, @
j=1
where N is the total number of centroids and P, is the population at centroid j. Edge
effects are avoided by processing an area of at least one kernel width greater than
the output region to be modelled, allowing population from centroids just beyond the
region to be included, and for some of the population of centroids within & distance
of 4the edge to be lost.

In previously published work, it has been noted that the pattern of populated cells
in the output surface does not appear to be greatly sensitive to the value of o but that
the initial kernel width, k, plays a crucial role. Figure 1 shows these parameters. Martin
et al (2000) also examine various potential enhancements to the earlier techniques, and
particularly note the sensitivity of these approaches to the precision and accuracy of
the centroid locations. In general, the most promising results are obtained with the
most detailed centroid locations, effectively moving the model closer to the ‘ideal’ in
which each centroid represents the location of a single individual or household in the
population, and no redistribution modelling would be required. This paper therefore
considers the impact of the parameters « and k and cell size on the estimated gridded
population, and the impact of using centroids at varying spatial scales (namely OA
centroids and unit postcodes). The paper also goes further by looking at model perfor-
mance in urban versus rural areas, contrasting Belfast District Council (DC) with the
rest of NL

4 Data and analysis

Our analysis employs census data for the whole of NI in 2001. OA population counts
were used as input to the modelling procedure to estimate populations at 100 m and
1 km cells. There were 5022 OAs in NI with a mean population size of 336 and a
minimum threshold population of 100 persons and 40 households. OAs had a mean
area of 2.7 kmZ2, a median size of 0.147 km?2, and varied from a minimum of 0.001 km?
to a maximum of 101.32 km2. OAs in NI were designed using the same algorithm as in
England and Wales (Martin, 2002). This produced a tradeoff between population size,
social homogeneity, and shape but as can be seen above there is still considerable
variation in population size and area. For each OA a digital boundary and address-
weighted centroid location were available. OAs were selected as the starting point
because they are the most commonly used small-area geography for census counts.
Smaller unit postcodes were also introduced to the analysis to enable consideration of
the impact of spatial scale—or the support—on the accuracy of gridded population
models. There were 35320 unit postcodes in NI, representing the lowest level of the
postal delivery system. Their mean population was 48, with a minimum of 3 and
maximum of 2582. A look-up table was obtained from the Northern Ireland Statistics
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and Research Agency (NISRA) which showed population counts at postcode level and
their allocation to census OAs.

True population counts for 2001 for 100 m and 1 km cells were obtained from the
NI Grid Square Product (Shuttleworth and Lloyd, 2009; Shuttleworth et al, 2006). This
resource is unique to NI within the UK and allows direct assessment of gridded
models. In 1971, in addition to standard census output geographies, grid square counts
were provided in Great Britain and NI. However, in NI only, these counts have
continued to be provided from subsequent censuses. In 1991, as in previous census
years, 1 km grid squares were available for the whole of NI while 100 m grid squares
were provided only for urban areas. In 2001 both 1 km grid squares and 100 m grid
squares were made available for the whole of NI. For grid squares containing fewer
than 25 persons and fewer than 8 households (it was necessary that both criteria were
satisfied) outputs are restricted to total males, total females, total persons, and total
households. Figure 2 shows the population of NI in 2001 for 100 m grid cells, which is
here used as the main benchmark for the assessment of gridded model performance. A
successful gridded population model will be a close approximation to this distribution
and, at this scale, visually very similar.

In assessing the performance of these gridded models it is useful to understand
something of the population geography of NI. The city of Belfast and its surrounding
urban area is the largest population concentration in NI and is clearly visible in the
east of figure 2. Belfast DC (2001 Census population 277391) forms the core of
the Belfast urban area which extends geographically beyond this purely formal urban
definition, and is comparable in size to many UK regional cities. The majority of NI
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Figure 2. 2001 Census population of Northern Ireland in 100 m grid cells.
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outside Belfast is rural and sparsely populated, especially the rural areas in the west
and south. This translates into a gridded population distribution that is highly
skewed—a majority of populated 100 m cells have fewer than 10 people in them and
a majority of all the NI surface area is empty of people. Highly populated cells with
80 or more people are comparatively rare. NI thus offers a contrasting and complex
environment in which to evaluate the population models; it has a major city but also
sparsely populated areas which are typical of many regions elsewhere in the UK,
Ireland, and beyond. These contrasts are very evident in figure 2. The true population
and modelled results for Belfast are shown in more detail in section 5 below.

Our analysis uses a Visual Basic implementation of the gridded population algo-
rithm called SurfaceBuilder which interprets a variety of ASCII input file layouts
containing X, Y (coordinate) and Z (count value) fields. The definition of a particular
model run, in terms of all the selected model parameters, may be stored and retrieved
for reuse. The user is able to export the completed model for mapping, as has here been
conducted using ArcGIS. The compiled SurfaceBuilder program may be downloaded
from the software link at http://www.public.geog.soton.ac.uk/users/martindj/.

SurfaceBuilder was used to construct a series of gridded population models for NI,
using grid cell sizes of 25 m and 50 m, which have subsequently been aggregated to
match the cells for which true counts are available. These have been created separately
from OA centroids and unit postcodes. A raster mask has been used to ensure that,
subject to the cell resolution, population counts from a centroid may be redistributed
only to cells falling within the appropriate OA. The use of a mask in this way enforces
local mass preservation, whereby the total population allocated to each zone is con-
strained to its true total. The alternative, which does not use any masking values, will
preserve the total population of the study area (and of any settlement surrounded by
unpopulated cells) and is termed global mass preservation; both options are evaluated.
Modelling scenarios were run using a range of kernel widths and distance-decay
functions so as to better understand their impact on the accuracy of the gridded
population estimates. We have considered a large range of parameter combinations
and selected models for presentation here which span typical values used in previous
studies using comparable UK datasets based on this method. A more limited analysis
based on unit postcodes was undertaken to explore the implications of changing the
spatial scale of the input centroids.

Two reference distributions were also generated. Firstly, population counts were
allocated entirely to the cells containing their OA centroids, which equates to a
representation using only centroid locations with no redistribution. Secondly, a zonal
model was created which allocates the population of an OA evenly across all the raster
cells assigned to that OA. The latter has the equivalent representational characteristics
to a conventional shaded area map.

The question of the appropriate metric to use to evaluate the utility of the gridded
population models is difficult because it depends on the aim of the analysis and the
type of area in which it is being undertaken. In rural areas it might be appropriate to
know, for example, simply if an area is populated or not. In urban areas a user may be
more interested in the size of the population. A variety of measures were therefore
employed for assessment and table 1 presents a summary of the model variants which
are tabulated in the following section. One measure was the extent to which the
pattern of populated and unpopulated cells was accurately produced by the algorithm.
However, for areas that were populated, and for Belfast DC in particular, numeric
indicators such as mean error, standard deviation, and root mean square error
(RMSE) were selected as being more appropriate. For a range of models different
o« and k parameters were assessed, as were local and global mass preservation.
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Table 1. Summary of model runs reported in tables 2 7.

Table Coverage* Input Parameters Parameters varied ~ Outcome measures
data® held constant
2 NI OA none mass preservation,  presence/absence
3 NI postcode search radius, of population
distance decay,
cell size
4 NI OA cell size (50 m) mass preservation, mean error, standard
5 Belfast OA cell size (50 m)  search radius, deviation, root mean
6 Belfast OA cell size (25 m)  distance decay square error
7 NI postcode  cell size (50 m)

Note. In tables 2—7 local mass preservation refers to the constraint of population redistribution
within the same zone; in global mass preservation, totals are constrained only within the entire
study area.

@ NI—Northern Ireland.

b OA—output area.

We have selected parameter ranges which reflect the typical applications and data
reviewed in section 2 and which cover the principal interactions between parameters.
These considerations inform the presentation of results set out in more detail below.

5 Results

Here, we first examine the extent to which the centroid, zonal, and gridded models
correctly predict populated and unpopulated 100m cells for NI as a whole (tables 2
and 3, section 5.1). We then explore mean error, standard deviation, and RMSE of the
output from the gridded models using varying parameters and input data, for popu-
lated cells for NI as a whole and for Belfast separately (tables 4 to 7, section 5.2).
The tabulation of results that follows is necessarily selective and further tables, present-
ing a wider range of parameter combinations, are presented in the online appendix
(http://dx.doi.org/10.1068/a43485).

5.1 100 m cells—presence or absence of population

Tables 2 and 3 present information on the extent to which different population models
predict which cells in NI are populated or unpopulated using OA and unit postcodes
centroids as inputs, respectively. If 0.5 or more people were identified in a 100 m cell,

Table 2. Presence or absence of population in 100 m cells from output area (OA) centroids.

Model Mass Search ~ Distance  Cell  Percentage correctly
preservation radius, decay, o size
k (m) (m) populated  unpopulated
1 OA centroids—global  na na 100 3.70 99.9
2 OA zones—global na na na 56.8 79.1
3 global 250 2.00 25 30.8 97.3
4 local 250 2.00 25 30.2 97.4
5 global 500 1.00 50 422 91.5
6 global 500 2.00 50 39.9 93.0
7 local 500 1.00 50 40.8 91.8
8 local 500 2.00 50 38.9 93.2

Note. na—not applicable
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Table 3. Presence or absence of population in 100 m cells from postcode centroids.

Model Mass Search Distance Cell Percentage correctly
preservation radius, decay, o size
k (m) (m) populated  unpopulated
1 global 500 0.25 50 66.3 79.9
2 global 500 1.00 50 67.3 81.5
3 global 500 2.00 50 65.8 83.7
4 local 500 0.25 50 65.8 80.4
5 local 500 1.00 50 66.3 82.1
6 local 500 2.00 50 64.9 84.4

then this was rounded to 1 and the cell was deemed to be populated. This criterion was
also followed for the transfer of zone-based counts to cells and, for some zones, the
count of persons per 100 m square was less than 0.5. This explains why, in table 2, OA
zones (model 2) has a positive value for percentage correctly unpopulated. Modelling
was undertaken on 50 m cells that were then aggregated to 100 m cells. The o and &
parameters were allowed to vary as well as the cell size at which modelling was
performed. The metrics used were the percentage of populated 100 m cells that were
correctly modelled as being populated and the percentage of unpopulated 100 m cells
that were also correctly modelled as being unpopulated.

The results are complex and need careful interpretation. Table 2 shows how gridded
models offer a tradeoff between the characteristics of zonal and centroid representa-
tions. Using the indicator of the percentage of cells correctly identified as being
unpopulated, model 1 (centroids) might be seen as being the most successful, with its
99.87% accuracy. However, it is the weakest model in identifying populated 100 m cells.
This is because it concentrates OA populations at OA centroids and overestimates
empty cells. At the other extreme model 2 (zonal) allocates OA populations across
all OA zones. In spreading the population like this, it correctly populates nearly 57%
of 100 m cells—a higher figure than the gridded population models in models 3—-8—
but at the expense of incorrectly populating many empty cells. All the gridded models
lie between these two extremes. They have a poorer performance in correctly predicting
populated cells than model 2 but are more accurate than model 1 in this respect;
and they are not as accurate as model 1 in predicting unpopulated cells but outperform
model 2 in this respect. In these aspects, the gridded population models are more
accurate overall than models 1 and 2. There are clear differences between models 3 8.
In correctly predicting populated cells, models 5—-8 (k= 500 m, cell size = 50 m)
perform better than models 3 and 4 (k = 250 m, cell size = 25 m), indicating that cell
size and the search radius k parameter are important. Varying the distance-decay
parameter o in models 5—8 while k and cell size are held constant, produces differ-
ences between the models of around 3 percentage points, suggesting that cell size and &
(either singly or combined) are more important than o. There is no evidence to suggest
that local mass preservation is superior, although differences are small.

Table 3 represents a change of spatial scale, being based on unit postcodes. Models
2 and 3 (table 3) can be directly compared with models 5 and 6 (table 2) and models 5
and 6 (table 3) can be directly compared with models 7 and 8 (table 2). The models in
table 3 perform worse than those in table 2 in predicting unpopulated cells. However,
the table 3 models are more accurate in predicting populated cells. This can be
attributed primarily to the smaller size of unit postcodes, which are closer in size
to the 100 m cells on which population is being modelled than the larger OAs.
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Figure 3. Belfast District Council: (a) ‘true’ census population counts and (b) modelled counts
for 100 m cells from output area counts using local mass preservation: search radius 500 m,
distance decay 2, 50 m grid cells.
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However, the greater number of centroid locations means that overall there is more
spreading of population into areas that are truly unpopulated.

Figure 3 shows (a) ‘true’ counts and (b) modelled counts for 100 m cells for Belfast
DC. Model 12 from table 4 is used here as representative of the appearance of the
gridded models. The two maps display similar spatial patterns although, as expected,
the maximum modelled counts are much smaller than the maximum true counts.
Inevitably, the modelling procedure does not capture well high-intensity populations
in individual 100m cells which are not captured by OA data.

5.2 Population counts

We now turn from the presence or absence of population in grid cells to the estimation
of population counts. OA zone counts per 100 m cell were obtained by overlaying
vector OA boundaries and vector 100 m cells. The centroid model achieves an overall
mean error of —258.35 and RMSE of 271.78, compared with the zonal model values of
—8.78 and 156.85, respectively. As might be expected, the choropleth zonal model
produces lower RMSE values overall than the centroid model, essentially because the
centroid model allocates population into far too few cells. The zonal model, although
both overestimating and underestimating population densities in different places
provides a better overall coverage than the centroids.

Table 4 shows the prediction errors (predicted — observed) where modelling was
undertaken on 50 m cells which were then aggregated to 100 m cells for NI as a
whole. The mean error closest to zero is in model 9 (local mass preservation,
k=250m, o =2). The smallest RMSE was for model 6 (global mass preserva-
tion, kK = 500 m, o = 2). There are not major differences between the outputs from
the models in table 4, indicating that the outcomes are not very sensitive to the choice
of « and k, nor indeed to the choice of global versus local mass preservation. Most
errors in the table are small. There is only one error greater than —2000, and only five
in total greater than —1000 : for model 6, for example. When these are excluded, the
RSME drops to 28.086. The largest negative error occurs in a small OA near Belfast
International Airport and is believed to be a single large communal establishment that
is not being modelled effectively. Other specifications were explored for prediction to
25 m cells and then aggregation to 100 m (detailed in the online appendix), but these

Table 4. Prediction errors (prediction — observed) for Northern Ireland: prediction to 50 m cells
and aggregation to 100 m cells.

Model Mass Search Distance Cell Mean Standard RMSE#?
preservation  radius, decay, o size error deviation
k (m) (m)
1 global 250 0.25 50 -7.12 36.77 37.46
2 global 250 1.00 50 —6.20 38.07 38.57
3 global 250 2.00 50 —5.49 41.52 41.88
4 global 500 0.25 50 —10.58 32.96 34.61
5 global 500 1.00 50 —9.60 32.34 33.74
6 global 500 2.00 50 —8.76 32.27 33.43
7 local 250 0.25 50 —6.82 35.71 36.36
8 local 250 1.00 50 —5.81 37.18 37.63
9 local 250 2.00 50 —5.06 40.41 40.73
10 local 500 0.25 50 —10.26 32.56 34.13
11 local 500 1.00 50 -9.54 32.29 33.67
12 local 500 2.00 50 -9.89 32.36 33.56

2 RMSE—root mean square error.
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were no more accurate than the results as tabulated in table 4. The models presented in
table 4 were an advance on the zonal and centroid models in terms of RMSE, although
the picture was more mixed when evaluating the mean error. Further modelling was
undertaken on 50 m cells which were then aggregated to 1km cells and for prediction
to 25 m cells and aggregation to 1 km cells using a 250 m search radius in both
instances. In these cases (again detailed in the online appendix), the RMSE values
are clearly smaller for large search windows and more gradual distance decay func-
tions. The smallest RMSE values were obtained with global, rather than local, mass
preservation.

There are several trends apparent from table 4. Each variant of the gridded model
produces RMSE values much lower than the centroid and zonal representations. The
RMSE values for global and local mass preservation where kK = 250 m are larger for
larger o values. Conversely, the RMSE values for global and local mass preserva-
tion where k& = 500 m are smaller for larger o values. These figures demonstrate the
interactions between (i) spatial variation in the population distribution and (ii) homo-
geneity of zones (here, OAs). A small search radius k with a small distance-decay
parameter o (giving more weight to distant observations than a large o) spreads the
population more evenly than would a small k& with a large «—this latter combination
would concentrate population more densely around the grid cell at the centre of the
kernel. The results suggest that the most accurate predictions are obtained when
the population is spread evenly, but not oo evenly. With a small k£ and large o param-
eter, the population is too densely clustered around centroid locations, whereas with a
large k and small o, the population is too evenly spread out. If k and o parameters are
both large or both small, an acceptable balance appears to be achieved.

Table 5 gives the prediction errors just for Belfast for prediction to 50 m cells and
aggregation to 100 m cells, while table 6 gives the equivalent figures for prediction to
25 m cells and aggregation to 100 m cells, the latter only for a 250 m search radius.
These tables highlight the ways in which the models perform differently when looking
only at an urban area. The mean error closest to zero across tables 5 and 6 is for
model 3 in table 5 (global mass preservation, £ = 250 m, o = 2) for prediction to 50 m
cells. However, the smallest RMSEs are for local mass preservation models. The small-
est RMSE, for example, is for local mass preservation using k£ = 500 m, o = 2 also for

Table 5. Predication errors (prediction — observed) for Belfast District Council: prediction to 50 m
cells and aggregation to 100 m cells.

Model  Mass Search Distance Cell Mean Standard RMSE?
preservation radius, decay, o size error deviation
k (m) (m)
1 global 250 0.25 50 -17.51 40.95 41.64
2 global 250 1.00 50 —6.50 41.38 41.89
3 global 250 2.00 50 —5.73 45.17 45.53
4 global 500 0.25 50 —11.46 42.51 44.03
5 global 500 1.00 50 —9.98 40.81 42.01
6 global 500 2.00 50 -8.71 39.50 40.45
7 local 250 0.25 50 —7.64 39.74 40.46
8 local 250 1.00 50 —6.67 40.41 40.96
9 local 250 2.00 50 —-5.93 43.30 43.70
10 local 500 0.25 50 -9.71 39.33 40.51
11 local 500 1.00 50 -9.08 38.89 39.94
12 local 500 2.00 50 —8.47 38.74 39.66

2 RMSE—root mean square error.
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Table 6. Prediction errors (prediction — observed) for Belfast District Council: prediction to 25 m
cells and aggregation to 100 m cells.

Model Mass Search Distance Cell Mean Standard RMSE®?
preservation  radius, decay, o size error deviation
k (m) (m)
1 global 250 0.25 25 -7.70 40.68 41.40
2 global 250 1.00 25 —6.72 41.08 41.62
3 global 250 2.00 25 —5.97 44.47 44.86
4 local 250 0.25 25 —8.21 39.08 39.93
5 local 250 1.00 25 —7.23 39.72 40.38
6 local 250 2.00 25 —6.48 42.29 42.78

2 RMSE—root mean square error.

prediction to 50 m cells (model 11 in table 5). There was little benefit in predicting to
25 m cells. The advantages of local mass preservation are more clearly seen in Belfast
than in NI as a whole (compare table 4). This is intuitively correct as urban areas such
as Belfast have smaller OAs in closer proximity than rural areas and thus more
local information is available. In contrast, in rural areas with large OAs where the
population may be heterogeneously distributed, methods that rely too much on local
information may result in reduced prediction accuracy.

Table 7 returns to consideration of the whole of NI, but this time using postcode
centroids as input. The results can be compared with those in table 4. The smaller
mean errors and RSMEs in table 7 illustrate the importance of the spatial scale of the
input units since they are generally less than those in table 4 where the analysis starts
with OAs. It is better to begin with centroids representing zones that are nearer in size
to the regular grid for which estimates are being made.

Table 7. Postcode data: prediction errors (prediction — observed) for Northern Ireland—prediction
to 50 m cells and aggregation to 100 m cells, local mass preservation to output areas.

Model  Mass Search Distance Cell Mean Standard RMSE?
preservation  radius, decay, o size error deviation
k (m) (m)
1 global 500 0.25 50 —7.31 21.71 2291
2 global 500 1.00 50 —6.49 20.82 21.81
3 global 500 2.00 50 —5.73 19.99 20.79
4 local 500 0.25 50 —5.73 22.11 22.84
5 local 500 1.00 50 —5.13 21.64 22.23
6 local 500 2.00 50 —4.58 21.79 22.27

6 Conclusion

Certain properties of gridded models of population are inherent—for example, the
independence of the arbitrary grid from boundary changes—aiding analysis of pop-
ulation change over time. In most countries, gridded counts are not available as direct
aggregations from individual-level data, so the construction of gridded population
models is necessary to achieve these benefits. Potential benefits such as the preserva-
tion of settlement pattern and the preservation of unpopulated areas are dependent to
a significant extent on the input data and model parameters used, such as grid cell size
and the shape and extent of some spatial redistribution function. Due to the absence of
gridded counts, it is normally impossible to assess the performance of the resulting



1978 D Martin, C Lloyd, I Shuttleworth

models in those situations where they may be of most value. The unique NI grid square
product has provided us with a means of undertaking such an evaluation for the first
time and these findings have relevance to analysis of spatial population distributions
in any context.

Gridded population models offer some generic advantages over centroid and zonal
(choropleth) representations of population, as was shown in table 2. Zonal models
spread the population far too evenly over space and perform more poorly than gridded
models in predicting unpopulated cells. This is a particular weakness for applications
which involve distance to population, such as the transportation or hazard models
considered in section 2, yet zonal representations continue to be the most pervasive
form of population mapping. Representations based on centroids alone concentrate
the population in only a few places and, whilst identifying the largest proportion
of unpopulated cells correctly, perform very poorly in indicating all populated cells.
The use of centroid locations remains common in accessibility modelling, for example
(Langford and Higgs, 2006). Gridded population models lie between these two
approaches, taking some of the strengths of each. Nevertheless, their accuracy in
picking out populated cells is only between 30% and 40%. This does not seem partic-
ularly high, but is perhaps explained as a consequence of real population geographies
which have large numbers of vacant cells or cells with very low population densities—
particularly in rural areas, which fall below the spatial resolution of the available
population data. One of our most important conclusions is to highlight the weaknesses
of the conventional approaches, and this has broad international applicability.

Our analysis also indicates that the accuracy of the gridded models is not, in
general, very sensitive to the model parameters (global versus local mass preservation,
o, k, and cell size) used, with only small variations in diagnostics such as RMSE. A
wide range of parameters will have the effect of concentrating population into truly
populated areas and leaving remote areas unpopulated. However, there are some subtle
differences apparent. Search radius (k) and cell size seem to be more important than
distance decay («), as the results appear to be more sensitive to the choices made about
them than for o (Fotheringham et al, 2002). Identification of populated areas has more
impact than the detailed distribution within these areas. Moreover, there are some
indications that local mass preservation works better than global mass preservation
in densely populated areas. This suggests that users of gridded population models
would do well to consider use of different parameters in urban and rural areas.
However, the spatial resolution of the input centroids appears to be more important
overall than parameterisation of the models. Models based on unit postcodes produced
more accurate results than those based on OAs, the postcodes being much closer
in spatial extent to the cell size of the output model. Spatial scale—specifically the
support in geostatistical terms—seems to be more important than the selection of
model parameters.

In drawing wider conclusions it is also worth considering the importance of place
and spatial population structures. It has already been seen that local mass preservation
techniques seem better suited to urban areas with higher population densities. In urban
areas, for instance, analysts might be more interested in the predicted size of popula-
tions in cells (rather than whether they are populated or not) whereas in rural areas
with low-density populations, there may be greater interest in estimating whether a cell
is populated or not. There might thus be different motives for gridded population
modelling in different places. However, our analysis also suggests that there are differ-
ent challenges. Given the comments about spatial scale above, it is likely that gridded
population models would face significantly greater challenges in areas with geographi-
cally large zones and very sparse populations than in more densely populated places,
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depending on the spatial scale of the grid to which predictions are being made. This
suggests that, instead of a formulaic rule set, analysts need to assess spatial scale
and model parameters flexibly according to geographical context and to assess the
sensitivity of results across a series of models.

Our conclusions also indicate a direction for future research. There is a need to
assess gridded population models wherever data permit, in other more varied geo-
graphical contexts and using a wider range of modelling approaches. A second route,
allied to this, would be incorporate measures of the spatial structure of populations
through the use of geostatistical methods to include more information in the models
and to allow greater sensitivity to the analysis of between-place variation.
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