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We compare Tobler’s pycnophylactic interpolation method with the geostatistical

approach of area-to-point kriging for distributing population data collected by areal

unit in 18 census tracts in Ann Arbor for 1970 to reconstruct a population density

surface. In both methods, (1) the areal data are reproduced when the predicted popu-

lation density is upscaled; (2) physical boundary conditions are accounted for, if they

exist; and (3) inequality constraints, such as the requirement of non-negative point

predictions, are satisfied. The results show that when a certain variogram model, that

is, the de Wijsian model corresponding to the free-space Green’s function of

Laplace’s equation, is used in the geostatistical approach under the same boundary

condition and constraints with Tobler’s approach, the predicted population density

surfaces are almost identical (up to numerical errors and discretization discrepan-

cies). The implications of these findings are twofold: (1) multiple attribute surfaces

can be constructed from areal data using the geostatistical approach, depending on

the particular point variogram model adopted—that variogram model need not be

the one associated with Tobler’s solution and (2) it is the analyst’s responsibility to

justify whether the smoothness criterion employed in Tobler’s approach is relevant to

the particular application at hand. A notable advantage of the geostatistical approach

over Tobler’s is that it allows reporting the uncertainty or reliability of the inter-

polated values, with critical implications for uncertainty propagation in spatial ana-

lysis operations.

Introduction

Population data are used extensively in decision-making processes in a wide range

of social and economic applications, including but not limited to housing, regional
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policy, and health provision (Bracken 1994). Despite the increasing availability of

socioeconomic data at the very high spatial resolution required in urban analysis

and modeling, population microdata are still either suppressed or incomplete due

to confidentiality and the high cost of data collection (Ryan, Maoh, and Kanaroglou

2009). Perhaps the commonly available population data are the summary statistics

of population data reported and mapped in irregular geographic areas (e.g., census

tracts and enumeration districts) and often need to be transformed into a spatial

unit compatible with other data sources (Thurstain-Goodwin and Unwin 2000).

A particular case of such a transformation or estimation is the construction

of a continuous population density surface, which is often favored in the literature

(Tobler 1975, 1979; Goodchild, Anselin, and Deichmann 1993; Langford and

Unwin 1994; Martin, Tate, and Langford 2000; Thurstain-Goodwin and Unwin

2000).

Starting from the conventional approach based on choropleth mapping, var-

ious areal interpolation methods have been used to construct a density surface from

population data. Kernel smoothing, for example, produces a smooth surface that is

free of either abrupt discontinuities along boundaries or the strict assumption of

within-area homogeneity of source data (Martin 1989, 1996). In this approach,

however, the support differences between the source data and the prediction sur-

face are not properly taken into account, because the areal data are collapsed into

their corresponding representative points (e.g., polygon centroids). This transfor-

mation implicitly assumes that the areal unit or support of the population data is

identical to that of the target surface, that is, a point.

In demographic applications of areal interpolation, the absence of empirical

data concerning the actual distribution of population at the target spatial resolution

is a major obstacle for evaluating any model of population density surface (Martin,

Tate, and Langford 2000). Owing to a lack of point-level data, original data repro-

duction—whether a surface model reproduces the original areal data when the

predicted population surface is reaggregated over the spatial units used to collect

population data—becomes an essential requirement for accurate interpolation

(Tobler 1979; Lam 1983). This property of areal interpolation is also known as

the mass-preserving or pycnophylactic condition in the literature.

In addition, a priori knowledge about the smoothness of the population density

surface may be available in the form of a governing equation dictating the smooth-

ness of the interpolated surface; for example, the smoothest possible surface (within

the data constraints) might be preferred. Also, information available on boundaries,

including natural and human made, may significantly affect the resulting popula-

tion density surface. Often neglected, but also substantially effective information

may be available in the form of inequality constraints such as non-negativity or

lower and upper values of the resulting population density surface. With the

exception of Tobler’s (1979) pycnophylactic interpolation method, however, these

additional conditions have not been emphasized in surface modeling; instead,

ad hoc adjustments have been applied, if necessary, to the resulting surfaces.
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While addressing most of these critical issues, Kyriakidis (2004) cast attribute

surface construction as an area-to-point (ATP) interpolation problem within a geo-

statistical framework. This researcher analytically demonstrated that, once appro-

priate assumptions are made on the smoothness of the interpolated surface, the

geostatistical framework includes as particular cases choropleth mapping, kernel

interpolation, and Tobler’s pycnophylactic interpolation method. An appealing

feature of the geostatistical approach, apart from its generality, is that the quality of

the resulting surface is quantified via the prediction error variance associated with

each predicted value. What was not provided by Kyriakidis (2004), however, was a

practical, real-world demonstration of these theoretical connections.

In this article, we include a small empirical application for illustrative pur-

poses, in which geostatistical ATP interpolation is compared with Tobler’s pycno-

phylactic interpolation method for constructing a smooth population density sur-

face from population data collected within arbitrary areal units. We demonstrate

that, upon selection of an appropriate point variogram model in the geostatistical

approach the two interpolation approaches yield very similar density surfaces

within the limits of numerical errors and discretization discrepancies. The impli-

cations of this demonstration are twofold: (1) multiple attribute surfaces can be

constructed from areal data using the geostatistical approach, depending on the

particular point variogram model adopted—that variogram model need not be the

one associated with Tobler’s solution and (2) it is the analyst’s responsibility to

justify whether the smoothness criterion employed in Tobler’s approach is relevant

to the particular application at hand. As stated, a notable advantage of the geosta-

tistical approach over Tobler’s is that it allows for the assessment of the uncertainty

or reliability of the interpolated values, with critical implications for uncertainty

propagation in spatial analysis operations.

Several geostatistical methods have already been proposed for constructing an

attribute surface from areal data. A review article by Gotway and Young (2002)

provided a synthesis of geostatistical and deterministic approaches (including

Tobler’s pycnophylactic method) to surface construction from areal data; however,

no formal analytical link was established between the logarithmic variogram used

in geostatistics and the Laplacian smoothness criterion of Tobler’s method. More re-

cently, Goovaerts (2006) and Gotway and Young (2007) developed non-Gaussian

geostatistical methods for surface construction from areal source data reported over

irregular polygons; the former involves the application of Poisson’s kriging for

dealing with count data, while the latter is a generalization of the former that ac-

counts for trends linked to pertinent covariates via a generalized linear model. Last,

particular attention should be drawn to the recent work of Goovaerts (2008), who

developed an iterative approach for estimating the variogram of the underlying at-

tribute surface from areal source data, based on a postulated functional form of that

point variogram model.

We believe that our work in this article complements nicely the approaches

mentioned above. By illustrating the equivalence of the geostatistical approach
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with Tobler’s method in a real-world context, we hope to make a stronger case for

the geostatistical approaches, which are not limited to a particular variogram model

and allow prediction uncertainty assessment. In essence, we view our contribution

to the literature as being a call for Tobler’s method to be linked more to the Lap-

lacian smoothness criterion adopted than to the pycnophylactic constraints con-

sidered, because there are multiple approaches by which those constraints can be

met in surface reconstruction.

Methodology

In this article, population density is conceptualized as a continuous attribute sur-

face {z(u), uAO}, in short [z], where z(u) denotes the unknown attribute value at a

generic location with coordinate vector u within a domain O. The task is to re-

construct the unknown surface [z] from a set of K of areal data

zv ¼ ½zðvkÞ; k ¼ 1; . . . ;K �T , where vk denotes the k-th areal unit or support with

centroid coordinate vector uk and otherwise arbitrary shape, size, and orientation.

Notation-wise, we use |vk| to denote the measure (area in two-dimension [2D]) of

the kth support vk. Any observed areal datum z(vk) is assumed to stem from a con-

volution of the unknown point attribute values of surface [z] with a known sam-

pling function gk(u), as zðvkÞ ¼
R

u2O gkðuÞzðuÞdu. Function gk(u) quantifies the

contribution of a generic point attribute value z (u) to the kth areal datum z(vk) and

could simply be an indicator point-in-polygon function, a point-in-a-feature mem-

bership function, or a more elaborate distance decay function quantifying proxim-

ity to, say, a city center.

Based on the K areal data, we seek to construct an interpolated attribute surface

fẑðuÞ; u 2 Og, in short ½ẑ�, under the premise that the smoothness or regularity of

the true unknown surface [z] is governed by a deterministic function. Following

Tobler (1979), we consider the particular case of Laplace’s partial differential

equation (PDE) as the governing equation of the solution surface; in principle,

however, one could make different assumptions regarding the smoothness of the

underlying surface depending on the particular application. For computing pur-

poses, the interpolated attribute surface [z] is typically approximated by a finite set

of P attribute values fzðupÞ; p ¼ 1; . . . ; Pg located on a regular grid. We then seek

to predict or interpolate P unknown attribute values fẑðupÞ; p ¼ 1; . . . ; Pg from the

K areal data, where ẑðupÞ denotes the predicted attribute value at the pth disc-

retization location. Both the unknown zðupÞ and the predicted ẑðupÞ attribute val-

ues are assumed to be representative of a fixed cell cðupÞ; for the remainder of this

article, we assume a unit cell size jcðupÞj ¼ 1, 8p.

Tobler (1979) formulated the construction of a population density surface as

the discrete solution to Laplace’s PDE, subject to several constraints or conditions:

(1) a set of K linear equality constraints forcing the interpolated surface to reproduce

the K areal data when the values of that surface are aggregated within their re-

spective supports, (2) a set of P inequality constraints dictating that the discretized
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solution surface cannot attain negative values, and (3) boundary conditions, either

Dirichlet (known attribute values on the boundary) or Neumann (known normal

derivatives on the boundary), enforced at a set of discrete boundary locations.

Tobler (1979) solved this problem iteratively using a finite-difference scheme,

whereby the attribute values at discretization nodes are readjusted under the

pycnophylactic constraint so that the value at each node is the average of its

neighbors—a consequence of assuming Laplace’s PDE to dictate the surface

smoothness. This readjustment amounts to minimizing the sum of the directional

or partial derivatives of the attribute surface at any discretization grid node.

In what follows, we describe a framework for approximating a continuous

attribute surface from areal source data based on the premise that the smoothness of

that underlying surface is known. The framework is general; we do not assume that

the smoothness of the attribute surface is necessarily the one dictated by Laplace’s

PDE.

Pycnophylactic interpolation with a priori surface smoothness

In a continuous setting, the unknown solution surface [z] can be expressed as a

convolution of a continuous punctual load intensity ½f � ¼ ff ðu0Þ; u0 2 Og with a

kernel or Green’s function Gðu; u0Þ as

zðuÞ ¼
Z 1
�1

Gðu; u0Þf ðu0Þdu0; u 2 O ð1Þ

where the Green’s function G(u, u0) quantifies how an attribute value placed in

isolation at point location u0 is ‘‘dissipated’’ to any other location u within the

domain O (Greenberg 1971; Briggs 1974). The unknown attribute value z(u) can

therefore be interpreted as an infinite weighted superposition of Green’s functions

G(u, u0), with source values f (u0) in the study domain O playing the role of weights.

We postpone the discussion on the choice of a particular functional form for the

Green’s function to a subsequent section. For now, one simply needs to assume that

the Green’s function is known a priori. As one would expect, however, it is this

Green’s function that ultimately dictates the smoothness of the unknown point

attribute surface, for a given or fixed set of areal source data (including their

supports).

In the finite case with K point sources ff ðukÞ; k ¼ 1; . . . ;Kg, the discrete

approximation to the continuous surface in equation (1) is written as

z�ðupÞ ¼
XK

k¼1

Gðup ; ukÞf ðukÞ þ x; p ¼ 1; . . . ; P ð2Þ

(Kitanidis 1999), where z�ðupÞ not ẑðupÞ denotes the predicted attribute value at

discretization location up from point, not areal, source data. Term x denotes the

solution to a homogeneous boundary condition, where the form of the free-space

Green’s function Gðup ; u
0
kÞ is determined by the shape (or dimensionality) of the

study domain O. This solution yields a discrete approximation fz�ðupÞ; p ¼ 1; . . . ; Pg
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to a solution surface ½z�� ¼ fz�ðuÞ; u 2 Og as long as the Green’s function satisfies the

following condition: �H2½Gðup ; ukÞ� ¼ dðup ; ukÞ for k 5 1, . . ., K, where d( � ) denotes

the Dirac delta function (Barton 1989).

When equation (2) is used to predict attribute values at observation points, that

is, when up coincides with uk, interpolation ensures reproduction of the corre-

sponding datum z(uk) as

XK

k 0¼1

Gðuk ; uk 0 Þf ðuk 0 Þ þ x ¼ zðukÞ; k ¼ 1; . . . ;K ð3Þ

under the constraint that the sum of the point source terms f ðuk 0 Þ be equal to zero,

because of the infinite boundary condition (Kitanidis 1999)

XK

k 0¼1

f ðuk 0 Þ ¼ 0 ð4Þ

The two constraints in equations (3) and (4) (data reproduction and a boundary

condition at infinity) constitute a constrained system of equations. The solution of

this system of equations yields the (K11) coefficients ff ðukÞ; k ¼ 1; . . . ;K ; xg of the

point source interpolator in equation (2). The resulting surface [z�] constitutes a

solution to the PDE corresponding to the particular Green’s function G(u, u0), sub-

ject to the prescribed boundary condition at infinity, except at source data locations

where singularities occur (Kitanidis 1999). As previously noted, the form of the

Green’s function is yet to be specified.

When sources represent areal data fzðvkÞ; k ¼ 1; . . . ;Kg rather than point

values fzðukÞ; k ¼ 1; . . . ;Kg, one needs to replace the point-to-point Green’s func-

tion G(up, uk) in equations (1)–(3) by an integrated ATP Green’s function

Gðup ; vkÞ ¼
R

u2O gkðuÞGðup ; uÞdu; in essence, the Green’s function G(up, vk) asso-

ciated with an isolated source support vk is the sampling-function-weighted integral

of the Green’s functions G(up, u) associated with individual point supports uAvk.

The solution of the new constrained system of equations yields the coefficients

ff ðvkÞ; k ¼ 1; . . . ;K ; xvg for surface construction based on the K areal data. The

discrete approximation of the resulting surface ½ẑ� is derived from a modified

version of equation (2) as

ẑðupÞ ¼
XK

k¼1

Gðup ; vkÞf ðvkÞ þ xv ð5Þ

and ensures areal data reproduction; that is, it satisfies the pycnophylactic con-

straint (Kyriakidis 2004). In addition, the resulting surface satisfies the PDE corre-

sponding to the Green’s function adopted only outside the support of each areal

datum (Matheron 1971), but provides the closest possible approximation to a so-

lution surface under the K areal data reproduction constraints.
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Equivalence with dual kriging

It is rather straightforward to identify equation (2) with the dual form of ordinary

kriging with a known, and not necessarily stationary, variogram (or generalized

covariance). Generally speaking, kriging is a family of geostatistical spatial inter-

polation algorithms with both a deterministic and a stochastic interpretation; its

dual form is the expression linking kriging and spline interpolation, and the reader

should consult Goovaerts (1997), Kitanidis (1997), or Chilès and Delfiner (1999)

for further details. In equation (2), the supports of both source and target (un-

known) data represent points; hence, the nonstationary Green’s function G(up, uk)

plays the role of a nonstationary generalized covariance between a target point up

and a source point uk. Along the same lines, equation (5) is the dual form of

ordinary kriging when point source data are replaced with areal support data, also

termed ATP kriging (Kyriakidis 2004). In this case, the nonstationary Green’s

function G(up, vk) plays the role of a nonstationary generalized covariance bet-

ween a target point up and a source support vk. In equation (2), the point source

term f (uk) plays the role of a dual point-to-point kriging weight, whereas in equa-

tion (5), the areal support source term f (vk) plays the role of the dual ATP kriging

weight.

Up to this point, we have shown that pycnophylactic interpolation can be

readily performed once a Green’s function or solution kernel has been identified for

the particular PDE and the boundary value problem at hand; we have not dis-

cussed, however, the particular form of that kernel. This is the equivalent problem

of identifying an appropriate point variogram model for performing point-to-point

or ATP kriging in a geostatistical framework.

Green’s function, Laplace’s PDE, and the logarithmic variogram model

The choice of a particular functional form for the Green’s function depends on the

smoothness assumption postulated for the unknown surface [z]; it is this smooth-

ness that a particular PDE adopted for [z] furnishes. It is well-known that for the

diffusion PDE the associated Green’s function is the classical Gaussian kernel. The

only difference between the Green’s function and an ordinary (e.g., Gaussian) ker-

nel is that the former changes depending on where in the domain O the source

location u0 is situated (e.g., close to boundaries). In other words, boundary condi-

tions are embedded in the Green’s function, hence, the nonstationary notation

G(u, u0) instead of G(u� u0). In the case of a boundary at infinity, a Dirichlet-type

boundary condition is equivalent to a Neumann-type boundary condition, and one

can then define a free-space Green’s function whose derivatives vanish as u moves

infinitely far from a source location u0.

Generally speaking, the Green’s function for a boundary value problem cannot

be expressed analytically, because either the problem has no solution or the so-

lution is not unique (Barton 1989). Only in particular cases of homogeneous

boundary conditions and for geometrically simple domains can one derive analyti-

cally the Green’s function associated with a PDE and a boundary value problem.
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More specifically, that Green’s function, if it exists, can be written as

Gðu; u0Þ ¼ G0ðu; u0Þ þGRðu; u0Þ, where G0( � ) and GR( � ) denote, respectively, the

free-space Green’s function and the region-dependent Green’s function (Kantoro-

vich and Krylov 1958; Greenberg 1971; Barton 1989; Chilès and Delfiner 1999).

The free-space Green’s function is a particular or fundamental solution to the

boundary value problem given in equation (2) when boundary conditions are

specified at infinity. In this case, the solution is independent of any boundary con-

dition, hence, independent of location and just a function of distance (isotropic); its

mathematical form depends on the dimensionality of the problem (Roach 1970;

Greenberg 1971; Barton 1989).

The Green’s function for the case of Laplace’s PDE in two dimensions is a

logarithmic function of distance; see, for example, Greenberg (1971):

G0ðu; u0Þ ¼ G0ðjju� u0jjÞ ¼ � 1

2p
logðjju� u0jjÞ ð6Þ

where ||u� u0|| denotes the norm of vector u� u0. Note that the Green’s function

for a biharmonic PDE in two dimensions, a case also considered in Tobler (1979),

involves the logarithmic distance and the distance squared: ||u� u0||2 log

(||u� u0||); see, for example, Selvadurai (2001).

Equivalence with the logarithmic variogram model

Equation (6) corresponds to the geostatistical notion of a logarithmic generalized

covariance function, a logarithmic variogram model in simpler terms, defined

as: cðjju� u0jjÞ ¼ B� gðjju� u0jjÞ, where B denotes an arbitrary constant and

g(||u� u0||) denotes an ordinary variogram function (Matheron 1971; Kitanidis

1999). The reader should consult Journel and Huijbregts (1978), Kitanidis (1997),

Chilès and Delfiner (1999), and Wackernagel (2003) for more details on general-

ized covariance functions. It is this equivalence that behooves us to review briefly

hereafter the logarithmic variogram model and its properties, little known in the

geographical spatial analysis literature.

More precisely, the logarithmic variogram model, also known as the de Wijsian

or de Wij model in geostatistics, is defined as

gðhÞ ¼ 3a logðjjhjjÞ for 0 � a < 1 and jjhjj 6¼ 0 ð7Þ

(Krige 1978; Rendu 1981; Chilès and Delfiner 1999), where the parameter a is

associated with the pure dispersion state of the phenomenon under study and is

independent of the data support (Matheron 1971). In a logarithmic plot of the

de Wijsian variogram model, where the variogram values are plotted against

the logarithm of lag distances, the slope of the linear model is determined by the

absolute dispersion a, and this value becomes unity for a process with a spatially

random distribution (Krige 1978; Wackernagel, Thiery, and Grzebyk 1999). Plots of

the logarithmic variogram model with different a parameters are shown in both

linear and log scale in Fig. 1.
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From a practical point of view, it is important to note that the punctual de

Wijsian model in equation (7) becomes inapplicable for small distances, because

log (||h||) approaches to �1 as the distance ||h|| tends to 0. Indeed, the de

Wijsian model is not the variogram of a random function but rather a distribution or

a random measure at the point level (Matheron 1971). This indicates that the de

Wijsian model can represent only properties of samples with support of finite

dimension, and only as a regularized variogram (pertaining to nonpoint supports,

such as pixels). Regularized variograms are generally approximated via numerical

integration, and analytical expressions are only available for selected models in a

limited domain (Matheron 1971; Journel and Huijbregts 1978; Rendu 1981).

Kitanidis (1999) suggests an alternative form of the regularized de Wijsian

variogram model: gðhÞ ¼ 3a log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjhjj2þk2
p

k

� �
where k is a microstructure parameter

interpreted as the radius of curvature of the interpolated function at any observation

location. The motivation behind this expression is to avoid singularities at observa-

tion locations, and, in practice, one-tenth of the length of the smallest support is

recommended for k.

The logarithmic variogram model has convenient analytical properties that can

be used to compute the dispersion variance; this quantity can in turn be used to

estimate the only parameter of the model, the absolute dispersion a, from the

sample data (Chilès and Delfiner 1999). More precisely, the variance of attribute

values defined on a support v within the entire domain O, denoted as s2ðvjOÞ is

referred to as the dispersion variance and is associated with the following two
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Figure 1. Illustration of logarithmic or de Wijsian variograms with different absolute disper-

sion parameters. The solid lines with circles and x-marks denote, respectively, the de Wijsian

model with absolute dispersion parameters 0.04 and 0.4; the dashed-dotted line denotes

the variogram model with a5 0.9. (a) Plots of de Wijsian variograms versus distance on

log scale. (b) Plots of de Wijsian variograms versus distance.
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observations: the dispersion around the mean value of a set of data collected within

a domain O increases with the dimension of O, and the dispersion within a fixed

domain O decreases as the support size |v| increases. When the de Wijsian model is

considered, the dispersion variance of the attribute values defined on a support v

within the study domain O is analytically derived by the ratio between the size of

the support |v| and that of the domain |O| as

s2ðvjOÞ ¼ gðO;OÞ � gðv; vÞ ¼ 3a log
jOj
jvj

� �
ð8Þ

where g(O,O) denotes the average point variogram values over the entire region O,

quantified as gðO;OÞ ¼ 1
jOj2
R

u2O
R

u02O gðu� u0Þdudu0, and gðv; vÞ ¼ 1
jvj2
R

u2v

R
u02v g

ðu� u0Þdudu0 is the average point-support variogram values within the support v. It

should be noted, however, that this condition is quite restrictive because it requires

geometrically similar supports within the study region O.

The above relationship (the de Wijsian formula) implies strong self-similarity:

the variance of the small support v within the large support O depends only on the

ratio |O|/|v|, regardless of the actual scale. This principle of strong similarity also

allows connecting the de Wijsian model to fractals (Chilès and Delfiner 1999). In

addition, once the experimental variance ŝ2
Z is computed from the sample data and

is used as an estimate of the dispersion variance, the absolute dispersion can be

derived as

3â ¼ s2ðvjOÞ
logðjOj=jvjÞ �

ŝ2
Z

logðjOj=jvjÞ ð9Þ

(Wackernagel, Thiery, and Grzebyk 1999), where 3â denotes the estimated value

of absolute dispersion.

Accounting for boundary conditions and non-negativity constraints

Regardless of the particular Green’s function associated with PDEs, such equations

are typically solved subject to boundary conditions; indeed, Tobler’s Laplacian

smooth pycnophylactic interpolation involves a boundary condition as an input.

The effect of boundary conditions on the construction of a smooth surface varies

with application, but the presence of a physical boundary is likely to influence the

interpolation results. In demographic applications, for example, the estimation of

the spatial distribution of population density is expected to be different from one

that does not consider boundary conditions; in the former case, the smoothness of

the resulting surface is affected at locations not only nearby the boundary but also

within the region’s interior.

In the geostatistical approach, one can account for boundary conditions by

assigning appropriate values, either known attribute values (for a Dirichlet-type

condition) or known attribute derivates (for a Neumann-type condition), to a set of

locations discretizing the boundary of the study domain. These fictitious additional

point data can then be accounted for in the interpolation procedure via cokriging,
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after defining appropriately the covariances between boundary locations and areal

source supports, based, once again, on the postulated variogram model of the point

attribute surface (Yoo and Kyriakidis 2008). The calculation of the corresponding

prediction error variances follows similar modifications, and accounts for both the

original areal source units and the set of points used to discretize a domain

boundary.

Another attribute constraint in demographic applications is the non-negativity

of predictions, because negative density values have no physical meaning. In

Tobler’s interpolation method, the non-negativity of the solution surface is enforced

via an iterative procedure that prevents negative predictions simultaneously with

mass-preservation and fidelity to boundary conditions. In the geostatistical frame-

work, inequality and equality constraints can be accounted for by ATP kriging. Yoo

and Kyriakidis (2006), for example, applied quadratic programming algorithms to

ATP kriging with various types of inequality constraints, while accounting for

support differences between source data and target predictions and satisfying the

pycnophylactic constraint.

Quadratic programming algorithms, however, do not always converge to an

optimal solution, particularly when global constraints are imposed or an un-

bounded variogram like the de Wijsian model is used. For these reasons (especially

the latter), an iterative cokriging approach was used in the current study to ensure

non-negative predictions. Initially, a set of prediction locations with negative

population density obtained from ATP cokriging is identified. Then, the quadratic

programming algorithmsare selectively applied to any areal support containing

such negative predictions. This selective application of the quadratic programming

algorithms for handling the non-negativity constraint is specific to the problem at

hand and does not guarantee convergence, although it allows us to take into

account support differences and to satisfy the pycnophylactic condition. The

biggest disadvantage of this geostatistical approach lies in the construction of

confidence intervals for the final predictions: although the actual predictions are

guaranteed to be non-negative, this is not true for the entire conditional distribution

modeling the uncertainty about the unknown point attribute value given the areal

data (Yoo and Kyriakidis 2006).

Case study

The case study uses population data collected over irregular polygons to demon-

strate empirically that the population density surface obtained from the geostatis-

tical approach using a logarithmic generalized covariance function is very similar

to that obtained from Tobler’s Laplacian smooth pychnophylactic interpolation.

Population data were collected in 1970 for K 5 18 census tracts in Ann Arbor,

Michigan, and were used by Tobler (1979). Here, we use population densities

(rather than counts) at the census tract level as areal data, and they are shown in

Fig. 2a with a choropleth map. Univariate statistics of the population density data at
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the census tract level are presented in Fig. 2b via a histogram; the average

population density at the census tract level is 68.94, and the variance is 53.182;

all density values are between 15.87 and 182.36.

Population density surfaces are constructed using the geostatistical approach

and Tobler’s approach for the case of an unbounded domain where the boundary

condition is implicitly placed at infinity (see section ‘‘Unconstrained population

density surface’’) and for the case of a Dirichlet-type boundary condition where

zero population density is known outside the study region together with a non-

negativity constraint (see section ‘‘Constrained population density surface’’). In all

cases, we discretize the solution surface using a (73 � 73) regular grid with a

(11 � 11) cell size; this grid specification is fairly close to that of the original work

by Tobler (1979). Generally speaking, the quality of interpolation relies on the

discretization scheme, but the current choice of discretization is inconsequential

because the main goal of this study is to examine the relative differences between

the resulting density surfaces. All results obtained via Tobler’s interpolation method

involved 400 iterations of the averaging processes.

As mentioned in the previous section, the variogram model corresponding to

the free-space solution of Laplace’s equation in 2D is the de Wijsian model, which

is parameter free except for the absolute dispersion, determined solely by the

variance of logarithmic attribute values and the geometric configuration of the

source supports. In our case, however, census tracts are irregular and of unequal

size, hence, there is no unique logarithmic ratio value log (|O|/|v|) to use in

equation (9); instead such logarithmic ratios range from 1.87 to 5.27 with a mean

of 3.21. Similar to practical demonstrations on the use of the de Wijsian variogram

for different support sizes (Krige 1978), we adopt the mean ratio value as a
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Figure 2. (a) Choropleth map representation of population density at the census tracts in Ann

Arbor (1970). (b) Histogram and summary statistics of the mean population density values at

census tracts.
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representative geometric configuration. Based on a variance of logarithmic popula-

tion density 0.72 computed from the K 5 18 areal data, the absolute dispersion is

approximated from equation (9) as 3a � 0.72/3.21 5 0.22. Note that ATP ordinary

kriging predictions using the de Wijsian model are independent of the sill (or scale)

parameter, but the corresponding prediction variances are not.

Unconstrained population density surface

In what follows, we aim to reconstruct a smooth surface of population density

under the sole constraint that the original population densities computed over

irregularly shaped geographical regions are reproduced when the values of that

surface are reaggregated within such regions. Using a logarithmic variogram

model, stemming from the Laplacian smoothness criterion of Tobler’s pycnophy-

lactic interpolation, ATP ordinary kriging yields a smoothly varying popu-

lation density surface Fig. 3b. A very similar density surface (Fig. 3a) is obtained
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Figure 3. (a) Tobler’s solution surface under a Neumann-type boundary condition. (b) Area-

to-point (ATP) kriging prediction surface with boundary conditions at infinity. (c) Scatter-plot

of original areal data (population density at the census tract level of Fig. 2a) versus area-

averaged point predictions derived by Tobler’s method (asterisks) and by kriging (squares).

(d) Map of differences between point predictions obtained by Tobler’s interpolation method

(a) and ATP kriging (b).
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via Tobler’s method without enforcing the non-negativity constraint, and using a

Neumann-type boundary condition where zero derivatives of population density

are prescribed along a set of discrete point locations on the boundary. As shown in

Fig. 3c, both density surfaces are pycnophylactic, that is, they reproduce the areal

data when the predicted values are reaggregated within each support. Figs. 3a and

3b indicate that the two interpolated population density surfaces reproduce the

major characteristics of the areal data; high population density at the center of the

study domain in accordance with Fig. 2a, but abrupt changes between tract

boundaries disappear. From a visual inspection, the two maps in Figs. 3a and 3b

appear almost identical to each other. Relatively small differences exist, however,

as is shown in Fig. 3d. Tobler’s method, for example, predicts lower population

density in the north-west part of the study region but higher population densities at

the center (see Fig. 3d); this may be due to the Neumann-type boundary condition

imposed on Tobler’s pycnophylactic interpolation surface.

One of the advantages of the geostatistical approach over Tobler’s approach is

that the former allows the assessment of the uncertainty associated with each point

value of the predicted surface. Figs. 4a and 4b show the maps of ATP ordinary

kriging standard deviations associated with the ATP predictions of Fig. 3b for

different values of absolute dispersion a. As mentioned in the section on ‘‘Green’s

function, Laplace’s PDE, and the logarithmic variogram model,’’ a is the only

parameter of the de Wijsian model which can be used to model the pure dispersion

state of the phenomenon under study. Fig. 4b shows kriging standard deviations

with unity absolute dispersion, that is, a � 1, as an extreme case of spatially

random distribution, and Fig. 4a is the map of kriging standard deviations with a
corresponding to an absolute dispersion calculated from the geometric configura-

tion of the study domain with the estimated variance of population density at the

census tract level; this yields 3a5 0.23. As expected from theory, this parameter

Kriging error
std. dev.

Kriging error
std. dev.

(a = 0.08)

0.54 to 0.69
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0.77 to 0.81
0.82 to 0.85
0.86 to 0.90
0.91 to 1.00

(a)

(a = 1.00)

1.91 to 2.43
2.44 to 2.67
2.68 to 2.86
2.87 to 3.00
3.01 to 3.16
3.17 to 3.56

(b)

Figure 4. Error standard deviations associated with the area-to-point kriging predictions of

Fig. 3b with absolute dispersion a � 0.08 (a) and a � 1 (b).
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does not affect the kriging predictions shown in Fig. 3b, but alters significantly the

uncertainty associated with these predictions, as indicated by the range of kriging

standard deviation values; note the differences in the legend of maps in Figs. 4a and

4b. The interpretation of the kriging standard deviation as a single uncertainty

measure requires some caution, however, because it is only a function of the spatial

configuration of source and target supports and the point covariance model, not of

the actual data values themselves.

Constrained population density surface

To construct a population density surface while accounting for a Dirichlet-type

boundary condition, we use dual ATP ordinary cokriging using the 18 areal data

with a total of 283 additional points along the edge of the study area. The resulting

prediction surface is shown in Fig. 5b, along with the corresponding Tobler’s

solution surface for comparison in Fig. 5a. In both cases, the predicted population

(a) (b)

(c) (d)

Figure 5. Population density surface derived from Tobler’s interpolation method (a) and from

area-to-point (ATP) cokriging (b), both under a Dirichlet-type boundary condition. (c) Scatter

plot of original areal data (of Fig. 2a) versus area-averaged point predictions derived by

Tobler’s method (asterisks) and by kriging (squares). (d) Map of differences between point

predictions obtained by Tobler’s interpolation method (a) and ATP cokriging (b).
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density values along the domain boundary are very similar to those prescribed by

the boundary condition, here zeros. As shown in Fig. 5c, both density surfaces are

pycnophylactic. The two predicted surfaces are fairly similar to each other, yet

relatively small discrepancies do exist between them as shown in the difference

map of Fig. 5d. Such discrepancies may arise from the differences between the

numerical approximation algorithm used in Tobler’s interpolation and the numer-

ical integration of the de Wijsian variogram model, but it could be also due to the

different locations of discrete points representing the boundary. The differences

range from � 19.67 to 40.99, which are relatively small considering that the total

range of density is � 13.19 to 220.82. The major differences are found near the

border due to the different handling of the boundary condition (Fig. 5d).

The impact of the boundary condition on the construction of a smooth surface

may be better illustrated via the map of kriging error standard deviations shown in

Fig. 6. Relatively smaller standard deviations are observed near the boundary of the

study area compared with those in the map of kriging standard deviations with a

boundary condition at infinity and a5 0.08 (Fig. 4a). Also, relatively smaller

standard deviations are found at the center of study area, where census tracts have

smaller supports.

We also perform surface reconstruction subject to a Dirichlet-type boundary

condition, plus an inequality constraint, that of non-negative predicted density

values. Recall that in ATP cokriging prediction without a non-negativity constraint

(Figs. 3b and 5b), the smooth density surface contains some negative values,

although their magnitude is relatively small. To bypass this problem, a two-step

procedure is adopted. Initially, a set of prediction locations with negative population

Kriging error std. dev.
under a Dirichlet-type BC

0.54 to 0.62
0.63 to 0.67
0.68 to 0.73
0.74 to 0.77
0.78 to 0.81
0.82 to 0.85

Figure 6. Error standard deviations associated with the area-to-point cokriging predictions

subject to a Dirichlet-type boundary condition, shown in Fig. 5b.
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density values is identified, and then the quadratic programming algorithms are

selectively applied to any areal support containing such negative predictions.

Unfortunately, quadratic programming algorithms converge at only three among

four census tracts; the updated final results are shown in Fig. 7b. This selective

application of quadratic programming algorithms for handling the non-negativity

constraint is specific to the problem at hand and does not guarantee convergence; it

allows us to take into account support differences and to satisfy the pycnophylactic

condition. Fig. 7a shows the corresponding density surface constructed using

Tobler’s approach for comparison. The two predicted surfaces are fairly similar to

each other, yet relatively small discrepancies do exist between the two. Again, such

differences are most likely due to the different discretization schemes used by the

two methods to account for the particular (here Dirichlet) boundary condition.

Last, we perform ATP cokriging, subject to a Dirichlet-type boundary condi-

tion, using alternative, judiciously selected point variogram models to assess the

impact of the choice of that model on the kriging-derived solution surfaces. These

models (shown in Fig. 8) were selected based on their similarity, particularly in

terms of their shape near the origin, to the de Wijsian model, and they include (1)

an exponential model with effective range 100 distance units and sill 0.85; (2) a

spherical model with effective range 100 distance units and sill 0.85; and (3) a

Gaussian model with effective range 300, partial sill 1.05, and a very small nugget

effect; this model’s shape near the origin gradually deviates from that of the de

Wijsian model.

The alternative kriging-derived surfaces (not shown) were compared in terms of

their correlation coefficient, mean absolute error (MAE), and root mean squared

error (RMSE) to Tobler’s solution surface derived under the same boundary

condition; the results are summarized in Table 1. The correlation coefficient

between the alternative kriging prediction surfaces and Tobler’s solution surface

decreases as the shape of the point variogram model used in kriging deviates more

Population density
(Tobler's method)

(a) Population density
(Kriging)

–9.07 to 0.00
0.01 to 42.70
42.71 to 75.73
75.74 to 117.68
117.69 to 161.42
161.43 to 218.55

–9.07 to 0.00
0.01 to 42.70
42.71 to 75.73
75.74 to 117.68
117.69 to 161.42
161.43 to 218.55

(b)

Figure 7. Population density surface predicted from Tobler’s interpolation method (a) and

from areal-to-point cokriging (b), both subject to a Dirichlet-type boundary condition and

non-negativity constraint.
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from the shape of the de Wijsian model at the origin. On the contrary, the

corresponding summary measures of dissimilarity (MAE, RMSE) increase.

These results imply that the ATP ordinary kriging with the de Wijsian model

provides the closest approximation to Tobler’s solution surface among other point

variogram models. As stated in the introduction, there is no a priori reason why one

should use a de Wijsian variogram model to begin with. Here, we are illustrating, in

practice, that the geostatistical approach can yield very similar density surfaces

with Tobler’s approach, but one is certainly not restricted to the de Wijsian model

when working within the geostatistical framework.

Discussion and conclusions

As an alternative representation of census-based population data, that is, via

choropleth mapping, we adopt a continuous population density surface model in

which the resulting latent surface is free of arbitrary partitioning effects. Prior

information about the smoothness on the unknown density surface is critical for

reconstructing that surface from known areal data. As expected, the smoothness

assumption imposed on the latent point field has a significant impact on the

predicted surface visually, also reflects the spatial process model corresponding to
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that surface. In particular, when little is known about the attribute surface except

the aggregate source data, a continuous and smooth surface is considered as the

choice of estimation (Tobler 1979; Kitanidis 1999); one can argue that even this is

debatable (Chilès and Delfiner 1999).

In this article, we have demonstrated with a case study that the population

density surface constructed via Tobler’s pycnophylactic interpolation method is

very similar (apart from numerical errors and discretization differences) with the

geostatistical method of ATP kriging using a logarithmic point variogram model.

We have also shown that the geostatistical method can be extended to incorporate

prespecified boundary conditions as well as inequality constraints, if they exist.

Combining such auxiliary information with areal data can improve the quality of

the reconstructed surface, although some modifications of the proposed ATP

kriging are necessary.

The main reason behind this demonstration of equivalence between the two

interpolation methods is to draw attention to the smoothness criterion employed in

Tobler’s method. In other words, we believe it is this Laplacian smoothness

criterion that should be the defining feature of Tobler’s method, not its pycnophy-

lactic property. We justify this statement by highlighting that geostatistical methods

are by construction pycnophylactic and allows for a wide spectrum of smoothness

criteria encapsulated in alternative point variogram models.

As a closing statement, we would like to make a call for users of spatial

interpolation methods in geographical applications involving areal data to address

the question of what is the particular variogram model (smoothness criterion) that

one needs to employ for a particular attribute within a given spatial context or

environment. One could attempt a deconvolution approach, such as the one

proposed by Goovaerts (2008). That approach, however, relies on the notion of

an average distance between supports, which in the case of drastically different unit

shapes is an approximation. In addition, the sole dispersion parameter (a) of the

logarithmic variogram model can be rigorously estimated only if abundant point-

level data (e.g., microdata) exist. In either case, that parameter affects only the

uncertainty in the interpolated surface and might be better estimated using

theoretical (process-based) arguments. In conclusion, the particular smoothness

criterion dictating the spatial distribution of the unknown attribute surface should

be selected on the basis of a spatial process model. One such model is the Laplace

PDE embedded in Tobler’s pycnophylactic interpolation method; other spatial

Table 1 Summary Statistics Comparing Tobler’s Solution Surface with Alternative Kriging-

Derived Surfaces Constructed Using Different Point Variogram Models

Statistic/Model de Wijsian Exponential Spherical Gaussian

Correlation coefficient 0.97 0.96 0.95 0.84

Mean absolute error 7.51 7.75 9.74 18.24

Root mean squared error 9.60 9.97 12.21 23.22
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process models exist, such as fractals or diffusion models. Once such a smoothness

criterion (or equivalently punctual variogram function corresponding to a spatial

process model) is selected, geostatistical methods should be the default choice for

surface construction from areal source data, because they provide a means for

assessing uncertainty in the predicted surface and can be used in a stochastic

simulation mode for uncertainty propagation purposes.

Acknowledgements

The second author would like to acknowledge support provided for this work by the

National Geospatial-Intelligence Agency (NGA) under award HM1582-07-2020.

The input of three anonymous reviewers, which greatly improved the readability of

the original manuscript, is also acknowledged.

References

Barton, G. (1989). Elements of Green’s Functions and Propagation. New York: Oxford

University Press.

Bracken, I. (1994). ‘‘A Surface Model Approach to the Representation of Population-related

Social Indicators.’’ In Spatial Analysis and GIS, 247–59, edited by S. Fotheringham and

P. Rogerson. London: Taylor and Francis.

Briggs, I. C. (1974). ‘‘Machine Contouring Using Minimum Curvature.’’ Geophysics 34,

39–48.

Chilès, J. P., and P. Delfiner. (1999). Geostatistics: Modeling Spatial Uncertainty. New York:

Wiley.

Goodchild, M. F., L. Anselin, and U. Deichmann. (1993). ‘‘A Framework for the Areal

Interpolation of Socioeconomic Data.’’ Environment and Planning A 25, 383–97.

Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation. New York: Oxford

University Press.

Goovaerts, P. (2006). ‘‘Geostatistical Analysis of Disease Data: Accounting for Spatial

Support and Population Density in the Isopleth Mapping of Cancer Mortality Risk Using

Area-to-Point Poisson Kriging.’’ International Journal of Health Geographics 5(52).

Goovaerts, P. (2008). ‘‘Kriging and Semivariogram Deconvolution in the Presence of

Irregular Geographical Units.’’ Mathematical Geosciences 40(1), 101–28.

Gotway, C., and L. Young. (2002). ‘‘Combining Incompatible Spatial Data.’’ Journal of the

American Statistical Association 97(458), 632–48.

Gotway, C. A., and L. J. Young. (2007). ‘‘A Geostatistical Approach to Linking

Geographically Aggregated Data from Different Sources.’’ Journal of Computational &

Graphical Statistics 16(1), 115–35.

Greenberg, M. D. (1971). Application of Green’s Functions in Science and Engineering.

Englewood Cliffs, NJ: Prentice Hall.

Journel, A. G., and C. J. Huijbregts. (1978). Mining Geostatistics. New York: Academic Press.

Kantorovich, L. V., and V. I. Krylov. (1958). Approximate Methods of Higher Analysis. New

York: Interscience Publishers.

Kitanidis, P. K. (1997). Introduction to Geostatistics: Applications in Hydrogeology. New

York: Cambridge University Press.

Reconstructing Population Density Surfaces from Areal DataEun-Hye Yoo et al.

97



Kitanidis, P. K. (1999). ‘‘Generalized Covariance Functions Associated with the Laplace

Equation and their Use in Interpolation and Inverse Problems.’’ Water Resources

Research 35, 1361–67.

Krige, D. J. (1978). Lognormal-de Wijsian Geostatistics for Ore Evaluation, Series in Geostatistics

No.1. Johannesburg, South Africa: Southern African Institute of Mining and Metallurgy.

Kyriakidis, P. C. (2004). ‘‘A Geostatistical Framework for the Area-to-Point Spatial

Interpolation.’’ Geographical Analysis 36(3), 41–50.

Lam, N. S.-N. (1983). ‘‘Spatial Interpolation Methods: A Review.’’ The American

Cartographer 10, 129–49.

Langford, M., and D. J. Unwin. (1994). ‘‘Generating and Mapping Population Density Surfaces

within a Geographical Information System.’’ The Cartographic Journal 31, 21–26.

Martin, D. (1989). ‘‘Mapping Population Data from Zone Centroid Locations.’’ Transactions

of the Institute of British Geographers NS 14(8), 90–97.

Martin, D. (1996). ‘‘An Assessment of Surface and Zonal Models of Population.’’

International Journal of Geographical Information Systems 10, 973–89.

Martin, D., N. J. Tate, and M. Langford. (2000). ‘‘Refining Population Surface Models:

Experiments with Northern Ireland Census Data.’’ Transactions in GIS 4, 343–60.

Matheron, G. (1971). The Theory of Regionalized Variables and its Applications, Centre de
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