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Census population data are associated with several analytical and cartographic

problems. Regression models using remote-sensing covariates have been examined

to estimate urban population density, but the performance may not be satisfactory.

This paper describes a kriging-based areal interpolation method, namely area-to-

point residual kriging, which can be used to disaggregate the residuals remaining

from regression. Compared with conventional cokriging, the area-to-point residual

kriging is much simpler in that only a semivariogram model for the point residuals

is required, as opposed to a set of auto- and cross-semivariogram models involving

the dependent variable and all the covariates. In addition, area-to-point residual

kriging explicitly accounts for any scale differences between source data and target

values. The method is illustrated by disaggregating population from census units to

the land-use zones within them. Comparative results for regression with and

without area-to-point residual kriging show that area-to-point residual kriging can

substantially improve interpolation accuracy.

Keywords: Areal interpolation; Dasymetric mapping; Kriging; Geostatistics;

Population surface

1. Introduction

Knowledge of the size and spatial distribution of human population in an urban

area is essential for social, economic, and environmental applications. Traditionally,
census data are the primary source of information on population distribution.

Census data are usually reported as spatial aggregates for census zones, such as

census tracts or census block groups. The problems of applying zone-based census

data to geographical analysis are well documented in the literature. One is the

modifiable areal unit problem (MAUP), which refers to the situation where the

selection of the areal units or scales can significantly change the results (Openshaw

1984). Another problem is that a population may not be distributed uniformly

within a census unit if the land use is heterogeneous; hence the spatial pattern
provided by conventional choropleth mapping may not be accurate (Monmonier

and Schnell 1984). Additionally, the boundaries of census units rarely coincide with

those of other data-collecting units (e.g. school districts or watersheds), thus creating

difficulty in spatial data integration (Goodchild et al. 1993).
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To tackle these problems, areal interpolation is often utilized. Areal interpolation is

designed to transform data from source zones to target zones. In the context of

population distribution, census units such as census block groups or census tracts

usually serve as the source zones; the target zones are typically grid cells or land-use

zones. When ancillary information is used, areal interpolation is also referred to as

dasymetric mapping (Wright 1936). Many areal interpolation methods have been

developed and can be categorized as simple or intelligent depending on whether

ancillary information is used (Okabe and Sadahiro 1997). Simple interpolation does

not use any data other than the source-zone population. An example is areal

weighting which allocates population according to the areal proportion of a target

zone in the host source zone. Goodchild et al. (1993) discussed its implementation for

various socio-economic variables. Another example is Tobler’s pycnophylactic (mass-

preserving) interpolation and its modification which creates a smooth population-

density surface (Tobler 1979, Rase 2001). Bracken and Martin (1989) also described a

centroid-based method which uses a kernel-based technique to disaggregate census

data to grid cells. Kyriakidis (2004) proved that both these approaches can be viewed

from a geostatistical perspective, and correspond to particular choices of a

semivariogram model for an underlying (latent or unobserved) density surface.

Human population distribution is closely related to other information on the

Earth such as land use and transportation facilities. These data can therefore be used

as ancillary information to assist population interpolation. Wright (1936) used a

land-use map to identify likely areas of denser or sparser population, and then

allocated the population from towns to the land-use zones within them. This idea is

still used in areal interpolation, except that today the ancillary information is mainly

derived from remotely sensed images. Langford and Unwin (1994) and Mennis

(2003) both used the land-use classification information from Thematic Mapper

(TM) images. Harvey (2002) established a direct association between population

and the spectral reflectance values of TM pixels. Wu and Murray (2005) used an

ETM + image for estimating urban population density, but the information used

was the fraction of impervious surface in residential areas. Although TM and

ETM + images provide valuable information to improve population estimation,

their 30-m spatial resolution limits their utility in urban applications. For the

purpose of detailed population-density estimation, a spatial resolution of 0.5–5 m is

recommended (Jensen and Cowen 1999). In the past, such images could only be

obtained through low-altitude aerial photography. The advent of very-high-spatial-

resolution satellite sensors such as IKONOS has recently offered new opportunities.

However, to date, little research has explored these opportunities in the context of

population interpolation.

The direct output of many methods reviewed above is a raster surface; others use

zones like those in Wright’s (1936) dasymetric mapping. The advantage and

shortcomings of handling population data as a raster surface versus vector zones

have been discussed by Martin (1996). Surface output is preferred to facilitate

spatial data integration, since a ‘cookie-cutter’ can be used to aggregate cell-level

population to any desired areal unit. However, vector zones in some interpolation

methods can also be easily converted to a grid using GIS as long as the population

within a target zone is uniformly distributed. Zonal-output methods are widely used

when remote-sensing information is available. They are relatively easier to

understand and less computationally intensive compared with surface-based

interpolation. The method to be discussed in this paper belongs to this group.
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The purpose of this paper is to report an experiment on using a zone-based

interpolation method to disaggregate census population so that more detailed

population-density estimates can be obtained. In particular, the paper demonstrates

the utility of residual modelling to improve interpolation accuracy, thus enhancing

population-density estimation obtained through popular regression models. More

precisely, the residual population density values obtained from a regression model

are disaggregated using area-to-point kriging (Kyriakidis 2004). This approach is

simpler than conventional cokriging and does not require any additional data

beyond those used in the regression model. To date, many zone-based methods

available for estimating population density with remote-sensing data have focused

on finding more powerful remote-sensing covariates. This research suggests that

area-to-point residual kriging may be a worthwhile supplement.

The paper is organized as follows. Section 2 describes the study area and data.

The initial efforts to estimate population density using data extracted from an

IKONOS image are documented in section 3. Section 4 describes area-to-point

residual kriging, which makes full use of the location and spatial autocorrelation

information embedded in the source zone residuals. The interpolation results and

their accuracy assessment are presented in section 5. Results for population-density

estimation with and without area-to-point residual kriging are compared to draw

the conclusions in section 6.

2. Study area and data sources

The goal of this research is to obtain more detailed population-density estimates

than those obtained using only census data. The city of Santa Barbara in California

and its vicinity is used as the study area. The region is located 170 km north-west of

Los Angeles in the foothills of the California Coast Range. It is about 300 km2 in

area and includes a total population of about 100 000. The region is characterized by

various types of land use, including residential areas with variable housing density

and socio-economic structure, commercial and industrial districts, and open spaces

(e.g. farm land and wetland). Population data at the census block level were

acquired from the 2000 census. Errors and positional inaccuracy in the census data

were rectified, based on a parcel-level dataset from Santa Barbara County, which

had parcel boundaries and building footprints (shape and position) information.

To assist population interpolation, remote sensing was used to obtain ancillary

information. Seven multispectral IKONOS images acquired in 2001 between March

and July were mosaicked to cover the entire study area. Because the image

acquisition dates had varying atmospheric and illumination conditions, geometric

and atmospheric corrections were conducted to create a geometrically rectified and

normalized image. Details on the preprocessing of the IKONOS image are described

by Herold et al. (2002). The mosaicked IKONOS image was visually interpreted into

land-use regions by an experienced image analyst who was familiar with the study

area. Because the spatial resolution of IKONOS images is comparable with that of

low-altitude aerial photos, the principles of aerial photo interpretation were applied

to the delineation of land-use regions. Each land-use zone is equivalent to a

‘photomorphic region’ in visual aerial-photo interpretation (Peplies 1974, Barnsley

and Barr 1997), which is an image segment with homogenous size, shape, tone/

colour, texture, pattern, etc. Each land-use region has a single land use (e.g.

residential, commercial, agriculture, etc.) but the pixels it hosts can be of three land-

cover types: built-up, vegetation, and others. The zone-level land-use and pixel-level
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land-cover information was evaluated and found to be highly accurate (Herold et al.

2003). Figure 1 is an example of the land-use regions found in a residential area.

Note that the high spatial resolution of the IKONOS image enabled not only the

recognition of residential land use but also the differentiation of size, architecture,

and age of houses. With no additional information, it is reasonable to assume that

the population density of each land-use region is uniform.

3. Regression-based interpolation using remote-sensing information

The goal is to disaggregate the population of a census unit to the land-use zones

within it, or equivalently estimate their population densities. One method is to use

equation (1) given below, where population is a weighted sum of density values

within each land-use category:

Pi~
X

j

djAij ð1Þ

where Pi is the population of census unit i, dj is the population density of land-use type

j, and Aij is the area of land-use type j in census unit i. dj can be obtained using different

methods, such as empirical sampling (Kraus and Senger 1974) or predefined

population-density statistics (Mennis 2003). Another often-used approach is to

conduct linear regression based on equation (1) (Langford et al. 1991). Though

simple, the success of this method depends on the accuracy and degree of detail of the

land-use classification. More detailed classification usually helps to improve the

accuracy (Donnay and Unwin 2001). In this study, seven residential land-use classes

were identified: high-density single-unit residential (HSU), medium-density single-

unit residential (MSU), low-density single-unit residential (LSU), multiple-unit

residential (MU), mobile homes (mobile), mixed single-and-multiple unit residential

(S&M), and mixed residential-commercial (mixed) land use. The definition and

illustration of these land-use types are described by Herold et al. (2003). Linear

regression based on equation (1) was applied, and the following model was obtained:

Pi~1024:48ALSUz3325:16AMSUz5973:49AHSUz10180:09AMU

z5063:15Amobilez8826:56AS&Mz7593:45Amixed

R2~0:44 ð2Þ

Figure 1. Example of land-use regions in the IKONOS image. Note that the very high
spatial resolution of IKONOS enables differentiation in the residential area.
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where the densities are in units of persons per square kilometre. The regression line

was forced to pass through the origin so that the population was allocated to

residential land-use categories only.

The poor proportion of variance explained by equation (2) suggests that the linear-

regression approach did not perform well despite the highly detailed land-use

classification. One major reason for this is that the population density of a land-use

category is not the same across the entire study area. Considering that the remotely

sensed image has a much richer biophysical information than that captured by land-

use classification, other remote-sensing surrogates of human population have been

examined in previous research. Harvey (2002) found a high correlation between census

district population and the multi-band spectral reflectance data of a TM images. Wu

and Murray (2005) found the fraction of impervious surface extracted from an ETM +
images useful to infer urban population density. In this study, the land-use zones were

delineated from the IKONOS image according to the homogeneity of the tone, shape,

colour, size, pattern, etc. This information should help explain the variation in

population density. Previous research has identified landscape metrics as an efficient

tool to quantitatively characterize a land-use zone (Liu and Herold 2007). Landscape

metrics were developed in landscape ecology to describe the composition and pattern

of a landscape. A detailed discussion on landscape metrics and their implementation

in GIS are described by McGarigal et al. (2002). For the purpose of population-

density estimation, various landscape metrics have been examined in terms of their

association with population density. The results are documented by Liu et al. (2006)

and can be summarized in the following model for this region:

ln bdd
� �

~8:819z1:772p1{2:612p2z0:0632p3 R2~0:55 ð3Þ

where bdd is the estimated population density of a land-use zone, p1 and p2 are the

areal proportions of the built-up and vegetation area within it, and p3 is the patch

density of the built-up area. Patch density is a landscape metric computed from

patches that are formed by a set of contiguous built-up pixels. The number of built-

up patches divided by the total area of a land-use zone is the patch density of the

built-up area, i.e. p3 in equation (3). More details on equations (2) and (3) are

provided by Liu and Herold (2007).

Although equation (3) achieved a higher regression coefficient than equation (2),

it seems only marginally more promising as a basis for estimating population

density. In fact, it was found through additional experiments that only 40–60% of

the variance in population density can be explained by regression based on

covariates derived from remote sensing data. Clearly, regression modelling alone is

not sufficient. Other methods must be explored to account for the substantial

residuals that remain after regression.

4. Residual interpolation using area-to-point kriging

The information used by the regression models in equations (2) and (3) concerns a

single land-use zone only. Other information embedded in the source data is not

utilized. One example of such information is the location of a land-use zone—a

residential area surrounded by high-population-density land-use is likely to have a

high density as well. Another is the relationship between a census unit and the land-

use zones within it—the population of a census unit is the sum of that of the land-

use zones within it. This information is not utilized by regression modelling, which
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probably explains the significant variance of the resulting residuals. In search of a
method to account for this information, kriging was selected. Kriging is a

geostatistical method for spatial prediction utilizing information on the spatial

auto-correlation (and cross-correlation in the case of cokriging) of different

attributes, i.e. the correlation of a variable with itself (or other variables in the

case of cokriging) through space (Isaaks and Srivastava 1989). Cokriging is

especially useful when the variable to be estimated (e.g. the population density of the

land-use zones) is under-sampled but when abundant ancillary information is

available (e.g. the population density of a census unit). Geostatistical methods have
been widely used in natural-resource management and remote sensing (Goovaerts

1997, Curran and Atkinson 1998), but their application in areal interpolation is

rather limited. The studies by Lam (1983) and Wu and Murray (2005) are probably

the only examples in the context of population-density estimation.

4.1 Area-to-point kriging

The kriging method used in this study was proposed by Journel (1999) under the

name cokriging and discussed in detail by Kyriakidis (2004) in the context of areal

interpolation under the name area-to-point kriging. We prefer the latter term,

because we reserve the term cokriging for cases whereby the source data and sought-

after target values pertain to different attributes. Kriging and its multivariate
extension cokriging were originally developed for mining applications. They are

based on the regionalized variable theory where the value of a variable d(u) at point

with coordinate vector u is considered a realization of a random variable D(u). The

collection of (infinitely many) spatially correlated random variables {D(u), u g A},

where A denotes the study region, is termed a random function (RF). D(u) consists

of two components: a deterministic component m(u), which indicates the

geographical trend or drift, and a stochastic zero-mean residual component R(u),

which is auto-correlated in space:

D uð Þ~m uð ÞzR uð Þ ð4Þ

Given a lag vector h, i.e. a vector with specified distance and direction, the expected

value of the difference between R(u) and R(u + h) is 0. The variance of the difference

is given by

Var R uzhð Þ{R uð Þ½ �f g~E R uzhð Þ{R uð Þ½ �2
n o

~2cR hð Þ ð5Þ

where cR(h) is called the semivariogram of residuals.

Let CR(0) denote the variance of R(u), i.e. CR(0)5var{R(u)}. The covariance

between R(u) and R(u + h) is obtained as

CR hð Þ~E R uzhð Þ:R uð Þf g~CR 0ð Þ{cR hð Þ ð6Þ

In this paper, we perform kriging with two types of data pertaining to the same

attribute: the target residual r(u), which is of point support and partially sampled,

and the source residual r(vu), which provides ancillary information and is defined on

an areal support. We call this kriging variant area-to-point residual kriging. In

conventional kriging, both the source data and target values are of point support

and pertain to the same attribute, whereas in conventional cokriging, the source
data and target values are also of point support but pertain to different attributes.

The kriging variant used in this research can also be regarded as a cokriging variant,
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whereby the primary variable represents the unknown residuals at target zones, and

the secondary attribute represents known residuals at source zones. As noted before,

we do not use the term cokriging, because we are dealing with target values and

source data of the same (residual) attribute.

In area-to-point residual kriging, any source residual r(vu) is functionally linked to

the point residuals within it as:

r vuð Þ^
XNu

i~1

vui
r uið Þ, ui[vu and

X

i

vui
~1 ð7Þ

where Nu is the number of points within an areal unit vu, and vui
is the weight

associated with r(ui) and is assumed to be known; it is the areal proportion of a land-

use zone within a census tract (see below). The above equation implies the following

assumptions: (1) point residuals are defined at the centroids of land-use zones within

a census tract, and (2) a point residual is representative of the entire land-use zone

within which it is located. These two assumptions imply that we ignore the scale
difference between a point and a target land-use zone. In other words, we assume

that the population within such zones is homogeneous.

Under this framework, the variance of the source residual random variable R(vu)
is given by

CR vu, vuð Þ~Cov R vuð Þ, R vuð Þf g^
XNv

i~1

XNv

j~1

vui
vuj

CR ui{uj

� �
, ui[vu, uj[vu ð8Þ

and the covariance between a point residual random variable R(u) and an area

residual random variable R(vu) is given by

CR u, vuð Þ~CR vu, uð Þ~Cov R uð Þ, R vuð Þf g^
XNv

i~1

vui
CR u{uið Þ, ui[vu ð9Þ

In area-to-point residual kriging, the unknown residual value r(u) within a source

zone vu is estimated using the corresponding source residual r(vu) and n nearby point

residuals {r(uj), j51, …, n} at other land-use zones within or outside vu as

r� uð Þ~
Xn

j~1

lj uð Þr uj

� �
zl0 uð Þr vuð Þ ð10Þ

where lj(u) is the weight assigned to r(uj) and l0(u) is the weight assigned to r(vu).

These weights can be calculated by solving the following system of equations:

Pn

j~1

lj uð ÞCR uj{ui

� �
zl0 uð ÞCR vu, uið Þ~CR u{uið Þ, i~1, . . . , n

Pn

j~1

lj uð ÞCR uj, vu

� �
zl0 uð ÞCR vu, vuð Þ~CR u, vuð Þ

8
>>><

>>>:
ð11Þ

The weights estimated by this method are optimal in the sense that the variance of

the error between the true and the estimated value is minimized. Note that

equations (10) and (11) constitute the simple cokriging estimate and system,

respectively; there are no mean terms in equation (10) because the residuals are
assumed to have zero mean (per regression). For a detailed discussion on area-to-

point kriging, please refer to Kyriakidis (2004).
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4.2 Residual semivariogram modelling

Equation (11) shows clearly that solving for the weights l0(u) and lj(u) requires the

values of the residual covariance terms. In conventional cokriging, their computa-

tion requires the semivariograms of the primary and secondary variable and the

cross-semivariogram between them (Goovaerts 1997). However, in the case of two

variables functionally related according to equation (7), the variance of a source

residual random variable (e.g. CR(vu, vu)), as well as the covariance between a target

and a source residual random variable (e.g. CR(u, vu)) are completely specified in

terms of the covariance model of the regression residuals (equations (8) and (9), i.e.

in terms of the point covariance model CR(h). Per equation (6), the covariance model

CR(h) of such residuals can be obtained from their semivariogram model cR(h). An

empirical semivariogram can be computed from the residual population density data

to be explained in section 4.3 as:

bccR hð Þ~ 1

2N hð Þ
XN hð Þ

j~1

r uj

� �
{r ujzh
� �� �2 ð12Þ

where N(h) is the number of samples separated by lag h. The empirical semiva-

riogram in equation (7) can be fitted by a theoretical model, which is usually a

nugget effect model, a spherical model, an exponential model, a Gaussian model, or

a combination of them. Although the shapes of these theoretical models differ, they

can be described by two parameters: sill which is the variance, and range which is the

distance at which the semivariogram reaches the sill; the nugget effect which repre-

sents purely random spatial variation has only a sill parameter. An excellent intro-

duction to semivariogram modelling can be found in Isaaks and Srivastava (1989).

4.3 Interpolating population density using area-to-point residual kriging

Suppose a land-use zone is referred to by its centroid u. Its population density can be

written as

d uð Þ~bdd uð Þzr uð Þ ð13Þ

where d(u) is the unknown population density of land-use zone u, bdd uð Þ~m uð Þ is the

value estimated by the regression model in equation (2) or (3), and r(u) is the residual

population density. The task is to interpolate r(u) so that d(u) can be estimated. Let

vu be the census unit containing u. vu also has a residual population density r(vu) due

to the difference between the census-reported population and that obtained by

aggregating the regression estimates within it. r(u) and r(vu) are related by:

r vuð Þ~
Pvu

{
P

j

bdd uj

� �
Auj

Avu

~

P
j

d uj

� �
Auj

{
P

j

bdd uj

� �
Auj

Avu

~
X

j

d uj

� �
{bdd uj

� �n o
Auj

Avu

~
X

j

Auj

Avu

r uj

� �
ð14Þ

where Auj
is the area of land-use zone uj; Pvu

and Avu
are the population and area of

the host census unit, respectively. The values of Pvu
, Auj

, Avu
are known, and bdd uj

� �
is

estimated from regression; thus r(vu) can be estimated, too. r(uj) is unknown except
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when a census unit has one and only one land-use zone, i.e. the census unit has

homogenous land use, and hence no need for disaggregation.

In this study, the regression model in equation (3) was applied to obtain the value

of bdd uð Þ in equation (13). Area-to-point residual kriging was then applied to

estimated residual population density r(u). Equation (14) shows that r(vu) is an area-

weighted linear average of r(u) values. To apply the area-to-point residual kriging

method discussed in section 4.1, two approaches were investigated in this research,

both of which have been used in other interpolation studies (e.g. Bracken and

Martin 1989, Mennis 2003). The first was to use the population-weighted centroid to

represent a land-use zone. Because the population density of a land-use zone is

assumed uniform, the population-weighted centroid is equivalent to the geometric

centroid. Area-to-point kriging was conducted for each centroid; the residual value

obtained was interpreted as being representative of the corresponding land-use zone

as a whole. The other approach was to rasterize the land-use zones into a grid and

then treat each cell as a point; the interpolated values of the cells were aggregated to

the land-use zone level by averaging the estimates of the cells in the same land-use

zone.

The semivariogram of the residuals was computed from those land-use zones

whose population density is known. These land-use zones are either the only land-

use zones in their host census units, or zero-population zones within a host census

unit with zero population. The residual population density of these land-use zones

was calculated using equation (4). The centroid and grid approach were then applied

to compute the residual semivariogram. In using the centroid approach, it is found

that the empirical semivariogram was difficult to be fitted by a theoretical model,

possibly due to the sensitivity of semivariogram to abnormal values. As an

alternative, the correlogram was computed instead of the semivariogram

(figure 2(a)). A correlogram is similar to a semivariogram except that it represents

the correlation coefficient, instead of semivariance, between attribute values

separated by lag h. The semivariogram based on the grid approach is shown in

figure 2(b). Ideally, the resolution of the grid should be fine enough so that each cell

can be treated as a point. In reality, computational cost increases as the resolution

gets finer. To balance the two factors, an experiment was conducted by varying the

cell size from 70 to 10 m in order to identify an optimal resolution. It was found that

the semivariogram based on the grid approach was fairly robust in the sense that

different resolutions resulted in similar semivariograms. The 30-m resolution was

selected to perform interpolation.

The parameters of the semivariograms generated by the centroid and grid

approach were fitted by the theoretical models in table 1. Although the two

semivariograms were not exactly the same, the values of their parameters were quite

similar: both had a nugget of 0.01, a range around 1100 meters, and a sill between

1.01 and 1.09.

The centroid- and grid-based semivariograms were applied to estimate the

residual population density of each land-use zone using the area-to-point simple

kriging system in equation (11). The kriging-estimated residual population density

was then combined with the regression-estimated population density to obtain the

overall population density of each land-use zone. Since population density cannot be

less than 0, negative estimates were adjusted to 0. The proportion of the negative

estimates was relatively low—18% in the centroid approach and 10% in the grid

approach. All of the negative estimates were found to lie in non-residential areas
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except 12 in the centroid approach and eight in the grid approach. Examination of

their locations revealed that most of them were located in the boundaries between

residential and non-residential land use, and their sizes were small compared with

other land-use zones in the same census unit. This was no surprise as area-to-point

kriging, like most interpolation methods, is known to become less accurate in areas

with fewer samples nearby or if the study area boundary is reached. For a recently

developed approach accounting for inequality constraints, such as non-negativity, in

area-to-point kriging, the reader is referred to Yoo and Kyriakidis (2006).

The population density patterns obtained from the centroid and grid approaches

were very similar; that pertaining to the grid approach is shown in figure 3. High

population density occurs in the residential uses in downtown area, and low density

is associated with commercial land use or less inhabited places. This pattern agrees

with field knowledge about the study area. Figures 4 and 5 contrast the population

density reported by census and that estimated by regression supplemented by area-

to-point residual kriging. It can be seen that by using the information from the

IKONOS image, a more detailed population distribution than that reported by the

census is obtained.

To understand the difference between the centroid and grid estimates, their

relative discrepancy was calculated:

err~
dcentroid{dgrid

dgridz1
ð15Þ

Figure 2. Modelling the spatial autocorrelation of the residual population density: (a)
correlogram estimated from the centroid approach; (b) semivariogram estimated from the
grid approach using 30-m resolution.

Table 1. Theoretical models for the centroid-based correlogram and grid-based semivariogram.

Centroid Grid

Type Nugget Range (m) Sill Type Nugget Range (m) Sill

Sa 0.01 0.1 0.30 Sa 0.01 1080 0.54
Sa 150 0.40
Ea 1100 0.31 Ea 1080 0.55

aS: spherical model; E: exponential model.
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where err is the relative discrepancy; dcentroid and dgrid are the population densities

estimated by the centroid and grid approach respectively. Equation (15) uses dgrid + 1

as the denominator instead of dgrid to avoid division by 0. The magnitude of non-

zero values of dgrid is usually much higher than 100 km22, so the difference between

dgrid and dgrid + 1 is negligible. Figure 6 shows that in most areas, the discrepancy

between the centroid- and grid- based estimates was less than 10%. Severe

discrepancy occurs in boundary areas or areas of very irregular shapes.

Figure 3. Population density estimated by regression supplemented by area-to-point
residual kriging using the grid approach.

Figure 4. Details of the low-density area, specified as rectangle A in figure 3, showing the
difference between the population density reported by the census (left) and that estimated by
areal interpolation (right).
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5. Accuracy assessment

The overall accuracy of population-density estimation was evaluated by aggregating

the population of the land-use zones to the census blocks. In theory, regression

supplemented by area-to-point residual kriging reproduces the population of the

census blocks. However, this mass-preserving property was lost in this study because

the negative estimates from kriging were reset to 0. The correlation coefficient r
between the estimated population and that reported by the census was thus

Figure 5. Details of a study area, specified in figure 3 as rectangle B, showing the difference
between the population density reported by the census (left) and that estimated by areal
interpolation (right).

Figure 6. Relative discrepancy between population-density estimates obtained by the
centroid and grid approaches.
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calculated to examine how well the source data were preserved (Martin 1996). Both

the centroid and grid approaches yielded a correlation coefficient close to 1.0. To

further differentiate them, the root mean squared error (RMSE) and the mean

absolute error (MAE), which were applied by Fisher and Langford (1996) and Wu

and Murray (2005) to assess the accuracy of their interpolation methods, are

calculated:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i~1

bPPi{Pi

� �2

N

vuuut
MAE~

1

P

XN

i~1

Pi{bPPi

���
���

where N is the number of census blocks, Pi is the population of block i, P̂i is the

estimated population. P is the total population in the study area; the accuracy to

reproduce it can be measured by the relative error:

E~
bPP{P

P

where bPP is the estimated total population.

Recall that area-to-point residual kriging was used to enhance regression-based

population density estimation. To assess the utility of residual modelling in

improving population density estimation, the summary statistics r, RMSE, MAE,

and E were calculated for the regression models in equations (2) and (3). The results

are shown in table 2. It can be seen that the two regression models yield very similar

accuracies, and their values of the mean absolute error are fairly high (around 45.6–

48.5%). When supplemented with area-to-point residual kriging, the accuracy is

substantially improved, as indicated by the much lower values of MAE and RMSE.

All of the methods seem to perform well in terms of relative error of the total

population in the study area, with overestimations or underestimations within 2–3%.

The accuracies of the centroid and grid approaches are similar. The grid approach

may be slightly better, considering that its MAE value is lower, and the

corresponding residual semivariogram modelling procedure is less difficult to

implement and more robust than the centroid approach.

It has to be pointed out that the accuracy assessment method used in this paper is

conducted at the source zone level, i.e. using census blocks. A better approach would

be to validate the method using a secondary study area with similar characteristics,

as done by Harvey (2002). Furthermore, the assessment should be conducted at the

target-zone level, i.e. using land-use zones. After all, the point of areal interpolation

is to obtain accurate estimates for the target zones instead of reproducing the

Table 2. Accuracy assessment of regression-based predictions with and without the
supplement of area-to-point kriging.

Regression Regression supplemented by cokriging

Land use
(equation (2))

Spatial metrics
(equation (3)) Centroid Grid

r 0.70 0.72 0.98 0.98
RMSE 104.8 107.6 21.1 22.4
MAE 48.5% 45.6% 2.9% 4.3%
E 2.1% 27.8% 22.6% 2.2%
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source-zone information. In practice, it is not always feasible to find a second area

and obtain its data at the target-zone level. An alternative is to use the Monte Carlo

simulation method discussed by Fisher and Langford (1996), which creates artificial

target zones by merging source zones and then conducts interpolation and

validation. This method is currently under examination, and the preliminary results

show that the grid approach seems to perform better.

6. Discussion and conclusion

Population density data are important for various applications. Data obtained from

the census are often refined using ancillary information in order to obtain more

detailed estimates. One simple method is to use regression based on remote-sensing

covariates such as land-use categories or their characteristics. However, this method

may not perform well in some areas, probably due to its limited ability to account

for locational dependence and spatial correlation in the residuals. In this paper, an

area-to-point residual kriging method is presented, which can be used to interpolate

the residuals resulting from regression. Comparative results show that area-to-point

residual kriging substantially improved estimation accuracy. In particular, the value

of RMSE at the census-block level was lowered from 107 to 22, and the mean

absolute error was lowered from 48–49% to 2.8–6.3%. These results suggest that

area-to-point residual kriging is a strategy worthy considering for enhancing

regression-based population-density estimation.

An interesting aspect of the residual modelling method presented in this study is

area-to-point kriging. One reason explaining the improvement brought by area-to-

point residual kriging is that it accounted for the location dependence and spatial

correlation aspects of residual population density. Conventional cokriging requires

semivariogram models for the primary and secondary variables plus the cross-

semivariogram model between them to conduct interpolation. The area-to-point

residual kriging method presented in this paper capitalizes on the fact that the

residual population density of a source zone is a weighted linear average of the

residual population density of the target zones, and simplified the semivariogram

modelling procedure by requiring the semivariogram model of the point residuals.

Two approaches to semivariogram computation were explored in this paper, and the

grid approach is recommended. Note that several researchers (e.g. Chiles and

Delfiner 1999) have pointed out that the semivariogram of regression-based

residuals is a biased estimate of the true semivariogram of such residuals and

recommended maximum-likelihood approaches for inference. In this paper, we

opted for the simpler and less computationally intensive approach, which does not

yield significantly biased results for short lag distances; we will be reporting

improvements on the residual semivariogram inference in the near future.

The population-density estimation method presented in this paper is a two-step

procedure: first, regression-based estimates are derived along with the correspond-

ing residuals, and then these residuals are interpolated in space via area-to-point

kriging. An alternative would be to integrate these two steps into a single area-to-

point cokriging system by using population density as the primary variable and the

information from the land-use/land-cover map or remotely sensed image as the

secondary variable. Wu and Murray (2005) presented such a cokriging method

(ignoring scale effects, however) and found it was also superior to regression-based

interpolation. Interestingly, the secondary variable they used was the fraction of

imperious surface, which is related to the two variables in equation (3) for built-up
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areas—the percentage of built-up area (P1) and built-up patch density (P3).

Interested researchers may want to compare the two approaches to find out whether

cokriging is better used to interpolate population density directly or reserved for the

residual population density only. Because the two studies are not conducted in the
same area (Columbus, OH vs. Santa Barbara, CA), their results are not comparable,

and so no conclusion can be drawn. Only a speculation can be presented based on a

loose comparison. The mean population per census block is 41 in Columbus and 91

in Santa Barbara, yet the RMSE values of the two studies are about 45 and 22,

respectively. Also, in terms of the absolute mean error (MAE), their values at the

census block level are 34.7% and 2.8%, respectively. Although these statistics may

suggest the possibility that regression supplemented by area-to-point residual

kriging is better than cokriging, it has to be stressed that unless the two methods are
tested using the same set of source data in the same study area, no conclusion should

be drawn. One advantage of regression supplemented by area-to-point residual

kriging is that it is relatively easier to implement than cokriging because of the

simplification in semivariogram modelling discussed previously.

Both the residual modelling approach and cokriging might be vulnerable to errors
in the source data. Errors in image classification and census data can both affect

interpolation results. In this research, the remote-sensing image was visually

interpreted by an expert to minimize the error in the resulting land-use map.

However, the census data were not error-free. The population density of some

blocks was actually abnormally high. Image analysis and fieldwork show that these

blocks are characterized by large apartment complexes and thus understandably

exhibit a high population density. However, there is no way to determine whether

the population density is as high as that reported by the census, since population
counting is not feasible. Additionally, the mixed land use in downtown Santa

Barbara also presented a challenge, although the semivariogram and correlogram in

figure 2 confirmed the existence of spatial auto-correlation over short distances. The

robustness of interpolation algorithms to these errors is yet to be studied.

The research in this paper used the regression model in equation (3) to obtain

initial estimates of population density. This is not a necessity. Other regression
models such as that in equation (2) can also be applied. In fact, area-to-point

residual kriging can be used to supplement any other method as long as the residual

density is found to be spatially varying and auto-correlated. In the future, other

methods found in the literature may be supplemented by area-to-point residual

kriging and tested to further evaluate the utility of residual modelling. Clearly, more

research needs to be conducted to identify a simple yet accurate method to estimate

population density in urban areas.
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