Abordagens Espaciais em Estudos de População: Métodos Analíticos e Técnicas de Representação

Conceitos Básicos e Medidas em Demografia Mortalidade e Esperança de Vida

Antonio Miguel V. Monteiro
Silvana Amaral
{silvana@dpi.inpe.br, miguel@dpi.inpe.br}

Taxa Bruta de Mortalidade (TBM)

- Qual o risco de uma pessoa morrer em determinado ano?????
 - Relação entre o total de óbitos e a pop total daquele ano (j)
 - TBM:

$$TBM = \frac{O_j}{P_i}$$
 P_j = população no tempo j O_j = n óbitos em j

- Mas qual população total considerar?
 - JAN: não incluiria os nascimentos que ocorrerão, as pessoas que morrerão ao longo do ano, não podem ter o mesmo peso das que sobreviverão;
 - DEZ: não incluirá as pessoas que morreram ao longo do ano; os que nasceram ao longo do ano não tiveram o mesmo risco de morte.
 - IDEAL: "pessoas-ano"
 - Indivíduo presente do início ao final do ano => integral
 - Os que nasceram/morreram ao longo do ano => fração do ano vivido

Taxa Bruta de Mortalidade (TBM)

- Como nem sempre o IDEAL ("Pessoas-ano") é factível...
- adota-se a <u>estimativa da população total no meio do ano</u>, na suposição de que os nascimentos e óbitos na população ocorram uniformemente no decorrer do ano
 - Sendo um período curto (12 meses), tal suposição não introduz distorções significativas.
- TBM tb para qq conjunto de 12 meses consecutivos

Taxa Bruta de Mortalidade (TBM)

$$TBM = \frac{O_j}{P_j}$$

- Expressa por #óbitos/1000 habitantes
- TBM dependerá de:
 - Intensidade com que se morre a cada idade
 - Probabilidade varia com faixa etária: recém-nascidos e idosos são os de maior risco
 - Distribuição etária proporcional da população

Taxa Específica de Mortalidade (TEM)

- Risco de morte em cada grupo etário
- Quociente entre : total de óbitos/det ano em cada grupo etário e a pop no meio do ano:

$${}_{n}TEM_{x,j} = \frac{{}_{n}O_{x,j}}{{}_{n}Q_{x,j}}$$

x = idade limite inferior do grupo etário;

n = amplitude do intervalo do grupo

j = ano em questão

 $Q_{x,j}$ = População na faixa etária x, para o tempo j

Relação entre TBM e TEM:

$$TBM_{j} = \sum_{x} {_{n}}TEM_{x,j} \frac{{_{n}}Q_{x,j}}{\sum_{x} {_{n}}Q_{x,j}}$$

Total de óbitos no ano:

$$O_{j} = \sum_{x} TEM_{x,j} \cdot_{n} Q_{x,j}$$

• TBM:
$$TBM_{j} = \frac{\sum_{x} {}_{n}TEM_{x,j} \cdot {}_{n}Q_{x}, {}_{j}}{\sum_{x} {}_{n}Qx, {}_{j}}$$

Média ponderada das taxas específicas de mortalidade/fx etária, ou:

$$TBM_{j} = \sum_{x} TEM_{x,j} \frac{{}_{n}Q_{x,j}}{\sum_{x} Q_{x,j}}$$

• TBM depende da intensidade ($_nTEM_{x,j}$) e da <u>distribuição etária proporcional</u>

$$({}_{n}Q_{x,j}/\sum_{x}{}_{n}Q_{x,j}).$$

• Populações com TEMs iguais podem gerar TBMs distintas, certo?

Considere duas Populações :

В

VS

Se TEM (A) > TEM (B) para qq idade,

Então: nível de mortalidade de A é superior ao de B!

Mas dependendo das distribuições etárias proporcionais...

TBM (A) pode ser menor que TBM (B) !!!

CONCLUSÃO:

TBM não é bom indicador para analisar níveis de mortalidade entre populações diferentes (a não ser que a estrutura etária seja similar)

Taxas específicas são mais interessantes, que podem ser estendidas para outras var que influenciam no risco de morrer: sexo, estado conjugal, causas de morte, grupos socioeconômicos, etc.

Taxa da Mortalidade Infantil (TMI)

- Corresponde ao risco que um nascido vivo tem de vir a falecer antes de completar um ano de idade.
- Está implícito neste conceito a ideia de <u>probabilidade</u>.
- Crianças nascidas durante um ano (j), só completarão um ano de idade no ano seguinte, j + 1, a mortalidade infantil entre os nascidos em um ano-calendário ocorrerá durante dois anos consecutivos, j e j + 1.

$$TMI^{(nj)} = \frac{{}_{1}O_{o,j}^{\quad (nj)} + {}_{1}O_{o,j+1}^{\quad (nj)}}{N_{j}} \qquad \begin{aligned} & \text{N = número de nascidos vivos} \\ & {}_{1}\text{O}_{o}^{\quad (nj)} = \text{óbitos de crianças abaixo de um ano, nascidas no ano j;} \\ & \text{j e j + 1 = ano de ocorrência dos eventos} \end{aligned}$$

• Teria que esperar 2 anos para calcular a TMI dos nascidos vivos de j, dificuldade de calcular óbitos/nascidos no ano:

Numerador = óbitos abaixo de 1 ano ocorridos no ano calendário Denominador = # nascidos do mesmo ano

Taxa da Mortalidade Infantil (TMI)

$$TMI_{j} = \frac{{}_{1}O_{o,j}}{N_{j}}$$

 $_{1}O_{o,j}$ = óbitos de crianças abaixo de um ano, independentemente do ano de nascimento

- Não havendo grande diferença no número de nascimentos e/ou grande mudança na mortalidade de crianças abaixo de um ano entre dois anos consecutivos, esta é uma boa medida de mortalidade infantil.
- TMI pode estar sujeito **a sub-registro**, dependendo da qualidade do sistema de estatísticas vitais da região em questão, e que correções podem ser necessárias para se ter um indicador mais confiável
- Pode-se tomá-la como uma medida de probabilidade.

TMI \Leftrightarrow ₀TEM.

- Denominador de TMI = nascidos vivos no decorrer de um ano
- Denominador de ₀TEM = população abaixo de um ano de idade no meio do ano

Taxa da Mortalidade Infantil (TMI)

- numerador = crianças < 1y
- distribuição desigual dos óbitos neste intervalo:
- Pop com baixa mortalidade infantil => óbitos
 concentrados nas primeiras semanas de vida por causas genéticas e /ou ligadas ao parto
- Pop com alta mortalidade infantil => óbitos menos concentrados nas primeiras semanas de vida – ligadas às condições ambientais como saneamento, nutrição, etc.

Para diferenciar situações:

_ E

Taxa da Mortalidade Infantil (TMI)

- Para diferenciar situações:
- Taxa de Mortalidade Neonatal (TMN)
 - Razão entre os óbitos ocorridos nas 4 primeiras semanas de vida (menos que 28 dias de idade) e o número de nascimentos

- Taxa de Mortalidade Pós-Neonatal (TMPN)
 - Razão entre óbitos de crianças de 28 dias até um ano de vida e o número de nascimentos.

A <u>estimativa</u> da mortalidade infantil no Brasil, 2013,

15,0 mortes /1000 nascidos vivos, (IBGE PROJEÇÃO, 2013).

2000 era estimado em 29,0 mortes por 1000 nascidos vivos,

→ queda de 48,2%.

Melhoria significativa neste indicador!

Entretanto, desigualdades regionais:

- valores maiores ao da média nacional: Regiões Nordeste (19,4), Norte (19,2)
 e Centro-Oeste (15,6);
- valores inferiores: Sudeste (11,6) e Sul (10,4);
- valores extremos: Maranhão (24,7) e em Santa Catarina (10,1)

Esperança de vida em uma determinada idade (x) $\Rightarrow e^{0}_{x}$

- indicador que têm a característica de ser uma <u>medida resumo</u> e que não sofre a influência da estrutura etária da população (!= TBM, lembra??)
 - número médio de anos que um indivíduo viverá a partir daquela idade, considerando o nível e a estrutura de mortalidade por idade observados naquela população.

 e_{x}^{0} = 50 viverás em média 50y (se mantidos níveis de mortalidade/idade)

Calculada a partir de tabela de sobrevivência,
 ou tábua de mortalidade ou tábua de vida

()

<u>Coorte</u> = um conjunto de pessoas que tem em comum um evento que se deu num mesmo período. Ex: coorte de pessoas que nasceram na copa de 1970, coorte de pessoas que ingressaram na 1ª série na copa de 1992, coorte de mulheres casadas na copa de 2002

<u>População estacionária</u> = população que apresenta em cada unidade de tempo, o número de nascimentos igual ao número de óbitos

Esperança de vida em uma determinada idade (x) $\Rightarrow e^{0}_{x}$

- Para se obter a e^0_x
 - tomar uma coorte de nascimentos num determinado ano,
 - acompanhá-la até que ela se extinga, anotando-se o tempo vivido por cada pessoa, e
 - calcular a vida média dos indivíduos da coorte.

Neste caso, teríamos a tabela de sobrevivência de uma coorte ou geração real, para o que é necessário que se tenham disponíveis longas séries de estatísticas de óbitos de boa qualidade, como no caso de algumas populações europeias.

- Usual: submeter coorte hipotética de recém-nascidos à experiência de mortalidade
- (TEMs) de uma pop real de det ano e segui-la até a morte do último indivíduo.

OU considerar uma pop estacionária.

Esperança de vida em uma determinada idade (x) \Rightarrow e^{o}_{x}

- Para se obter a e⁰_x
 submeter coorte hipotética de recém-nascidos à experiência de mortalidade OU considerar uma pop estacionária.
 - Das Tabelas de sobrevivência, ou Tabela de VIDA,
 obtêm-se esperanças de vida, que permitem comparar níveis de mortalidade entre populações diferentes.
 - As esperanças de vida a e^0_x , ao contrário da TBM, não dependem da estrutura etária das populações reais em estudo, mas apenas de sua mortalidade.

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

Mortalidade

	Idade	n	$_{n}q_{x}$	l_x	d_x	$_{n}L_{x}$	T_x	e_x^o	${}_{n}P_{x,x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
n = amplitude do intervalo	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
de classe	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
_N q _x = Probabilidade de morte do I de idade x morrer antes de	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
completar x +n	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
completal x 111	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
Qual a probabilidade de	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
uma mulher de 30 anos	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
morrer antes de	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
completar 35 ???	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
·	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
R: 0.01010	75	5	0,17901	55168	9876	251150	6026237	10,92	-
	80	ω	1,00000	45292	45292	351473	351473	0,76	-
av – dv /lv					_	0.200			

qx = dx /lx

N mortes x/pop idade x

 $_5P_{75,75+\omega} = 0,39021$

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

	Idade	n	$_{n}q_{x}$	l_x	d_x	$_{n}L_{x}$	T_x	e_x^o	$_{n}P_{x,x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
I = sobreviventes	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
I _x = Coorte Hipotética	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
Número de sobreviventes na idade	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
de x anos, de uma coorte inicial	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
$(I_0=100.000 \text{ nascimentos})$, se	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
depender de $_{n}q_{x}$ da tabela.	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
Quantas mulheres da coorte inicial	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
(de 100.000 de mulheres)	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
sobreviverão (com esta tabela de	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
vida) na idade de 50 anos??	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
R: 87.026	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
I _x = P <u>op estacionária</u> :	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
N de pessoas que atinge a idade x a	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
cada ano	75	5	0,17901	55168	9876	251150	6026237	10,92	-
Quantas mulheres completam 10	80	ω	1,00000	45292	45292	351473	351473	0,76	-
anos a cada ano???					₅ P _{75,7}	5+ω = 0,3902	21		

R: 94.506

R: 1.679

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

	Idade	n	$_{n}q_{x}$	l_x	$\mathbf{d}_{\mathbf{x}}$	$_{n}L_{x}$	$T_{\rm x}$	e_x^o	${}_{n}P_{x\bullet x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
d = n mortes	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
"d _x = <u>Coorte Hipotética</u>	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
nex <u>coorte impotetica</u>	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
Número de mortes entre as idades x e x +n dos sobreviventes da coorte de idade x.	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
Quantas mulheres sobreviventes	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
da idade de 15 anos morrerão	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
antes de completar 20 anos?	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
R: 306	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
N. 300	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
_n d _x = P <u>op estacionária</u> :	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
N de mortes que se verifica todos	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
os anos de pessoas entre x e x+n	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
de idade.	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
	75	5	0,17901	55168	9876	251150	6026237	10,92	-
Quantas mulheres entre 40 e 45	80	ω	1,00000	45292	45292	351473	351473	0,76	-
anos morrem a cada ano???					_				

 $_{5}P_{75,75+\omega} = 0,39021$

de 40 a 45 anos é 451.283

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

Tabala da Vida	Idade	n	$_{n}\mathbf{q}_{x}$	l_x	d_x	$_{n}L_{x}$	T_{x}	e_x^o	${}_{n}P_{x\bullet x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
L = "idade-tempo"	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
_n L _x = <u>Coorte Hipotética</u>	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
Tarana a con vivido nolos	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
Tempo a ser vivido pelos sobreviventes da coorte na idade x,	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
entre esta idade e o início do	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
próximo grupo etário. É o n de pessoas-ano entre as idades x e x+n	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
As sobreviventes da idade de 15	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
anos juntas viverão 470.845 anos	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
nos próximos 5 anos	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
_n L _x = P <u>op estacionária</u> :	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
Ni de response como ido do vio vim ou	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
N de pessoas com idade x a x+n ou	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
a população do grupo etário em qq momento	75	5	0,17901	55168	9876	251150	6026237	10,92	-
	80	ω	1,00000	45292	45292	351473	351473	0,76	-
Em qq momento, o n de mulheres					5P75.7	$s_{+m} = 0.3902$	21		

No exemplo: $_{1}a_{0} = 0.19336$

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

Tabela de Vida	Idade	n	$_{n}q_{x}$	l_x	d_x	$_{n}L_{x}$	T_x	e_x^o	$_{n}P_{x,x+n}$
L = "idade-tempo"	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
$_{n}\mathbf{L}_{x} = n \left(I_{x+n} + _{n}a_{x} * _{n}d_{x} \right)$	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
Neste caso: $_{n}a_{x} = 0.5$ para x>=4	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
^	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
$_{5}$ L ₁₅ = 5 (94016+ 0.5* 306)	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
$_{n}L_{x} = n (I_{x+n} + _{n}a_{x} * _{n}d_{x})$	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
n-x ·· (*x+n n-x n-x)	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
Para x<5, _n a _x varia em função do	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
nível da mortalidade.	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
 ₁a₀ em populações com baixa 	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
mortalidade, como no exemplo, é	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
estimado como 0.10. Em populações sub–desenvolvidas ₁a₀	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
pode aumentar até 0.3;	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
• ₄ a ₁ , em geral, é estimado = 0.40.	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
 Para dados brasileiros dos anos 90, 	75	5	0,17901	55168	9876	251150	6026237	10,92	-
é razoável utilizar ₁ a _{0 =} 0.2	80	ω	1,00000	45292	45292	351473	351473	0,76	-

 $_{5}P_{75,75+\omega} = 0,39021$

de mais de 40 anos é 3.361.904

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

Tabela de Vida	Idade	n	$_{n}q_{x}$	l_x	$\mathbf{d}_{\mathbf{x}}$	$_{n}L_{x}$	T_{x}	e_x^o	${}_{n}P_{x\bullet x+n}$
	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
T = "idade-tempo para o fim"	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
w-1	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
$T_X = \sum_{a=x} L_a$ ou $T_X = T_{X+n} + nL_X$	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
T - Coorto Hipotótico	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
T _x = <u>Coorte Hipotética</u> Tempo a ser vivido da coorte de idade x até que esta coorte se extinga.	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
As sobreviventes da idade de 15	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
anos juntas viverão 5.689.540 anos	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
até que a última tenha morrido.	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
I _x = P <u>op estacionária</u> :	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
N de pessoas com idade x ou mais.	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
	75	5	0,17901	55168	9876	251150	6026237	10,92	-
Em aa mamanta, a n da mulharas	80	ω	1,00000	45292	45292	351473	351473	0,76	-
Em qq momento, o n de mulheres									

 $_{5}P_{75,75+\omega} = 0,39021$

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

Tabela de Vida	Idade	n	$_{n}q_{x}$	l_x	d_x	$_{n}L_{x}$	T_x	e_x^o	${}_{n}P_{x\bullet x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
$\mathbf{e_x^0}$ = é a esperança de vida.	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
Número médio de anos de vida	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
esperado a partir da idade x.	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
$e_x^0 = T_x / I_x$	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
$\mathbf{c}_{\mathbf{x}} - \mathbf{r}_{\mathbf{x}} / \mathbf{r}_{\mathbf{x}}$	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
A esperança de vida de	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
mulheres de 15 anos é de 60,32	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
anos	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
A esperança de vida de	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
mulheres de 40 anos é de 36.91	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
	75	5	0,17901	55168	9876	251150	6026237	10,92	-

1,00000

45292

80

 $_{5}P_{75,75+60} = 0,39021$

45292

351473

Fonte: RODRIGUES, R. N. "Vida Severina", healthy family?: morbity and mortality in two metropolitan regions of Brazil. Camberra,1989. Tese (Doutorado) Austrian National University. Nota: ω significa que se trata de intervalo aberto.

351473

0,76

(Dados os níveis de

mortalidade em BH - 1983)

TABELA DE SOBREVIVÊNCIA FEMININA DA REGIÃO METROPOLITANA DE BELO HORIZONTE, 1983

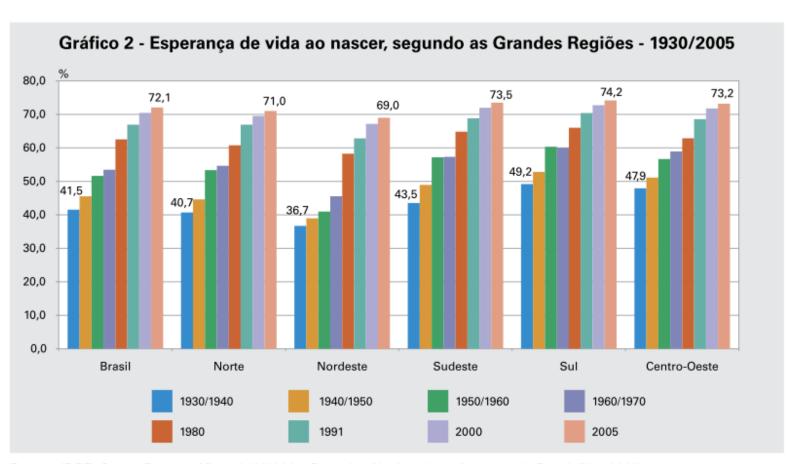
	Idade	n	$_{n}q_{x}$	l_x	d_x	$_{n}L_{x}$	T_{x}	e_x^o	${}_{n}P_{x\bullet x+n}$
Tabela de Vida	0	1	0,04582	100000	4582	96304	7111154	71,11	0,98746
_n P _{x+n} = Proporção de det grupo	1	4	0,00673	95418	642	380388	7014850	73,54	0,98746
etário que sobreviverá n anos (<u>Razão de Sobrevivência</u>)	5	5	0,00285	94776	270	473205	6634815	70,01	0,99520
	10	5	0,00195	94506	184	472070	6161610	65,20	0,99740
$_{n}P_{x+n} = _{n}L_{x+n} / _{n}L_{x}$	15	5	0,00324	94322	306	470845	5689540	60,32	0,99621
Du	20	5	0,00434	94016	408	469060	5218695	55,51	0,99494
	25	5	0,00578	93608	541	466688	4749635	50,74	0,99207
Probabilidade média das	30	5	0,01010	63067	940	462985	4282947	46,02	0,98936
pessoas no grupo x a x+n	35	5	0,01119	92127	1031	458058	3819962	41,46	0,98521
sobreviver por mais n anos	40	5	0,01843	91096	1679	451283	3361904	36,91	0,97745
A Prob média de uma mulher	45	5	0,02674	89417	2391	441108	2910621	32,55	0,97017
entre 15 e 20 anos sobreviver	50	5	0,03300	87026	2872	427950	2469513	28,38	0,95992
de 1985 até 1988 era de	55	5	0,04740	84154	3989	410798	2041563	24,26	0,93752
0.99621	60	5	0,07831	80165	6278	385130	1630765	20,34	0,89555
	65	5	0,13280	73887	9812	344905	1245635	16,86	0,86432
A P média de uma mulher entre	70	5	0,13901	64075	8907	298107	900730	14,06	0,84248
40 e 45 anos sobreviver de	75	5	0,17901	55168	9876	251150	6026237	10,92	-
1985 até 1988 era de 0.97745	80	ω	1,00000	45292	45292	351473	351473	0,76	-

 $_{5}P_{75,75+60} = 0,39021$

Esperança de vida por continente no Mundo (IBGE, 2014)

No contexto mundial, (ONU) a esperança de vida ao nascer é de **70,0** anos no período 2010/2015.

A esperança de vida dos brasileiros (74,8 anos) foi bem próxima da estimada para América Latina e Caribe (74,7 anos), e substancialmente acima da estimativa do indicador para as regiões menos desenvolvidas (68,3 anos).


Fonte: World Population Prospects: the 2012 revision: highlights and advance tables. New York: United Nations, Department of Economic and Social Affairs, 2013. Disponível em: http://www.un.org/en/development/desa/population/theme/trends/index.shtml. Acesso em: dez. 2014.

"A esperança de vida ao nascer é outro indicador de mortalidade, relacionado às condições de vida e de saúde da população, e expressa o número médio de anos de vida que se espera que um recém-nascido viva, ao manter o padrão de mortalidade observado no período.

Em 2000, a esperança de vida ao nascer para o brasileiro era de 69,8 anos de vida, passando a 74,8 anos em 2013."

Esperança de vida do Brasil / regiões (IBGE, 2009)

Fontes: IBGE, Censo Demográfico 1940/2000 e Pesquisa Nacional por Amostra de Domicílios 2005.

Esperança de vida do Brasil / sexo / regiões (IBGE, 2009)

Tabela 2 - Esperança de vida ao nascer, por sexo, segundo as Grandes Regiões - 1980/2005

	Esperança de vida ao nascer, por sexo													
Grandes Regiões		1980			1991			2000			2005			
	Total	Ho- mens	Mu- Iheres	Total	Ho- mens	Mu- Iheres	Total	Ho- mens	Mu- Iheres	Total	Ho- mens	Mu- Iheres		
Brasil	62,5	59,6	65,7	66,9	63,2	70,9	70,4	66,7	74,4	72,1	68,4	75,9		
Norte	60,8	58,2	63,7	66,9	63,7	70,3	69,5	66,8	72,4	71,0	68,2	74,0		
Nordeste	58,3	55,4	61,3	62,8	59,6	66,3	67,2	63,6	70,9	69,0	65,5	72,7		
Sudeste	64,8	61,7	68,2	68,8	64,5	73,4	72,0	67,9	76,3	73,5	68,5	77,7		
Sul	66,0	63,3	69,1	70,4	66,7	74,3	72,7	69,4	76,3	74,2	70,8	77,7		
Centro-Oeste	62,9	60,5	65,6	68,6	65,2	72,0	71,8	68,4	75,3	73,2	69,8	76,7		

Fonte: Projeto IBGE/Fundo de População das Nações Unidas - UNFPA/BRASIL (BRA/02/P02), População e Desenvolvimento: Sistematização das Medidas e Indicadores Sociodemográficos Oriundos da Projeção da População por Sexo e Idade, por Método Demográfico, das Grandes Regiões e Unidades da Federação para o Período 1991/2030.

Discussão artigo

- 1. Síntese
- 2. Pontos importantes
- 3. Limitações

Population TFT (The Economist)

https://www.youtube.com/watch?v=0CNC VJ11CM

Population x CC (The Gardian)

https://www.youtube.com/watch?v=SxbprYyjyyU