Thais Maria Sperandio - Laboratório 5

Geoestatística Linear

Objetivo

Explorar através de procedimentos geoestatísticos a variabilidade espacial de propriedades naturais amostrados e distribuídos espacialmente. Resumidamente, os passos num estudo empregando técnicas geoestatísticas inclui: (a) análise exploratória dos dados, (b) análise estrutural (cálculo e modelagem do semivariograma) e (c) realização de inferências (Krigeagem ou Simulação).

Procedimentos

O exemplo aqui apresentado refere-se à análise da variação espacial do teor de argila sobre a área da Fazenda Canchim (São Carlos - SP). Considera-se o teor de argila ao longo do perfil, classificado do seguinte modo:

- ü MUITO ARGILOSO: solos que apresentam 59% ou mais de argila;
- ü ARGILOSO: solos que apresentam de 35% a 59% de argila;
- MÉDIO: solos que apresentam de 15% a 35% de argila;
- ü ARENOSO: solos que apresentam menos de 15% de argila.

Dentro dos limites da Fazenda Canchim, afloram as seguintes litologias: Arenito Superficial (areias consolidadas), Diabásio (Formação Serra Geral) e Arenito Botucatu (rocha constituída por grãos de quartzo arredondados), conforme ilustrado acima.

1 Análise exploratória

No Spring, a análise exploratória dos dados é realizada através de estatísticas univariadas e bivariadas. As estatísticas univariadas fornecem um meio de organizar e sintetizar um conjunto de valores, que se realiza principalmente através do histograma. As estatísticas bivariadas fornecem meios de descrever o relacionamento entre duas variáveis, isto é, entre dois conjuntos de dados

ou de duas distribuições. Esta relação pode ser visualizada através do diagrama de dispersão e o grau da relação linear entre as variáveis pode ser medido através do coeficiente de correlação.

1.1 Estatísticas descritivas

ESTATÍSTICAS: argila

=>	Número de Pontos 85
=>	Número de Pontos Válidos 85
=>	Média 33.03529412
=>	Variância 288.03404844
=>	Desvio Padrão 16.97156588
=>	Coeficiente de Variação 0.51374042
=>	Coeficiente de Assimetria0.21392033
=>	Coeficiente de Curtose2.34402510
=>	Valor Mínimo 4.00000000
=>	Quartil Inferior 19.00000000
=>	Mediana 33.0000000
=>	Quartil Superior 43.0000000
=>	Valor Máximo 73.00000000

1.2 Histograma

O histograma do PI ativo (neste caso: argila) está representado na cor amarela. A curva contínua em vermelho é uma distribuição Gaussiana e serve de referência para efeito de comparação (Figuras 1 e 2). Neste caso observa-se que a distribuição da argila é pouca assimétrica com coeficiente de assimetria igual a 0,214.

(a)

(b)

Figura 1. Histograma com (a) 10 e (b) 20 classes

1.3 Gráfico da Probabilidade Normal

Gráfico da Probabilidade Normal, apresentando em linha azul os dados amostrais e, em vermelho, a distribuição Gaussiana (Figura 2).

2 Caso isotrópico

A isotropia em fenômenos naturais é um caso pouco freqüente de ser observada. Neste caso, um único modelo é suficiente para descrever a variabilidade espacial do fenômeno em estudo. Na prática quando lidamos com semivariogramas, a primeira suposição é isotropia na tentativa de detectar uma estrutura de correlação espacial. Para tal, utiliza-se tolerância angular máxima (90 graus) assim a direção torna-se insignificante.

2.1 Análise da variabilidade espacial por semivariograma

Figura 3 (a) Semivariograma e (b) Resultados numéricos

O semivariograma apresentado na Figura 3 possui uma variação ou forma não muito adequada quando comparado a um semivariograma ideal. Para melhorar sua forma é necessário alterar os parâmetros de Lag (Figura 4).

(a)

⁽b)

O semivariograma experimental (Omnidirecional) possui uma variabilidade muito mais próxima de um modelo ideal.

2.2 Modelagem do semivariograma experimental

A tela de "Relatório de Dados" apresenta um conjunto de informações, tais como: o tipo de modelo teórico escolhido, os valores de *Efeito Pepita*, *Contribuição e Alcance* que são parâmetros que compõem o modelo. É expresso também o valor de Akaike, que é um indicador do ajuste realizado; pois quanto menor seu valor melhor o ajuste. Então, os parâmetros *Efeito Pepita*, *Contribuição e Alcance* são sempre tomados com relação ao menor valor de Akaike.

2.3 Validação do modelo de ajuste

O processo de validação do modelo de ajuste é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos (Figura 5).

Figura 5. Análise dos erros

2.4 Interpolação por krigeagem ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem (Figura 6).

Figura 6. Imagem e grade resultante da krigeagem ordinária

2.5 Visualização da superfície de argila

A análise geoestatística é seguida da análise da variação gerada pelo modelo e posterior fatiamento da grade (Figura 7).

Figura 7. Fatiamento da grade gerada

3 Caso anisotrópico

A anisotropia em propriedades naturais é um caso muito freqüente de ser observado. Neste caso, a anisotropia, pode ser facilmente constatada através da observação da superfície de semivariograma,

3.1 Detecção da anisotropia

A superfície de semivariograma é um gráfico, 2D, que fornece uma visão geral da variabilidade espacial do fenômeno em estudo. É utilizado para detectar os eixos de Anisotropia, isto é, as direções de maior e menor continuidade espacial da propriedade em análise. Também conhecido como *Mapa de Semivariograma*.

A Figura 8 mostra a detecção dos eixos de maior e menor variação dos dados. Os ângulos criados pelos vetores de maior variabilidade e o de menor variabilidade parecem situar-se em torno de 15° e 105° respectivamente.

Figura 8. Detecção de anisotropia.

3.2 Geração dos semivariogramas direcionais

A Figura 9 mostra a geração do semivariograma para o caso da detecção da presença de anisotropia.

Geração de Semivariograma	■ ¥+*0 ≥ ∠ x x 4 5
PI Ativo: argila	
Análise: Unidirecional 💌 Amostragem: Irregular 💌	Semivariograma: argila
Opções Semivariograma	-
PI de Cruzamento Corte:	420
Parâmetros de Lag	336
No. Lag Incremento Tolerância 4 <u>+</u> 815 <u>+</u> 576 <u>+</u>	294 Y 252
Parâmetros de Direção	h 210
▼1 Dir1: 0.000 . Tol1: 90.00 . Bw1: MAX .	126
▼ 2 Dir2: 17 + Tol2: 35.00 + Bw2: MAX +	84
4 Dir4: 135.0 + Tol4: 35.00 + Bw4: MAX +	42
	0 800 1600 2400 3200 4000
Padronizar Resultado Numérico	Distância
Executar Fechar Ajuda	Variância argila=288.03

3.3 Modelagem dos semivariogramas direcionais

A Figura 10 mostra a modelagem dos semivariogramas direcionais.

Parâmetros Estruturais	- 🗆 ×
- Parâmetros	-
Número de Estruturas: 🦳 1 🖳 2	• 3
Efeito Pepita: 28	
Primeira Estrutura	3
Tipo: Esférico 💌	
Contribuição: 63 Ângulo Anis.:	17
Alcance Máx.: 1677 Alcance Mín.:	.00001
Segunda Estrutura	6
Tipo: Esférico 💌	
Contribuição: 140 Ângulo Anis.:	17
Alcance Máx.: 2962 Alcance Mín.:	1677
Terceira Estrutura	
Tipo: Esférico 💌	
Contribuição: 71 Ângulo Anis.:	17
Alcance Máx.: 00000 Alcance Mín.:	2962
Executar Fechar	Ajuda

Figura 10. Ajuste dos semivariogramas para os vetores de maior e menor variabilidade espacial.

3.4 Validação do modelo de ajuste

O processo de validação do modelo de ajuste é uma etapa que precede as técnicas de krigeagem. Seu principal objetivo é avaliar a adequação do modelo proposto no processo que envolve a re-estimação dos valores amostrais conhecidos (Figura 11).

Figura 11. (a) Diagrama espacial do erro (b) Histograma do erro (c) Estatísticas do erro

3.5 Interpolação por krigeagem ordinária

Uma vez realizada a validação do modelo, a etapa final do processo geoestatístico consiste na interpolação de krigeagem. A Figura 12 mostra os resultados da interpolação levando em conta o ângulo de anisotropia e a geração do mapa temático contendo as classes de argila.

Figura 12. Interpolação considerando os ângulos de anisotropia.

4 Comparação de resultados entre a krigeageagem isotrópica e anisotrópica.

A Figura 13 mostra os resultados da interpolação levando em conta o ângulo de anisotropia e a geração do mapa temático contendo as classes de argila.

(b)

(C)

Figura 13. Teores de argila obtidos pela krigeagem a) anisotropica e b) isotrópica e c) comparação das classificações temáticas

Create PDF with GO2PDF for free, if you wish to remove this line, click here to buy Virtual PDF Printer