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Abstract This work proposes a methodological approach to redistribute population data obtained from 

(polygonal) census tracts into population density surfaces (grids), based on cell space database. The 

methodology was first developed for the municipality of Marabá, Pará state, in the Brazilian Amazon, 

consisting of: a dasymetric method to eliminate areas of environmental restriction to human presence; 

environmental data indicative of human presence generating a potential surface of population occurrence; and 

census population count finally redistributed into cells. Then, the methodology was adapted for 13 
municipalities of the Sustainable Forests District (SFD) of BR-163, generating population distribution 

surfaces for 2000 and 2007. The evolution of the resident population over the SFD-BR163 showed spatial 

patterns compatible with the occupation process described in the literature and verified in the fieldwork. To be 

applied over other areas, the proposed methodology needs to be adapted with local parameters. In this way, 

population density surfaces can be useful as additional data source to study population and environment 

relationships.  
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Introduction 

 
The pressure of a growing population on natural resources has been a central problem in demographic and 

environmental studies (Ehrlich 1968; McMichael 1993). Instead of discussing population as a consequence of 

environmental conditions and its inter-relations, human presence and activities were usually viewed as 

responsible for environmental changes (Hogan 1989). Recently, the predominant approach to population-

environment-development research has become more moderate; demographic pressure is no longer viewed as 

the principal determinant of environmental problems, but instead is merely an aggravating factor (Hogan 

2000). Hogan (2007) emphasized the importance of including environmental problems in population research, 

stating that the relationship goes both ways: population processes change the environment and environmental 

factors influence population dynamics. 

In the case of forest conversion in the Brazilian Amazon region, the local population was responsible for 

environmental changes but also suffered the consequences of these changes. Cause-consequence relationships 
are identified based on the focus and scale of analysis, as well as on whether the approach is conservation- or 

development-oriented. Hogan (2001) presented a review of environmental factors in Brazilian population 

studies, including migration and colonization in the Brazilian Amazon. He emphasized the importance of a 

problem that both academics and the general population confronted on a daily basis: environmental change 

cannot be understood as an isolated problem, unconnected to development.  

Most studies on environment and population that use remote sensing approaches are either conducted on 

an extremely small scale (e.g., settlements) or consider population as an independent variable responsible for 

land use changes. Remote sensing has contributed significantly to studies concerning integration of human 

dimension (demographic and social data) and biophysical parameters in the Amazon region (Frohn et al. 

1996; Wood and Skole 1998;   Liverman et al. 1988, Walsh 2010). Analyses of changes in land use and land 
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cover enable the integration of remote sensing and socio-demographic studies, combining image-processing 

techniques with social science analytical methods (McCraken et al 2002). For land cover and landscape 

changes, the unit of observation is the pixel. Resolution, scale and information available from spectral bands 

are functions of the remote sensors selected. On the other hand, social science data usually come from field 

surveys and/or official censuses, in which the observation unit defines the research subject (e.g., events, 

individuals, households, social groups and communities). Therefore, when choosing the geographical scale 

for an integrated analysis, one should consider the following: who are the social actors of interest, and what is 

the spatial dimension in which these actors should be considered? In addition, studies that aim to capture the 

implications of land use change in agricultural frontier areas in the Amazon should also focus on changes in 
the demographic composition, a comparison that requires compatible scales. These themes assume greater 

relevance in the Amazon region due to the close relationships among urban development dynamics, land 

concentration processes and rural depopulation. 

The historical process of colonization in the Brazilian Amazon as it relates to demographic changes and 

patterns of change in land use and cover has been studied based on household units (Moran et al. 1994; Moran 

and Brondízio 1998; McCracken et al. 1999; Moran et al. 2003). Cohort, age and period effects are analyzed 

to interpret landscape changes, mainly deforestation rates and secondary succession. Despite their undeniable 

contribution to the literature, such detailed studies describe local processes; because of the regional 

heterogeneity of the Amazon, they are unsuitable for generalization.  

For human population studies on larger scales of analysis than the family unit, population data from 

official censuses is used. In Brazil, the information for decennial censuses and population counts are collected 
by taking the residence as the sampling unit (IBGE 2010); however, population data have been published that 

take the census tract2 as the spatial unit, (i.e., the information about inhabitants collected by residence is 

spatially aggregated in census tracts). The physical borders of Amazon municipalities have changed over the 

past decades, leading to changes in the borders of the census tracts. Thus, comparisons between spatial 

analysis and census/counting population data are not straightforward. Moreover, as census tracts spatially 

delimit geographical areas, they can be represented as polygons in a planar subdivision (layers) in 

Geographical Information Systems. This representation can be easily superposed over remote sensing images 

for complementary visualization of physical environment and population distribution. As census tract areas 

contain aggregate information, one cannot easily attribute population data to an image pixel, especially for 

such heterogeneous areas as rural census tracts in the Amazon.  

As human activities change the territory and settlement follows some environmental preferences, remote 
sensing and ancillary geographical data can be used to redistribute population inside a census tract (Gallego 

and Peedell 2001; Linard et al. 2010). This work aims to contribute to the representation of the spatial 

distribution of population data. Here, we present a methodological approach to redistributing census tract 

population data in a cellular space on a geographical database. Cell spaces enable researchers to represent 

population density in an intermediary spatial unit between pixels and census tract polygons.   

First, to create a population density surface from census tract population counts, we developed a 

methodology for Marabá, a municipality in the state of Pará, Brazil. Then, we presented population density 

surfaces generated for the BR-163 Sustainable Forest District (SFD-BR163) for 2000 and 2007. This political 

division comprises 13 municipalities in the west of Pará, where human activities and environmental changes 

demand continuous studies and monitoring. We discuss the population density surfaces in comparison to 

fieldwork observations, as well as the evolution of the population distribution in SFD-BR163 based on 

population density surfaces obtained for 2000 and 2007.     
 

Census data representations 

Demographic data collected in decennial censuses are usually modeled as statistical surfaces (DeMers 1999) 

and commonly represented using choropleth maps (Harvey 2008). The main disadvantage of using choropleth 

maps is that data aggregated by census tracts assume that the population is distributed homogeneously 

throughout the unit, which is never the case (Tobler 1979). Choropleth models and some other surface 

interpolation approaches result in allocation of a non-zero population density value to every location. A way 

to improve the spatial detail of choropleth-based population maps is to use more detailed maps representing 

the distribution of human-built objects and activities (Bajat et al. 2011). 

                                                
2 Census tract is the territorial unit for census operations, defined by IBGE (Instituto Brasileiro de Geografia e Estatística), 
with physical limits identified in contiguous areas and respecting the political and administrative division of Brazil. 
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 One prominent interpolation method for population data is dasymetric mapping, defined generally as the 

use of an ancillary data set to disaggregate coarse resolution population data to a finer resolution (Eicher and 

Brewer 2001). Basically, the dasymetric method aims to use any available spatial information that can provide 

further insight into the probable structure of source zones and thus can be informative for redistributing 

population counts (Langford 2003).  

The increasing availability of remotely sensed imagery has driven much recent research on population 

interpolation using the dasymetric mapping method. Recent research suggests that dasymetric mapping can 

offer more accurate population estimates than many areal interpolation techniques that do not use ancillary 

data (Mrozinski and Cromley 1999; Gregory 2002, Mennis 2003).Other researchers also find that dasymetric 
mapping gives the best estimated result among all other popular methods tested (Fisher and Langford 1995, 

Mrozinski and Cromley 1999; Mennis and Hultgren 2006). 

Classified remotely sensed imagery has been commonly used as the source for ancillary data. The land 

cover map is another useful GIS layer; it is crucial for the disaggregation of population data (Gallego & 

Peedell 2001; Linard et al. 2010). Dobson et al. (2000) say that the land cover map may be the best single 

indicator of population density. Dasymetric modeling methods based on land use data require the definition of 

relative weights associated with land use classes (Hay et al. 2005). These weights are first calculated for 

regions where high-resolution census data are available and then applied to other similar regions (Gallego 

2010). Langford (2007) uses cartographic materials over multi-spectral satellite imagery for dasymetric-based 

population interpolation. Reibel and Bufalino (2005) use road networks as the ancillary predictor to 

downscale demographic distribution 
Gridded population distribution data are increasingly being used for resource allocation, disease burden 

estimation and climate change impact assessment (among other applications) at global, national and local 

scales (Linard et al. 2010). Detailed and spatially disaggregated population data are essential resources in 

assessing the number of impacted people when making decisions related to developmental or health issues 

(Bhaduri et al. 2002; Dobson et al. 2000; Hay et al. 2005). Furthermore, gridded population distribution data 

have applications in analyzing the impacts of climate change (McGranahan et al. 2007; Nicholls et al. 2005). 

The vulnerability of people to natural disasters has also been quantified (Balk et al. 2005; Maynard-Ford et al. 

2008). 

The methodology proposed in this paper, which is based on work by Amaral (2003), presents a refined 

model of spatial distribution of population that is specific to the Amazonian region. The model considers how 

spatial variables influence the spatial distribution of population and how environmental factors may exclude 
settlement. Another positive aspect is the use of cells to represent and aggregate data, which allows temporal 

analysis independent of possible changes in political and administrative boundaries (dismemberment of 

municipalities, for example) and enables integration with other demographic, social and environment data. 

 

Study Area 

We first developed this methodology for Marabá, a single municipality in the state of Pará. We then 

considered regional features and adapted this methodology to apply it over a broader area. This larger area is 

also a geopolitical unit; SFD-BR163 includes 13 municipalities in Pará (PA) state (Figure 1a).  

Marabá occupies 15,111.26 km
2
 and is located in the southeast of Pará state. It is a regional capital whose 

urban center is on the confluence of the Tocantins and Itacaiunas rivers and the PA-150 and Transamazônica 

roads. Marabá experienced intense migratory flux from the state of Maranhão in the sixties and from 

southeast states in the seventies (De Reynal et al. 1995). Population mobility has slowed recently and has 
become essentially rural-to-urban or rural-to-rural migration (Oliveira et al. 2001).  
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Fig. 1 Study sites: (a) the municipality of Marabá and the Sustainable Forest District/BR-163 in Pará state; (b) municipalities and census 

tracts of the SFD-BR163 (Source: MMA 2006)  

 

The Sustainable Forest District of the BR-163 (SFD-BR163), along the federal road linking Cuiabá (Mato 
Grosso state) to Santarém, in western Pará State (Figure 1b), was created in 2006 as the first SFD established 

in Brazil. An SFD is a geo-economic and social complex to promote integrated local development based on 

forestry activities. Public policies from different government sectors have been proposed to promote forestry 

activity on a sustainable basis; such policies include land policy, infrastructure, industrial development, public 

areas management, technical assistance and education (MMA 2006). 

The SFD-BR163 is 190,000 km2 in size and is comprised of the municipalities of Altamira, Aveiro, 

Belterra, Itaituba, Jacareacanga, Juruti, Novo Progresso, Óbidos, Placas, Prainha, Rurópolis, Santarém and 

Trairão, among which only Trairão, Rurópolis and Belterra are completely encompassed by its boundaries. 

This SFD includes a wide variety of environments and occupations. Some regions that have been occupied for 

more than 300 years (Coudreau 1974), while others are still in the process of consolidation or agricultural 

frontier expansion. The municipality of Novo Progresso is one of the latter and has shown high rates of 

deforestation. The proportion of deforested areas in this municipality rose from 4% (1,691 km2) in 2000 to 
14% (5,264 km2) in 2009 (INPE 2009); in Belterra, close to Santarém municipality, this proportion increased 

from 15% (671 km2) to 18% (797 km2) over the same period. 

In recent decades, the population of the municipalities in SFD-BR163 has significantly increased. At the 

same time, there has been a process of dismemberment and the creation of new municipalities. Figure 1b 

shows the current political division of the municipalities that constitute the SFD-BR163 and its census tracts 

(IBGE 2010). In 1980, the SFD-BR163 region was composed of the municipalities of Altamira, Aveiro, 

Itaituba, Santarém, Prainha, Óbidos and Juruti. In the 1991 Census, IBGE registered Rurópolis as a new 

municipality, and in the 2000 census, the municipalities of Belterra, Jacareacanga, Novo Progresso, Placas 

and Trairão were registered. Half of the municipalities in this SFD were created during the 1990s. In contrast 

to the overall trend, the population of Novo Progresso decreased in its population in that decade; in general, 

population growth and deforestation rates are directly proportional. 
Marabá was first chosen as study site because it was one focal area of GEOMA Network (DOU 2004), 

which supported fieldwork for the first methodological portion of the study. With the creation of SFD-BR163 

in Pará state, the opportunity arose to study the influence of public policies in a geo-economic and social 

complex. We then adapted and applied the methodology to this wider study area as part of the Cenários 

(Luizão 2008) and LUA/IAM (Camara 2009) Projects, which also address the spatial representation of 

population density and its temporal evolution.  

 

(a) (b) 
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Methodology  

A model to disaggregate population data inside the census tracts  

 

In this work, population is represented by the resident population count provided by the Brazilian Institute for 

Geography and Statistics (IBGE - Instituto Brasileiro de Geografia e Estatística) census. Rather than 

representing the population distribution based on census tracts limits (polygons) that contain information 

about the entire population in these geographical areas, the population distribution will be represented by a 

continuous surface (cell space) in which the population value will be attributed to cells. We generated a 

population density surface for the municipality of Marabá using a dasymetric method and a model based on 
environmental data indicative of human presence. Adapting this methodology to regional features, two 

population density surfaces were created for each of the 13 municipalities of SFD-BR163, corresponding to 

the 2000 and 2007 populations. 

Disaggregating population data from census tract (polygons) to cell space (surface) requires the 

construction of a subjacent surface with modeling describing the factors that determine population distribution 

(Goodchild et al. 1993). We assumed that there are spatial variables related to the absence or presence of 

human settlement that could be used to indicate how the population is distributed (Figure 2).  

 
Fig. 2 General procedure to disaggregate population counts within census tracts. Source: Adapted from Amaral (2005) 

 
The method consists of three basic steps: (i) a dasymetric method (Mennis 2003; Sleeter 2004) to 

eliminate the areas of environmental exclusion of human presence (cells), using a map of land use cover 

classifications as a reference; (ii) a multivariate interpolation method to generate a potential surface of 

settlement occurrence, using fuzzy inference over environmental data indicative of human presence (Zadeh 

1988; Meirelles 1997); and (iii) the redistribution of population count values to each cell, proportionate to a 
potential occurrence of population defined from (ii). 

For the Amazonian region, there are extensive areas of water and forest land cover where settlement is 

unlikely. We propose the use of ordinary digital classification of remote sensing images as thresholds settings 

to identify water bodies and forest land cover. The dasymetric method, applied next, consisted of removing 

cells where water bodies and/or forest occupied at least 95% of the population density surface in Marabá.  

The multivariate interpolation method proposed to generate a potential surface of population occurrence 

can be summarized into five general steps (Figure 3):  

1) Selecting spatially explicit variables (environmental data indicative of human presence) related to 

population distribution (indicator variables);  

2) Identifying the relationship between indicator variables and population distribution: this relation is 

quantified based on observed/previous population data and indicator variable frequency for the study site; 

3) Creating a geographical database with indicator variable layers in cellular spaces: the study area is 
divided by regular cells containing a single value for each indicator variable;  

4) standardizing indicator variables based on fuzzy inference: the original value of every indicator variable 

in a cell is simplified considering fuzzy inference, and are then represented in the interval of zero to one 

values, enabling continuous classification;   

5) Defining operators between indicator variables: the variables are combined based on operators 

(averages, minimum values, etc.) to generate an adjacent model that enables the distribution of a proportional 

population value for every cell belonging to a certain census tract.    

 

These steps are presented in detail below. 
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Fig. 3 The multivariate interpolation method to generate the potential surface of population occurrence. Source: adapted 
from Amaral (2003) 

 

1) Selecting environmental variables related to human population presence 

Different factors may determine the presence of human populations in a specific region, including historical 

processes, accessibility, availability of natural resources, presence of urban facilities and infrastructure and 

local physical characteristics, among others. The relative importance of each factor is also a fundamental 

variable that may vary according to local conditions. As an example, the global population distribution model 

proposed by Landscan used the following as indicator variables: land cover classes, distance to roads, slope 
classes and the presence of night lights from the DMSP/OLS sensor (Badhuri et al. 2002).  

Access to the Amazon region (and ease of transportation within the region) has historically been a major 

factor associated with human presence, as described by Machado (1999). Until the fifties, occupation in the 

Amazon region was limited to the coastal zone and riverside areas along the main navigable rivers and a few 

“terra firme” areas (Costa 1997). The economy was based on extractive activities, especially on rubber 

extraction. In the recent Amazon colonization process, the first roads, along with the construction of the new 

Brazilian capital, the city of Brasília, under the Juscelino Kubischeck government (1955-1960) signaled the 

beginning of state intervention in the region with the National Development Plan (PDN). Migratory flow and 

farmers had already been established for 10 years along Belém-Brasília road (1960) when the Amazon 

Operation (1966) and the National Integration Plan (PIN, in 1970) were implemented. Infrastructure such as 

roads, an electricity power network and even natural resources inventories (RADAMBRASIL) were provided 
from public funds in the seventies to stimulate migration and capital flow for the new Amazon frontiers. 

Lands up to 100 km distant from federal roads were allocated to small farm colonization settlement projects 

(Costa 1997). The urbanization process also intensified following the regional colonization projects and 

infrastructure investments, which brought migrants from the southern and northeastern regions and changed 

the spatial occupation pattern. The riverine settlements were overlapped and marginalized by the new 

circulation axis that emerged from “terra firme” roads and villages (Godfrey and Browder 1996). From 1991 

to 1996, new municipalities were created, and the population became concentrated in urban nuclei of about 

20,000 inhabitants. As a result, urban nuclei were concentrated along rivers and roads axes. Becker (1998) 

more fully discusses the Amazon colonization process 

The presence of roads is, at certain levels, also related to deforestation in the Amazon (Skole and Tucker 

1993; Alves et al. 1999; Alves 2002; Dale et al. 1994; Laurence 2002; Fearnside 2005). Alves (2002) revealed 

that most of the deforestation detected from 1991 to 1996 (75%) occurred 50 km from the roads. Recently, 
Leite et al (2011) reconstructed a geographically historical database of land use in Amazonia for the period of 

1940–1995, through a fusion  of  historical  census  data  and  a  contemporary  land  use  classification. They 

emphasize that the spatial pattern of land use in Amazon region in this period was greatly influenced by roads 

and pioneer occupation areas. Even though deforestation rates are not directly related to total population 

counts or estimates (Geist and Lambin 2001), this type of land cover change activity indicates human 
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presence in rural areas (Wood and Skole 1998). It is important to emphasize that deforestation in Amazon is a 

complex multi-factor process (Camara et al 2005).  

Considering these historical factors and data availability, five variables were initially selected as indicators 

of human presence to disaggregate the population of Marabá municipality: distance from roads, distance from 

rivers, distance from urban nuclei, percentage of forest cover and slope. The three former items are related to 

accessibility and infrastructure. The percentage of forest cover is related to human activities, and slope (least 

important) is related to the general preference of human settlements for flat terrains. The LandScan project 

(Dobson 2000) observed that most human settlements occur on soft slopes and flat land; in mountainous 

regions, slope values are inversely related to population density.  

   
2) Identifying the relation between indicator variables and population distribution 

Once the indicator variables were selected, it was necessary to determine the relationship between human 

presence and these indicator variables, identifying thresholds to further allocate population in a disaggregated 

spatial unit. For this purpose, we studied the relationships between indicator variables and the location of 

districts seats (for the Marabá study site) and communities (for SFD-BR163), which were considered 
evidence of human presence. 

 

Marabá Study site 

To transform each selected variable into a population indicator, the occurrence of the districts3 in the 

municipalities was assumed to be evidence of human presence related to population distribution. Each 

variable was studied individually to explore its relationship with the distribution of all district seats in Pará 

state. From the frequency analysis of distance between district seats and rivers, it was observed that 90% of 

the districts are located up to 17 km from rivers; 50% are less than 3.5 km away from a river, and the average 

distance is 6.81 km. (Figure 4a). Regarding distance from roads, 90% of the districts seats are less than 

127 km far from roads, and 50% are less than 27.5 km away (Figure 4b). Pará state is mostly flat, with slope 

values ranging from 0 to 7.3%. It was observed that 90% of the district seats had an average slope of less than 

2%, 50% of the districts had average slopes of less than 0.27% (Figure 4c). 
 

 
 Fig. 4 Accumulated frequency of districts seats in Pará state relating to their distance to rivers (a), distance to roads (b) 
and average slope (c) 

 

Regarding distance from urban centers, a nearest neighbor distance analysis over the district seats 
indicated that on average, such centers are 24.5 km distant from each other. Between district seats, the 

shortest distance is 1.5 km and the longest distance is 24.5 km.   

Regarding the “forest percentage” variable in Pará state, we assumed that areas with more than 95% forest 

cover are not likely to contain human settlements. Areas with less than 5% forest cover are strongly 

associated with human presence, and at 30% of forest cover the likelihood of population occurrence and 

absence is equivalent. These forest percentage and human population occurrence are empirical values and 

have to be locally adjusted for each study case. 

 

 

SFD-BR163 study site 

                                                
3 According to IBGE (2000), districts in Brazil are administrative units of municipalities. Apart from the municipal seat, 
every district seat has the status of village (“vila”).  

(a) (b) (c) 
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The frequency distribution of distance to rivers, which is one of the relationships between the presence of 

settlements and an indicator variable (Figure 5), indicated that 90% of the communities are up to 30 km from 

the rivers, 50% are less than 7.68 km away, and the average distance between the communities and rivers is 

9.7 km (Figure 5a). Concerning to the variable “distance to roads”, 90% of the communities are less than 

29.9 km from roads, and 50% are less than 9.7 km from roads (Figure 5b). 

 

 
Fig. 5 Average distance to rivers (a), roads (b) and hillside (c) for the influence areas of the communities (accumulated 
frequency) 

 

Descriptive statistics indicated that SFD-BR163 communities tend to be located away from                                                                                                                                

hillsides (Figure 5c). About 90% of the communities are located among more than 1000 meters of hillsides, 

and no settlement less than 200 meters from a hillside. The areas distant from the hillsides can be wetlands or 

plateaus, and they were mapped based on SRTM data (NASA 2010), according to the vertical distance in 

relation to the drainage network, which was provided by the HAND algorithm (Rennó et al. 2008). 

To define how the distance to the nearest communities influences populations, the distance to the nearest 

neighbors was analyzed, considering the locations of all communities of the SFD-BR163 municipalities. The 

shortest distance between communities was 2 km, and the greatest distance was 100 km. On average, the 
communities are 30 km distant from the nearest community. 

The relationship between forest percentage and presence of population was set empirically, as settlements 

and population nuclei are not commonly found in regions of dense forest cover. Therefore, it was considered 

that over 99% forest cover, there is no possibility of population occurrence; conversely, regions with less than 

30% forest cover are highly likely to contain settlements. The threshold of 50% of forest cover marks regions 

where the potential of occurrence and non-occurrence of settlement would be equal. In contrast to the Marabá 

procedure, several census tracts were smaller than the cell resolution (2x2km) for the SFD-BR163. Instead of 

using the same threshold applied to Marabá (95% forest cover), which would exclude small census tracts, a 

threshold of 99% forest cover was defined for the SFD-BR163. 

   

    

3) The cellular space on geographical database  

According to the Brazilian Census (IBGE 2000), the municipality of Marabá includes 168,020 inhabitants, 

distributed throughout 171 census tracts: 134373 residents in urban areas (127 census tracts), and 33647 

people at the rural areas (44 census tracts). In the urban census tracts, there was an average of 1058.1 

inhabitants (standard deviation, 324.8; median, 1007), varying from 319 up to a maximum of 2024 residents. 

In the rural census tracts, an average of 766.6 inhabitants (standard deviation of 533.0, and median equals to 

721), varying from a minimum of zero up to 2105 residents. Marabá´s census tracts have an average area of 

387.47 km2, varying from 1.17 km2 to 1955.21 km2. Rural census tracts in the east are dominated by 

agricultural activities, mainly pastures. Census tracts in the west are dominated by forest cover because of the 

presence of conservation units (national forests and biological reserves). To represent the heterogeneity of 

Marabá’s census tracts, the population density surface was generated using cells of 1 km x 1 km. Only cells 

completely inside the Marabá boundary limits were included in population counts at the density surface. 
All of the indicator variables and census tract population data formed a geographical database at 

TerraView GIS System (Terraview 2010), taking cells as units of analysis to generate the surface density. The 

ideas of cellular worlds (Couclelis 1985; Couclelis 1991; Couclelis 1997) and a cellular geography (Tobler 

1979) support the theoretical debate in geography on representational perspectives for geographic spaces. 

The classification of ETM+/Landsat Images (WRS 224/64 from 2002/08/22 and WRS 224/65 from 

2002/08/13), mapped the classes “water” and “forest” for Marabá, with 30 m of spatial resolution. When 

(a) (b) (c) 
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images were co-registered to census tract limits, a positioning error of about one pixel (30 m) was found and 

projected to the UTM/SAD69 geographical reference. A simple threshold algorithm over ETM+ spectral 

band 4 (0.750-0.900 µm, near-infrared) classified the water bodies by area. Forest classification relied on a 

threshold algorithm over the ETM+ normalized vegetation index (NDVI) (Rouse et al. 1974), in which 

spectral information from near-infrared (band 4) and visible (band 3: 0.630 – 0.690µm) light were combined 

((band4 – band3)/(band4 + band3)).  

The general descriptive statistics related to the population in the census tracts of SFD-BR163 are 

presented in Table 1. It comprises the rural census tracts of the municipalities of Altamira, Aveiro, Belterra, 

Itaituba, Jacareacanga, Juruti, Novo Progresso, Óbidos, Placas, Prainha, Rurópolis, Santarém and Trairão 
 

Table 1 General Population data information for SFD-BR163 

 2000 2007 

Number of Census Tracts 252 292 
Minimum 0 0 
Maximum 176486 191487 
Sum 508379 566566 
Mean 2017.37 1940.29 
Standard Deviation 11777.78 12205.85 

 

As SFD-BR163 is a wider area, indicator variables were obtained from different data sources than those 
used for Marabá (Table 2). The road network vectors available in the Ecological Economic Macrozoning 

database (MMA/SDS 2002) were used as a reference for the distance-to-roads variable, as computed for a 

regular grid at a 500 m spatial resolution.  

River limits provided by National Agency for Electrical Energy (ANEEL) were used in calculating the 

distance to rivers. The location (points) of the districts seats (IBGE 2000) were used to analyze the distance to 

urban centers. The grid containing slope values (percentage) was calculated directly from the altimetry data 

(SRTM 2000).  

The variables “distance to roads”, “distance to rivers”, “distance to urban centers”, “forest cover” and 

“distance to hillsides” were selected as indicator variables to generate a potential surface of population 

occurrence according to previous research on the occupation of this region (Alves et al. 2010, Amaral et al. 

2003; Becker 2004; Furtado 2004; Pandolfo 1994). To evaluate the relationship between each of the selected 

indicator variables and population values, all the communities from the SFD-BR163 were studied, with 
2x2 km cells of as the units of analysis. 

 
Table 2 Data Sources for indicator variables at SFD-BR163 

Data Source Year 

Deforestation Prodes (TM/Landsat 5) / INPE 2009 

Communities 
Brazilian Institute of Environment and Renewable Natural Resources – 
IBAMA and field work survey 

2008, 2009 and 
2010 

Roads Brazilian Institute of Geography and Statistics - IBGE 2007 
Rives Brazilian National Agency of Water – ANA 2007 
Geomorphology NASA/SRTM 2000 

Population Brazilian Institute of Geography and Statistics - IBGE 2000 and 2007 

 

 

4) Standardizing indicator variables based on Fuzzy inference  
 

As each indicator variable has a different scale and range, it is necessary to standardize the values to enable 

operations between the variables. As proposed by Turner and Openshaw (2001), fuzzy pertinence functions 

(Zadeh 1988; An et al. 1991) can be useful in transforming environmental data (indicator variables) into 

standardized variables expressing relationships to the occurrence of settlements. 

The use of fuzzy sets for characterization of spatial classes is indicated when dealing with ambiguity, 

abstraction and ambivalence in mathematical or conceptual models of empirical phenomena (Burrough and 

Mcdonnell 1998). In the concept of the pertinence function, given the value “z”, the function determines 

whether the element evaluated belongs to a given set of analyses or not. Thus, fuzzy pertinence functions 

were built from maximum, minimum and average values of each variable related to the presence of 
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settlements. As a first approach, we proposed applying quadratic functions for all variables. Taking the 

distance to roads (z) as an example, the quadratic pertinence function was obtained as follows: 

 

 

(1) 

 
The beta (β) value corresponds to the value of the variable when the possibility of having associated 

population is maximum (in the case of the fuzzy value, is equal to “1”). The value of alpha (α) is obtained 

from the value of the variable where the occurrence or non-occurrence of the population would have the same 

chance of happening. In other words, alpha corresponds to the variable value where the Fuzzy pertinence 

function is equal to 0.5, and is given by the equation: 

 

    
2)(

1







z
 (2) 

 

where z is the value of the variable when f (z) = 0.5.  

From the relationships between district seats and indicator variables (for Marabá) and the communities 

(for SFD-BR163), fuzzy pertinence functions were obtained, (Table 3). 

 
Table 3 Fuzzy inference values for the indicator variables identified for Marabá and SFD-BR163 study sites. 

Indicator Variable 
Marabá 
Values 

SFD-BR163 
Values 

f(z) 
Marabá 

alfa 
SFD-BR163 

alfa 
Marabá 

beta 
SFD-BR163 

beta 
 

Distance to roads (m) 
≤ 1000 900 1 

1.48 E-09 1.98E-08 1000 900 = 27000 9702 0.5 

>  40000 29900 0 

 
≤ 1000 900 1 

2.96 E-08 5.95E-08 1000 900 Distance to rivers (m) = 6810 7686 0.5 

 
> 17000 30300 0 

Distance (m)  to:       
districts -  Marabá;  
communities - SFD 

≤ 1500 2000 1 

1.89 E-09 1.28E-09 1500 2000 = 24500 30000 0.5 

>  140000 100000 0 

Forest cover (%) 

≤ 5 3 1 

16 2.50E+01 0.05 3.00E-01 = 30 5 0.5 

>  99 99 0 

Average Slope (%) 
Marabá 
Distance to hillside (m) 
SFD-BR163 

≤ 0.27 1000 1 

10.4058 4.00E-06 0.27 1000 
= 0.58 500 0.5 

>  3.5 200 0 
 

 

 
5) Combining indicator variables 

 

After the fuzzy pertinence function was obtained for each indicator variable, it was necessary to the 

relationships among the variables. Establishing these relationships is a fundamental step in modeling the 

adjacent surface, which represents population occurrence. In the absence of a robust conceptual model, or of a 
standard surface that could be used to infer the relationship between variables, we proposed to apply the 

following: fuzzy operators (minimum, maximum and gamma), simple average and weighted average. In 

contrast to the computation of a simple average, where each variable has the same importance, in computing 

the weighted average, a weight has to be assigned determining the relative importance of each variable. In this 

work, we used the Hierarchical Analysis Procedures (Saaty 1978) to determine the variable weights based on 

a paired comparison of all indicator variables. 
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These operators will generate a final value related to the potential of population occurrence provided by 

the indicator variables interactions, for each grid cell, composing the adjacent surface model.  

Finally, to disaggregate population from census tracts to cells, the total population count had to be 

redistributed taking only the valid cells into account. Each grid cell had a potential of population occurrence 

assigned from the operators between indicator variables. As census tracts are represented by several cells, the 

population count for each cell was distributed as follows: 
















Igrid

igrid

ICTigrid
F

F
PP   (3) 

where   

igridP  is the population count to be attributed to a grid cell i ;  

ICTP  is the population count for the census tract I, to which the grid cell i belongs; 

igridF  is the value resulted from the operation  over the spatial indicator variables for the grid cell i 

           (as weight average or fuzzy operators over fuzzy indicator variables);  

IgridF  is the sum of all  
igridF  where i is a valid grid cell for the census tract I. 

At the end of the procedure, population density initially depicted by the limits of census tracts (polygonal) 

is presented in regular 1x1km cells, according to defined relationships between indicator variables and 

population presence. 

  

Results and Discussion 

 

Population Density Surfaces  
 

Five different population density surfaces were produced as result of the proposed methodology for the 

municipality of Marabá, according to the operator used to integrate indicator variables (simple average, 

weight average, fuzzy minimum, fuzzy maximum and fuzzy gamma operators).  

To analyze the surface results, in the absence of population data distributed in a more detailed spatial unity 

as census tract (2000), we took resident population data from the National Institute of Colonization and 

Agrarian Reform (INCRA – Instituto Nacional de Colonização e Reforma Agrária) for the official settlement 

projects in 2003 (Projetos de Assentamentos - PA) (MDA 2003) as a reference. Figure 6 presents the PAs 

limits over the original census tract representation.  

 
Fig. 6 Original density population from IBGE - 2000 census tracts (IBGE 2000) and INCRA Settlements Projects 

localization 

When a settlement project (PA) is created, INCRA officially registers its geographical limits and the 

number of families that were settled in the area. In this paper, the population density for each official 
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settlement project in Marabá was calculated by dividing the total number of residents by the area of the 

settlement. Because population data from PA (2003) and census tracts (2000) differ in temporal reference and 

spatial limits, they cannot be used to directly compare the population density values; however, it was useful to 

compare the surface results. In comparing these, results, it was necessary to take the following into account: 

the population value for a PA is the total population of inhabitants for that area; population density in 2003 in 

the PAs is a result of the population density in 2000; we are considering population density as uniform inside 

a PA. There was 48 PAs, with population counts varying from 20 up to 373 inhabitants, and population 

density values from 0.28 up to 8.5 inhabitant/km2.  

A confusion matrix was obtained from the intersection of PA population density choropleth map with 
population density surfaces, considering intervals of population density. A value of global accuracy was 

calculated by dividing the total number of grid cells showing population density at the same population 

density interval in PA population density by the total number of grid cells related to PA areas. This global 

accuracy, given by the percentage of area correctly classified for each surface, was used only as a reference to 

compare the population density surfaces. We considered that the density population value inside a PA is 

uniformly distributed, while each PA is composed of several cells that presented heterogeneities in population 

density surfaces.  

From the global accuracy (Table 4), the fuzzy gamma operator yielded better performance (18.8%) than 

the other operators; however, this result was related to coincidence from areas of extreme population density 

values. A population density surface from the gamma operator gives a good representation of the lowest and 

highest population density areas, but not of the gradient of population density based on spatial heterogeneity.   

Table 4 Global Accuracy (%) for the comparison between the population density surfaces and the resident population 

data from INCRA  settlement projects 

Population density surface Global Accuracy (%) 

Simple average 14.3 

Weighted average 10.4 

Minimum Fuzzy  10.4 

Maximal Fuzzy    9.5 

Gamma Fuzzy 18.8 

Census tracts 11.8 
 

 

The global accuracy, obtained from the simple average operator (14.3%), was related to intermediate 

population density ranges and was superior as a measure to the global accuracy for population density from 

the original census tract representation (Figure 7a). From the visual analysis, the simple average operator also 
provided the best population distribution for the entire Marabá municipality, presenting more heterogeneity 

than weighted average surface (Figure 7b) and the other fuzzy operators. The weighted average operator did 

not accurately consider the importance of forest cover. The minimum and gamma fuzzy operators were 

sensitive to the presence of zeros, while the maximum fuzzy operator incorporated little variability into the 

census tracts, generating density surface that slightly differed from the original census tract polygonal 

representation. 

 
Fig. 7 Population density surface obtained for Marabá from weight average operator (a), and simple average operator (b). 
 

From this first result, the simple average operator was the better approach to generating population density 

surfaces and representing the heterogeneity of population density in Marabá. We adapted the methodology 

(a) (b) 
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and used it to infer population distribution surfaces for a wider region, enabling the analysis of temporal 

evolution of the population distribution along SFD-BR163 

The resulting population density surfaces, which show the evolution of the spatial distribution of 

population for SFD-BR163 for 2000 and 2007, are presented in Figure 8. Fieldwork was conducted in 

October 2010 to assess the accuracy of the population distribution surface, verifying geographical coordinates 

and population values for 98 communities in the study area (Figure 8b). Population data for 19 communities 

were collected (Table 5) by interviewing residents, community leaders, health agents and workers at the local 

education authority. Using field work data as the standard, the population density surface generated by the 

weighted average operator yielded better results than the surfaces obtained from maximum fuzzy, minimum 
fuzzy, gamma fuzzy and simple average operators. The total difference between the predicted and declared 

population was 8%. In general, greater differences were found in estimates of small communities (Table 5). 

These results can be considered a good approximation, taking into account that the surface was produced 

using 2007 Population Counting data and that the fieldwork population values were obtained from key 

informants and not estimated based on systematic survey data.                                                       

 
 
Fig. 8 Spatial distribution of population on SFD-BR163 for 2000 (a) and 2007 (b) with the location of communities 
verified during fieldwork (black points).  

 
Table 5 Population estimates obtained from key-informants in the field (2010) and from the population density 
surface (2007) for communities visited during the fieldwork.  

Community Fieldwork 
Population - 2010 

Population Density Surface  
Population - 2007 

Differences (%)  

129 do Bode 413 342 71 (17.2%) 
São Jorge 3000 2111 889 (29.6%) 

Galiléia 200 124 76 (38.0%) 
Divinópolis 3000 2464 536 (17.9%) 
Itapacuru 50 27 23 (46.0%) 
Itacimpasa 800 733 67 (8.4%) 
Nova Canaã 225 255 -30 (-13.3%) 
Nova Esperança 800 936 -136 (-17.0%) 

(a) (b) 
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Considering the proposed methodology for disaggregating population values from census tracts into a cell 

space database, our observations from the Marabá and SDF-BR163 study sites make it clear that certain 

considerations are especially important. First, when selecting the indicator variables, is necessary to take into 

account the particular process by which occupation grows in the region. As Marabá and SDF-BR163 are both 

in the Para state, and as both are involved in the process of frontier expansion in the Amazon, the same 

indicator variables could be used for both. Even in the Amazon region, if the methodology were to be applied 

to the state of Amazonas, for instance, rivers navigation condition should probably be added as indicator 

variable.  

Second, the evidence of human population used to estimate the relationship between population 

distribution and the indicator variable must also be defined for each area of interest. We used district 

distribution for Marabá and the presence of communities for SFD-BR163, with different implications for 

fuzzy inference (Table 3). The better the data used as evidence of population distribution, the more 
appropriate population density surfaces will be obtained. Obviously, the data used will also depend on data 

availability; we used districts for Marabá surfaces because community data were not available for the 2000 

census.  

Third, the quality of environmental data used as indicator variable will impact the quality of the final 

population density surface. As for any modeling process, the output is directly dependent on the quality of 

input data. In this context, remote sensing data can be a useful data source when working on large areas, such 

as “distance to hillside” from SRTM/NASA, or deforestation mapping from Landsat/TM images from Prodes 

Project (Table 2), which was used in this work. 

Fourth, we tested five different operators with the indicator variables. For Marabá, the simple average 

operator provided the best estimate of population density, whereas for SFD-BR163, the weight average 

operator was the best fit. Considering that simple average is an operation that gives equal weight to every 
indicator variable, we can infer that average operators performed better than fuzzy operators. The simple 

average was first chosen also because it is easier to implement, understand and interpret. 

Finally, it is always important to have field information or another data source to validate the population 

density surfaces. For Marabá, data from INCRA settlements projects were used as a general reference for 

operator comparison. In the SFD-BR163, we managed to collect field information about the resident 

population, enabling direct comparison between population values from fieldwork and population density 

surface. The proposed methodology can also be used to optimize fieldwork effort: rather than conduct a wide 

survey for an entire low area, population density surface can be used to stratify the area, reducing the number 

of points to be visit in the field.  

Ultimately, we are not proposing a method to estimate new population values but a consistent criterion for 

disaggregating population counts from census tracts, represented by polygons delimiting areas of different 

sizes, into cell spaces that are smaller and present regular spatial resolution. Obviously, several other 
methodologies could be applied (REFS); however, our proposal seeks to use simple spatial analysis and 

geographical information tools to represent knowledge about how population is distributed inside census 

tracts. 

The representation of population data by population density surfaces allows, in addition to other modeling 

purposes, the analysis of temporal evolution of population distribution and the study of population-

environmental relations, even if the limits of census tracts differ between census surveys.     

Ultimately, we are not proposing a method to estimate new population values, rather just a consistent 

criterion to disaggregate population counts from census tracts, represented by polygons delimiting areas of 

different sizes, into cells space that are smaller and present regular spatial resolution. Obviously, other 

methodological approach could be applied; however, our proposal seeks to use simple spatial analysis and 

Bela Vista do Caracol 9000 8897 103 (1.1%) 
Jamanxim 3500 2990 510 (14.6%) 
Moraes Almeida 3000 2989 11 (0.4%) 

Alvorada 5000 4852 148 (3.0%) 
Água Azul 800 832 -32 (-4.0%) 
Santa Júlia 800 640 16 (20%)0 
Três Bueiros 750 697 53 (7.1%) 
Riozinho 600 521 79 (13.2%) 
Santa Luzia 240 198 42 (17.5%) 
Aruri 200 163 37 (18.5%) 
Tucunaré 70 45 25 (35.7%) 
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geographical information tools to represent the knowledge about how population is distributed inside census 

tracts. The representation of population data by population density surfaces allows, in addition to other 

modeling purposes, the analysis of temporal evolution of population distribution and the study of population-

environmental relations, even if the limits of census tracts differ between census surveys.     

 

Evolution of population density in the SFD-BR163 

 

The recent demographic dynamics in agricultural frontier areas in SFD-BR163 municipalities is treated as 

evidence of the occupation processes, demonstrating, among other things, their ability to attract and retain 
population. Table 6 shows the evolution of the total population in the DFS-BR163 between 2000 and 2007 as 

well as population growth, considering exclusively population values for cells within the limits of SFD-

BR163. In 2000, the population of the SFD-BR163 municipalities was estimated at 476,656 inhabitants, and it 

reached 532,457 inhabitants in 2007, a cumulative increase rate of 11.7% for the analyzed period. Although 

the environmental conditions represented by the indicator variables influenced population distribution in the 

same way in 2000 as in 2007, the pattern of population distribution has changed. Instead of the intensification 

of population density in previously occupied areas, the population is scattered over the territory of SFD-

BR163 (Figure 8).  

Table 6 Total resident population for municipalities of SFD-BR163 for 2000 (IBGE Demographic Census, 2000), and 
2007 (IBGE- Population Count, 2007), and the results from density surfaces for those cells of municipalities contained in 
SFD-BR163 physical limits. 

Locality 
Municipality 

2000 

Municipality 

2007 

Cells inside 

SFD-BR163 

2000  

Cells inside 

SFD-BR163 

2007  

Cells inside 

SFD-BR163          

 2007-2000 

 

% 

Brazil 169799170 183987291 

 

  8.36 

Pará State 6192307 7065573 

 

  14.10 

Altamira 77439 92105 3286 5548 2263 68.87 

Aveiro 15518 1883 11954 17238 5283 44.19 

Belterra 14594 12707 14573 12707 -1866 -12.80 

Itaituba 94750 118194 95653 117450 21797 22.79 

Jacareacanga 24024 37073 12919 19515 6596 51.06 

Juruti 31198 33775 28980 33909 4928 17.00 

Novo Progresso 24948 21598 24666 21583 -3083 -12.50 

Óbidos 46490 46793 2919 1291 -1628 39.28 

Placas 13394 17898 5170 7200 2031 88.11 

Prainha 27301 26436 1404 2640 1237 26.68 

Rurópolis 24660 32950 26011 32950 6939 4.00 

Santarém 262538 274285 233057 242380 9322 14.04 

Trairão 14042 16097 14064 16039 1975 -55.77 

SFD-BR163 TOTAL 565907 641737 476656 532457 55802 11.71 

  

There was some concentration of inhabitants in the northern region, along the Amazonas River and in the 

vicinity of Santarém; however, the concentration of population along the axis formed by Rurópolis-Itaituba-

Trairão, following Transamazônica and BR-163 highways observed in 2000 was substituted by larger areas 

with low population density. This change may be associated with the population decrease observed in Trairão. 

Table 6 shows the evolution of the total population in the municipalities near the BR-163 highway 

between 2000 and 2007, as well as population growth which considers exclusively the population values for 

the cells inside the limits of SFD-BR163. In 2000, the population of the municipalities (considering only the 

population count for cells inside the borders of SFD-BR163) was 476,656 inhabitants, and it reached 532,457 
inhabitants in 2007. This change represents an accumulated increase rate of 11.7% at the period.  

In Jacareacanga municipality there was a high population increment taking the period 2000 -2007 

(Table 6). However, the latest published demographic census summary (IBGE 2010) have pointed out that the 

Jacareacanga´s population was 14.000 residents, instead of the 24.000 counted by the Population Counting of 

2007 (IBGE 2007). Because of these discrepant values a consultation was carried out with the IBGE 

population office and it was reported that there were problems with the 2007 Population Counting in 

Jacareacanga. IBGE field team had to be replaced by a team from Itaituba. Because they didn´t know well the 

region, there were double counting, resulting in overestimation of population in 2007 for this municipality. 
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The effect of conservation units in the SFD-BR163 becomes evident when population surfaces are 

compared. In the southern SFD, in the municipality of Altamira, the population started to occupy the east side 

of BR-163 highway, while in the west side, the population in Novo Progresso decreased. Most areas without 

settlement correspond to a conservation unit of restricted use such as National Parks or Indian Land. The 

areas where the population has spread out or concentrated during the analyzed period corresponded to unused 

public land or conservation units that allow sustainable use.  

The resident population generally increased in the municipalities, with exception of Aveiro, Belterra and 

Novo Progresso. Aveiro is almost entirely contained by conservation units. In the field, the local government 

explained that because they do not have the legal land tenure for rural or for urban areas, the most common 
economic activities, such as agriculture or cattle ranching, are restricted. They are not even allowed to build a 

hospital or any other public urban infrastructure necessary for settlement. 

In Belterra, land ownership became concentrated when soybean producers came to the Santareno Plateau. 

Small producers sold their properties for grain production and migrated to urban areas (Coelho 2008). In the 

population density maps, this transition is expressed by the growing number of residents in the city of Belterra 

and the disappearance of denser areas closer to this city.    

According to information collected from the fieldwork interviews, Novo Progresso received an intense 

immigration flux in the 2000s (Figure 9). Men at working age (20 to 40 years old) went to Novo Progresso to 

work in the numerous sawmills in the city. With the intensification of the battle against deforestation and 

illegal timber practices and the creation of several conservation units in 2006, the population of this city faced 

a reduction of about 3,000 inhabitants from 2000 to 2007. These individuals were mostly men, as indicated by 
the demographic pyramid. 

   

    
Fig. 9 Age pyramids for Novo Progresso in 2000(a) and 2007 (b). Source: IBGE (2000) and IBGE (2007) 

 
Conclusions 

 

This paper proposed a methodology to disaggregate population data provided in census tracts into smaller 

spatial units based on ancillary environmental data and geoinformation techniques. The results show that it is 

possible to recover the heterogeneity of the census tracts whenever the relations between the indicator 

variables and population occurrence are defined with criterion and the local particularities are taken into 

account. The methodology developed for the municipality of Marabá was adapted to the Sustainable Forest 

District of BR-163 municipalities. As the area of interest was expanded, the cell size was enlarged, and the 

pattern of population distribution was obtained from the presence of communities. Data from fieldwork 
indicated an adequate fit between the population count predicted from the population surface and the total 

population for the communities along BR-163 highway. 

The population density surfaces enabled the interpretation of the distribution of human presence in terms 

of the territory to be potentially occupied. The model allocates no population in areas where there is no 

possibility of human presence, such as in rivers, dense forests cover, sand islands, etc. Moreover, representing 

population in cell spaces enables monitoring of the population over the time. Even if the limits of 

municipalities or census tracts change, what is very common in such dynamic regions as Amazon, the 

distribution can be represented and compared in a cell space.      
The evolution of the resident population over the DFS/BR-163 territory from 2000 to 2007 showed spatial 

patterns comparable to the occupation process described in the literature and reported in the field. Therefore, 

(a) (b) 
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since the proposed methodology can be adapted to represent the population distribution of other areas, 

population density surfaces can be useful as additional data source to study population and territory dynamics. 

The proposed methodology can be improved using knowledge about the spatial indicator variables and 

human presence relationships. With population data from the 2010 census, we will be able to represent the 

population density evolution over a ten-year period and better monitor the impacts of the creation of a 

sustainable forest district on the population distribution in the region of BR-163 highway.      
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