

AUGUST 6-10, 2018 INPE - São José Dos Campos, Brasil www.amerigeoss.org

PROCESSAMENTO DE IMAGENS DE SENSORIAMENTO REMOTO PARA RESPOSTA A DESASTRES

Uso de Imagens e Software Livre do INPE e ESA com Exemplos de Aplicações em Mapeamento para a Resposta à Desastres

T U T O R I A L (Exercícios Práticos)

6 a 10 de Agosto de 2018

SINTAXE DOS COMANDOS

Neste tutorial são utilizados sequências de procedimentos padronizados para descrever a operação nas diversas janelas do sistema. Os procedimentos para realização dos exercícios práticos seguem a seguinte sintaxe:

asterisco (*) – Comentários de um procedimento a ser executado.

(em itálico – tamanho 10)

Conteúdo

Download de Imagens do Catálogo INPE

- 1. Seleção de Satélite/Sensor/Data
- 2. Definição de Área de Interesse
- 3. Busca de Imagens
- 4. Carrinho e Download

Recorte e Registro entre Imagens no TerraView

- 1. Importação de Imagens e Visualização
- 2. Composição de Bandas
- 3. Recorte de Imagens
- 4. Registro entre Imagens
- 5. Visualização de Imagens Registradas

Classificação de Imagens no SPRING

- 1. Criação de Banco de Dados
- 2. Importação de Imagens
- 3. Compatibilização de Imagens com Mosaico
- 4. Visualização de Imagens
- 5. Classificação por Pixel comAlgoritmo K-Médias (K-Means)
- 6. Classificação por Regiões com Algoritmo IsoSeg

Medida de Área Queimada Dentro do Parque no SPRING

- 7. Importação do Limite do Parque
- 8. Compatibilização de Formatos e Tamanhos de Imagens
- 9. Cálculo de Área Queimada
- 10.Exportar para KML

Parte 1 - Download de Imagens do Catálogo INPE

Exercício- Download de Imagens do Catálogo INPE

Imagens de Satélite podem ser obtidas gratuitamente de alguns provedores. No caso do INPE, o catálogo de acesso geral e irrestrito a imagens de sensoriamento remoto é através do sítio *http://www.dgi.inpe.br/catalogo/*. Neste catálogo estão disponíveis imagens dos satélites das séries Landsat, CBERS e Resourcesat, entre outros. No caso deste curso, imagens do CBERS-4, sensor AWFI serão utilizadas para mapear áreas queimadas durante outubro de 2017.

\Rightarrow Acessando o sítio WEB:

- # Chrome (ou outro Browser)

* Acessar o sítio: http://www.dgi.inpe.br/catalogo/

⇒ Selecionando Satélite e Sensor:

- [Pesquisar][Parâmetros Básicos]

Parâmetros Básicos

- (Aprovadas) * somente as aprovadas pelo controle de qualidade
- (Satélite ⇔ CBERS-4)
- (Instrumento ⇔ AWFI)
- {Data Início: 01/10/2017} * Clicar na data no calendário
- {Data Fim: 31/10/2017} * Clicar na data no calendário

\Rightarrow Definindo Área de Interesse:

- * Selecione o ícone com retângulo no topo do mapa.
- * Amplie (Zoom in) até o Parque Nacional da Chapada dos Veadeiros (PNCV) ser

visível.

* Desenhe um retângulo contendo o contorno do PNCV.

\Rightarrow Busca de Imagens:

- Área selecionada * Caixa de texto ao lado do retângulo desenhado
- (aqui) * no texto

Resultados

- * Observe as imagens AWFI disponíveis.
- * Clique em uma delas para visualizar no mapa

⇒ Seleção e Download de Imagens:

Resultados

- 1. Selecionando a imagem do dia 09/10/2017
- * Clique na imagem do dia 09/10/2017.
- * Clique no carrinho abaixo da imagem no painel esquerdo.
- 2. Selecionando a imagem do dia 26/10/2017
- * Clique na imagem do dia 26/10/2017.
- * Clique no carrinho abaixo da imagem no painel esquerdo.
- 3. Abrindo o carrinho
- * Clique na imagem do carrinho no menu superior.

Carrinho de imagens

- (Prosseguir)

- (Fechar Pedido)
- (Fechar)
- 4. Recebendo E-mail
- * Mensagens de e-mail de aceite do pedido e disponibilização são enviadas pelo

catálogo.

- 5. Download das imagens
- * Acessar o link do e-mail e fazer download das imagens (*.zip).

Exercício- Recorte e Registro entre Imagens no TerraView

O TerraView é um aplicativo para Processamento de Imagens e Dados Geográficos. As imagens podem ser manipuladas diretamente em seu formato original. No caso do curso, as imagens estão disponíveis em formato GeoTIFF. O TerraView é utilizado aqui para recortar na área do PNCV e registrar as imagens para garantir um casamento melhor entre elas.

\Rightarrow Iniciando o TerraView e importando as imagens:

- # Iniciar – Programas – TerraLib - TerraView TerraView

- [Projeto][Adiciona Camada][Arquivo Matricial (raster)]
- * Alternativamente, abrir Explorador de Arquivos, localizar os arquivos GeoTIFF, marcar, arrastar e largar sobre a janela do TerraView.

Explorador de Arquivos

- * Selecionar diretório CursoAmeriGEOSS\CBERS4.
- (Options ↔ TIF Raster File (*.tif *.TIF)
- * Selecionar os arquivos GeoTIFF (múltiplos):
 - CBERS_4_AWFI_20171009_158_117_L4_BAND13.tif
 - CBERS_4_AWFI_20171009_158_117_L4_BAND14.tif
 - CBERS_4_AWFI_20171009_158_117_L4_BAND15.tif
 - CBERS_4_AWFI_20171009_158_117_L4_BAND16.tif
 - CBERS_4_AWFI_20171026_161_117_L4_BAND13.tif
 - CBERS_4_AWFI_20171026_161_117_L4_BAND14.tif
 - CBERS_4_AWFI_20171026_161_117_L4_BAND15.tif
 - CBERS_4_AWFI_20171026_161_117_L4_BAND16.tif

- (Abrir)

\Rightarrow Compondo Imagens:

TerraView

- [Processamento][Processamento Matricial][Compõe/Decompõe Bandas...] Compor/Decompor Bandas

- (Lista de Camadas & CBERS_4_AWFI_20171009_158_117_L4_BAND13.tif,

CBERS_4_AWFI_20171009_158_117_L4_BAND14.tif,

CBERS_4_AWFI_20171009_158_117_L4_BAND15.tif,

CBERS_4_AWFI_20171009_158_117_L4_BAND16.tif)

- (Avançar)

- * Conferir a ordem de armazenamento da imagem de saída composta: Manter na ordem BAND16, BAND15, BAND14 e BAND13.
- (Interpolador ↔ Vizinho mais Próximo)

- (Avançar)

* Clicar no botão ao lado do campo Arquivo (I).

Explorador de Arquivos

- * Selecionar diretório CursoAmeriGEOSS\CBERS4.
- {Salvar Como (Save As): AWFI_20171009_B16151413}
- (Save Salvar)

Compor/Decompor Bandas

- (Terminar)
- Repetir para as Imagens CBERS_4_AWFI_20171026_161_117_L4_BAND13.tif, CBERS_4_AWFI_20171026_161_117_L4_BAND14.tif, CBERS_4_AWFI_20171026_161_117_L4_BAND15.tif e CBERS_4_AWFI_20171026_161_117_L4_BAND16.tif, compondo a imagem AWFI_20171026_B16151413

\Rightarrow Recortando as Imagens - Passo 1: Importar e Visualizar Contorno do PNCV

* As imagens serão recortadas baseadas no contorno do PNCV. A camada com o contorno é gerada a partir de um arquivo em formato Shapefile.

TerraView

- [Projeto][Adiciona Camada][Arquivo Vetorial]
- * Alternativamente, abrir Explorador de Arquivos, localizar o arquivo Shapefile, marcar, arrastar e largar sobre a janela do TerraView.

Explorador de Arquivos

- * Selecionar diretório CursoAmeriGEOSS\CBERS4.
- (Options ↔ Esri Shapefile (*.shp *.SHP)
- * Selecionar o arquivo:
 - PNCV_Limite_Sirgas2000.shp
- (Abrir)
- * O visual do dado é definido através do Estilo que deve ser definido pelo usuário.
 TerraView
- (<u>Camadas</u> \$ PNCV_Limite_Sirgas2000) * Clique no quadrado (box)
- (Camadas / PNCV_Limite_Sirgas2000 7 Estilo) * Clique Duplo (double click)

Style Explorer

- (Basic Symbology ⇔ Cor) * Selecionar cor Amarelo
- (Basic Symbology ⇔ Largura) * Selecionar 2
- * Clicar no botão **Desenhar** (**)**
- * O projeto TerraView permite armazenar as visualizações definidas. Lembre-se de salvar com frequência para evitar refazer caso aconteça algum problema com o sistema.

TerraView

- [Arquivo][Salvar Projeto]
- * Selecionar um **Diretório** e definir um **Nome** para o **Projeto**.

⇒ Recortando as Imagens - Passo 2: Visualizar e Realçar as Imagens

 * As imagens AWFI visualizadas junto com o contorno do PNCV auxiliam o usuário a definir o recorte da área.

TerraView

- (<u>Camadas</u> \$ PNCV_Limite_Sirgas2000) * Clique no quadrado (box)
- (<u>Camadas</u> \$ AWFI_20171009_B16151413) * Clique no quadrado (box)

- (<u>Camadas</u> \$ AWFI_20171026_B16151413) * Clique no quadrado (box)

- * Clicar no botão Desenhar.
- * Observe que o desenho é feito de baixo para cima. Caso o contorno não esteja visível, clique e arraste a camada para colocar no topo da lista de Camadas.
- * Caso as imagens apareçam com contraste (realce) ruim, a janela de **Estilo** deve ser usada para contrastar as imagens.
- (<u>Camadas</u> \$ AWFI_20171009_B16151413) * Clique no quadrado (box)
- (Camadas / AWFI_20171009_B16151413 JEstilo) * Clique Duplo (double click)
- * Observe que em Style Explorer, a Seleção de Canal está Composição. Os canais compostos estão na ordem: Vermelho-0; Verde-1; e Azul-2. Esta composição coloca a banda Infravermelha em Vermelho(R), banda Vermelha em Verde(G) e banda Verde em Azul(B). Alterando para cores verdadeiras com a sequência:

Style Explorer

- (Seleção de Canal Composição)
- (Seleção de Canal Canal Vermelho ▼ 1)
- (Seleção de Canal Canal Verde ▼ 2)
- (Seleção de Canal Canal Azul ▼ 3)
- (Contraste)

Style Explorer 🗁 Contraste

- (Área Visível)
- (Banda 🔻 1)
- * Clicar no botão Histograma (📖).
- * Clicar com botão **Esquerdo** do mouse no início do histograma.
- * Clicar com botão Direito do mouse no final do histograma.
- * Clicar no botão **Check** (
- * Repetir para Banda 2 e 3.
- * Repetir para a camada **AWFI_20171026_B16151413**. Lembre-se da ordem de desenho de cima para baixo.

\Rightarrow Recortando as Imagens - Passo 4: Recortar as Imagens

TerraView

- (<u>Camadas</u> \$ PNCV_Limite_Sirgas2000) * Clique no quadrado (box)
- (<u>Camadas</u> \$ AWFI_20171009_B16151413) * Clique no quadrado (box)
- [Processamento][Processamento Matricial][Recorte...]

Recorte

- (Lista de Camadas \$ AWFI_20171009_B16151413.tif)
- (Avançar)
- (Tipo ▼ Região de Interesse)
- * Clicar no botão Criar pelo retângulo (¹).
- * Desenhar o Retângulo um pouco maior que o contorno do PNCV.
- (<u>Região de interesse</u> \$ ROI Item 1)
- (Avançar)
- * Clicar no botão ao lado do campo Arquivo (III).

Explorador de Arquivos

- * Selecionar diretório CursoAmeriGEOSS\CBERS4.
- {Salvar Como (Save As): AWFI_20171009_B16151413_Rec}
- (Save Salvar)

Recorte

- (Terminar)
- * Visualizar a camada AWFI_20171009_B16151413_Rec, aplicando o contraste utilizando Style Explorer, e visualizando em cores verdadeiras.
- * Repetir para AWFI_20171026_B16151413, criando nova imagem AWFI_20171026_B16151413_Rec.

\Rightarrow Registrando as Imagens

* A imagem AWFI_20171009_B16151413_Rec será considerada "correta" e usada como referência para a imagem AWFI_20171026_B16151413_Rec.

TerraView

- (Camadas \$ AWFI_20171009_B16151413_Rec)
- [Processamento][Processamento Matricial][Registro...]

Registro

- * Selecionar a imagem de REFERÊNCIA
- (Lista de Camadas \$ AWFI_20171009_B16151413_Rec.tif)
- (Avançar)
- * Selecionar a imagem de AJUSTE
- (Lista de Camadas \$ AWFI_20171026_B16151413_Rec.tif)
- (Avançar)

Localizador de Pontos de Controle

- (Opções)

Localizador de Pontos de Controle 🗁 Opções

- {Informações Máximo de Pontos de Controle: 500}
- * Clicar no botão Auto Adquirir Pontos de Controle (
- (Geral)

Localizador de Pontos de Controle 🗁 Geral

- * Observe e analise as informações sobre os pontos de controle adquiridos: Número de pontos e localizações, RMSE, e tabela de erros.
- * Clicar no botão Finaliza Aquisição de Pontos de Controle (2).

Registro

* Clicar no botão ao lado do campo Arquivo (I).

Explorador de Arquivos

- * Selecionar diretório CursoAmeriGEOSS\CBERS4.
- {Salvar Como (Save As): AWFI_20171026_B16151413_Reg}
- (Save Salvar)

Registro

- (Terminar)
- * Visualizar a camada AWFI_20171026_B16151413_Reg, aplicando o contraste utilizando Style Explorer, e visualizando em cores verdadeiras.

\Rightarrow Visualizando as Imagens Registradas

 * As bandas do Infravermelho (Banda 16) das imagens de 9 e 26 de outubro, quando visualizadas em Vermelho e Verde permitem localizar as áreas queimadas.

TerraView

- (<u>Camadas</u> \$ AWFI_20171009_B16151413_Rec) * Clique no quadrado (box)
- (Camadas \$ AWFI_20171026_B16151413_Reg) * Clique no quadrado (box)
- * Contraste na imagem do dia 09/10
- (Lista de Camadas \$ AWFI_20171009_B16151413_Rec.tif)
- (Camadas / AWFI_20171009_B16151413_Rec.tif JEstilo) * Clique Duplo (double

click)

Style Explorer

- (Seleção de Canal Canal Vermelho)
- (Seleção de Canal Canal Vermelho ▼ 0)
- (Contraste)

Style Explorer 🗁 Contraste

- (Área Visível)
- (Banda 🔻 0)
- * Clicar no botão Histograma (📖).
- * Clicar com botão Esquerdo do mouse no início do histograma.
- * Clicar com botão Direito do mouse no final do histograma.
- * Clicar no botão Check (🗹).
- * Contraste na imagem do dia 26/10
- (Lista de Camadas \$ AWFI_20171026_B16151413_Reg.tif)
- (Camadas / AWFI_20171026_B16151413_Reg.tif]Estilo) * Clique Duplo (double

click)

Style Explorer

- (Seleção de Canal Canal Verde)
- (Seleção de Canal Canal Verde ▼ 0)
- (Contraste)

Style Explorer 🗁 Contraste

- (Área Visível)
- (Banda ▼ 0)
- * Clicar no botão Histograma (📖).
- * Clicar com botão **Esquerdo** do mouse no início do histograma.
- * Clicar com botão Direito do mouse no final do histograma.
- * Clicar no botão Check (¹).
- * Composição colorida Vermelho e Verde
- (<u>Lista de Camadas</u> & AWFI_20171009_B16151413_Rec.tif) * Botão Direito AWFI_20171009_B16151413_Rec.tif
- [Modo Composição][Adiciona]

\Rightarrow Finalizando o TerraView

TerraView

- [TerraView][Encerrar TerraView]
- * Selecionar Salvar. Caso não tenha definido o projeto, selecionar um **Diretório** e definir um **Nome** para o **Projeto**.

Parte 2 - Classificação e Cálculo de Área Queimada no SPRING

As imagens registradas no TerraView são classificadas no SPRING através de dois algoritmos diferentes. A área queimada dentro do PNCV é calculada utilizando o limite do PNCV em formato Shapefile.

Exercício- Criar Projeto Automaticamente na Importação de Dados

O SPRING utiliza o conceito de Projetos dentro de um Banco de Dados. O projeto define a área de trabalho e a projeção cartográfica do armazenamento dos dados. Estas duas informações podem ser extraídas do dado a ser importado. Neste caso, temos imagens em formato GeoTIFF.

⇒ Criando um diretório para o banco:

- # Windows Explorer

* *Utilizar o Windows Explorer para criar o diretório* SpringDB na pasta CursoAmeriGEOSS\CBERS4

\Rightarrow Iniciando o SPRING e criando um banco:

- # Iniciar Programas Spring<versão> Spring<versão>
- * O SPRING ativa automaticamente o banco e projeto da última sessão, bem como a seleção dos PI(s) e as telas como estavam ao fechar o aplicativo. Neste caso, podem aparecer Projeto e/ou Banco de Dados que não interessam para o curso.

SPRING

- [Arquivo][Banco de Dados...] ou botão 📕

Banco de Dados

- (Diretório...) * selecionar o diretório CursoAmeriGEOSS\CBERS4\SpringDB
- {Nome: Cueimadas}
- (Gerenciador ↔ SQLite)

- (Criar)

- (Ativar) * responda Sim caso tenha outro Banco/Projeto ativo

SPRING [Queimadas]

* Observe que apenas o nome do banco é exibido na barra de título do Spring, já que não existem projetos iniciados nele.

⇒ Ativar o Banco caso ainda não esteja ativo

SPRING

- [Arquivo][Banco de Dados...] ou botão 📕

Banco de Dados

- (Diretório...) * selecionar o diretório CursoAmeriGEOSS\CBERS4\SpringDB
- (Banco de Dados ⇔ Queimadas)

- (Ativar) * responda Sim caso tenha outro Banco/Projeto ativo

 \Rightarrow Importando o arquivo GeoTIFF AWFI 20171009 B16151413 Rec.tif: SPRING [Queimadas] - [Arquivo][Importar][Importar Dados Vetoriais e Matriciais...] Importação 🗁 Dados - (Arguivo...) Dialogo - (Olhar em : ▼ CursoAmeriGEOSS\CBERS4) - (Arquivos do tipo: ▼ TIFF/GEOTIFF (*.tif *.tiff)) * opção default da importação. - (Nome \$ AWFI 20171009 B16151413 Rec.tif) - (Abrir) * Observe que o campo de Projeção está preenchido com UTM/Datum->WGS84 e tamanho do pixel com 64 Importação 🗁 Dados - (Entidade: ▼ Imagem) Importação 🗁 Saída - {Projeto: PNCV} * Nome do projeto a ser criado - {Categoria: CBERS} * Nome da categoria Imagem a ser criada - {PI: AWFI 20171009} * nome do PI a ser criado. As bandas 16, 15, 14 e 13 serão importadas para os Planos de Informação (PI) AWFI 20171009 1, AWFI 20171009 2, AWFI 20171009 3 e AWFI 20171009 4, respectivamente. - (Executar) SPRING - Criar nova Categoria? CBERS - (Sim) Importação 🗁 Saída - (Fechar) * Verificar no Painel de Controle que o PI Rios está disponível. Para desenhar : \Rightarrow Visualizando a imagem na tela principal: SPRING C Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - CBERS 7 AWFI 20171009 1) - (☑ M) * Observe os dados do Projeto na janela de Projeto SPRING [Queimadas][PNCV] - [Arquivo][Projeto...][Projeto...]

⇒ Importando o arquivo AWFI_20171026_B16151413_Rec.tif:

* Repetir a importação para o AWFI_20171026_B16151413_Rec.tif, definindo o nome do PI como sendo AWFI_20171026.

Exercício- Compatibilizar Imagens com Mosaico

O SPRING requer que os PIs com imagens tenham a mesma resolução espacial, mesma região e mesmo número de linhas e colunas para realizar a classificação. Neste exercício, a ferramenta de **Mosaico** é utilizada para este fim. A imagem AWFI_20171009_1 será utilizada como sendo o padrão com as características dos PIs.

⇒ Criando PIs para a imagem AWFI_20171026: SPRING ☐ Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação - CBERS ↓ *AWFI_20171009_1*) - * *Padrão*.

- [Editar][Plano de Informação...] ou 🚄 Planos de Informação - {Nome: AWFI_20171026_B16} - (Criar) - {Nome: AWFI 20171026 B15} - (Criar) - {Nome: AWFI 20171026 B14} - (Criar) - {Nome: AWFI_20171026 B13} - (Criar) - (Fechar) \Rightarrow Copiando PI AWFI 20171026 1 para os PIs AWFI 20171026 B16: SPRING C Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - CBERS 7 AWFI 20171026 B16) - * Padrão. SPRING [Queimadas][PNCV] - [Arquivo][Imagem][Mosaico...] Mosaico - (Projetos \$ PNCV) (<u>Categorias</u> CBERS) - (Planos de Informação de Origem ^{\$} AWFI 20171026 1) - * IMPORTANTE: Corresponde a Banda 16 devido a composição feita no TerraView. - (Executar) \Rightarrow Copiando PI AWFI_20171026_2 para os PIs AWFI_20171026_B15: SPRING C Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - CBERS 7 AWFI 20171026 B15) - * Padrão. SPRING [Queimadas][PNCV] - [Arquivo][Imagem][Mosaico...] Mosaico - (Projetos \$ PNCV) - (Planos de Informação de Origem ^{\$} AWFI 20171026 2) - * IMPORTANTE: Corresponde a Banda 16 devido a composição feita no TerraView. - (Executar) \Rightarrow Copiando PI AWFI_20171026_3 para os PIs AWFI_20171026_B14: SPRING C Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - CBERS 7 AWFI 20171026 B14) - * Padrão. SPRING [Queimadas][PNCV] - [Arquivo][Imagem][Mosaico...] Mosaico - (Projetos \$ PNCV) - (Categorias \$ CBERS) - (Planos de Informação de Origem ^{\$} AWFI 20171026 3) - * IMPORTANTE: Corresponde a Banda 16 devido a composição feita no TerraView. - (Executar)

 \Rightarrow Copiando PI AWFI_20171026_4 para os PIs AWFI_20171026_B13:

SPRING 🗁 Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação - CBERS ↓ *AWFI_20171026_B13*) - * *Padrão.* **SPRING [Queimadas][PNCV]**

- [Arquivo][Imagem][Mosaico...]

Mosaico

- (<u>Projetos</u> \$ PNCV)

- (Categorias CBERS)

- (Planos de Informação de Origem \$ AWFI_20171026_4) - * IMPORTANTE:

Corresponde a Banda 16 devido a composição feita no TerraView.

- (Executar)

Exercício- Visualizar Imagens em Composição Vermelho-Verde

As bandas 16 (Infravermelho) dos dias 9 (antes da queimada) e 26 (após a queimada) compostas em Vermelho e Verde permitem identificar visualmente as áreas queimadas em tons de vermelho.

\Rightarrow Visualizando os PIs da Banda 16:

SPRING 🗁 Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação - CBERS ↓ *AWFI_2017<mark>1009</mark>_1*) - * *Banda 16.* - (☑ R)

- (⊠ G)

 \Rightarrow Definindo um aumento de contraste linear:

SPRING [Queimadas][PNCV]

- [Imagem][Contraste...]

Contraste

- [Canal][Vermelho]
- Selecionar com o botão esquerdo do cursor o valor mínimo do histograma
- Selecionar com o botão direito do cursor o valor máximo do histograma
- (Aplicar)
- * A imagem em R é realçada na tela ativa

Contraste

- [Canal][Verde]
- Selecionar com o botão esquerdo do cursor o valor mínimo do histograma
- Selecionar com o **botão direito** do cursor o valor máximo do histograma

- (Aplicar)

* A imagem em G é realçada na tela ativa. Área queimada é apresentada em tons de vermelho e as não queimadas em amarelo.

Exercício- Classificar Imagens por Pixel

As <mark>4 bandas do dia 09 e as 4 bandas do dia 26</mark> serão classificadas considerando somente o valor de cada pixel utilizando a <mark>classificação não-supervisionada K-Média</mark>s (K-Means).

 \Rightarrow Criando o contexto:

SPRING 🗁 Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação CBERS ↓ *AWFI_20171009_1*) * *Banda 16.* - (☑ R)

- (🛛 G)

SPRING [Queimadas][PNCV]

- [Imagem][Classificação...]

Classificação

- (Criar...)

Criação de Contexto

- {Nome: Pixel}

- (Tipo de Análise: Pixel)

- (<u>Bandas</u> **AWFI_20171009_1**, AWFI_20171009_2, AWFI_20171009_3,

AWFI_20171009_4, AWFI_20171026_B16, AWFI_20171026_B15,

```
AWFI_20171026_B14, AWFI_20171026_B13)
```

- (Executar)
- \Rightarrow Classificando:

Classificação

- (Contextos Pixel)

- (Classificação...)

Classificação de Imagens

- (Tipo do Classificador: ▼ KMedias)
- {# Temas: **20**}
- {# Iterações: **10**}
- {Nome: **KMeans20**}
- (Executar)

 \Rightarrow Visualizando o resultado:

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação - CBERS 7 KMeans20)

- (I Classificada) - * Observe que a área queimada aparece no Tema desenhado

em Vermelho

Exercício– Mapear a Classificação para Imagem Temática

Os **temas** de uma imagem classificada podem ser mapeados em **classes** de uma categoria Temática, permitindo que operações temáticas (como o cálculo de áreas) possa ser realizado. Para isto, a categoria Temática Uso deve estar disponível para o mapeamento.

 → Criando categoria Temática e suas classes: SPRING [Ambiental][PNCVeadeiros]
 - [Arquivo][Modelo de Dados...] ou botão
 Modelo de Dados
 Categorias

- {Categorias - Nome: Uso }

- (Modelos de Dados 🖲 Temático)

- (Criar) Modelo de Dados 🗁 Classes Temáticas * Incluir as seguintes classes - {Classes Temáticas - Nome: Queimada } - (Criar) - {Classes Temáticas - Nome: Elimite } - (Criar) - (Executar) * salva a alteração efetuada. ⇒ Definindo um novo Visual de Classes Temáticas: Modelo de Dados 🗁 Categorias - (Categorias \$ Uso) Modelo de Dados
Classes Temáticas - (Visual...) Visuais de Apresentação Gráfica 🗁 Áreas - (Cor...) Selecionar cor - Selecionar uma cor - (OK) Modelo de Dados 🗁 Categorias - (Categorias Uso) Modelo de Dados 🗁 Classes Temáticas - (Classes Temáticas ^{\$} Limite) - (Visual...) Visuais de Apresentação Gráfica 🗁 Áreas - (Cor...) Selecionar cor - Selecionar uma cor - (OK)- (Executar) * salva a alteração efetuada. - (Fechar) Modelo de Dados - (Fechar) ⇒ Mapeando Temas para Classes Temáticas: SPRING [Queimadas][PNCV] - [Imagem][Classificação...] Classificação - (Contextos:
Pixel) - (Mapeamento...) **Mapeamento para Classes** (Imagens Classificadas \$ KMeans20) - (<u>Categorias</u> Uso) - (Temas ^{\$} Tema1) - (<u>Classes</u> Queimada) - (Executar) \Rightarrow Visualizando o resultado: Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - Uso 7 *KMeans20-T*) - (☑ Matriz)

Exercício- Classificar Imagens por Regiões

A Classificação por Regiões requer que as regiões sejam criadas por <mark>segmentação.</mark> Sobre estes segmentos, atributos das imagens são calculados e utilizados para classificar a imagem.

\Rightarrow Segmentando a Imagem

SPRING 🗁 Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação - CBERS ↓ *AWFI_20171009_1*) - * *Banda 16.* - (☑ R)

- (Categoria / Plano de Informação - CBERS 7 AWFI_20171026_B16)

- (🛛 G)

SPRING [Queimadas][PNCV]

- [Imagem][Segmentação...]

Segmentação

- (<u>Método</u> [‡] Crescimento de Regiões)

- (Bandas \$ AWFI_20171009_1, AWFI_20171009_2, AWFI_20171009_3,

AWFI_20171009_4, AWFI_20171026_B16, AWFI_20171026_B15,

AWFI_20171026_B14, AWFI_20171026_B13)

- {Similaridade: 50}
- {Área (pixels): 10}
- {Nome do PI: Seg5010}
- (Suavização de Arcos:
 Sim)
- (Executar)

```
⇒ Visualizando a segmentação
```

SPRING 🗁 Principal

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação CBERS ↓ *AWFI_20171009_1*) * *Banda 16.* - (☑ R)
- (🛛 G)
- (Categoria / Plano de Informação CBERS 7 Seg5010)
- (🛛 Rotulada)

⇒ Criando o contexto:

SPRING [Queimadas][PNCV] - [Imagem][Classificação...]

```
Classificação
```

- (Criar...)

Criação de Contexto

- {Nome: Reg}
- (Tipo de Análise:
 Regiões)
- (<u>Bandas</u> \$ AWFI_20171009_1, AWFI_20171009_2, AWFI_20171009_3,

AWFI_20171009_4, AWFI_20171026_B16, AWFI_20171026_B15,

AWFI_20171026_B14, AWFI_20171026_B13)

- (Imagens Segmentadas ^{\$} Seg5010)

- (Executar)

 \Rightarrow Classificando:

SPRING [Queimadas][PNCV]

- [Imagem][Classificação...]

Classificação

- (<u>Contextos</u> \$ Reg)
- (Extração de Atributos das Regiões...) * Atributos a serem usados na

classificação.

- (Classificação...)

Classificação de Imagens

- (Tipo do Classificador: ▼ Isoseg)
- (Limiar de Aceitação: ▼ 95%)

- {Nome: Iso95}

- (Executar)

 \Rightarrow Visualizando o resultado:

Painel de Controle 🗁 Pl Disponíveis

- (Categoria / Plano de Informação - CBERS 7 Iso95)

```
- (🛛 Classificada) - * Observe que a área queimada aparece no Tema desenhado
```

em Vermelho. Desmarque a visualização dos outros PIs, mantendo somente as imagens em R e G.

\Rightarrow Mapeando Temas para Classes Temáticas:

SPRING [Queimadas][PNCV]

- [Imagem][Classificação...]

Classificação

- (<u>Contextos</u>: \$ Reg)
- (Mapeamento...)

Mapeamento para Classes

- (Imagens Classificadas \$ Iso95)
- (<u>Categorias</u> Uso)
- (<u>Temas</u> TemaX) * verificar qual tema está com a área queimada.
- (<u>Classes</u> Queimada)
- (Executar)

 \Rightarrow Visualizando o resultado:

Painel de Controle 🗁 PI Disponíveis

- (Categoria / Plano de Informação Uso ↓ Iso95-T)
- (🛛 Matriz)

Exercício- Importar Limite do Parque

O limite do PNCV está disponível no sítio WEB do ICMBio em formato KML. O arquivo KML foi convertido em Shapefile e é importado para o SPRING neste exercício.

\Rightarrow Importando o arquivo Shapefile:

SPRING [Queimadas][PNCV]

- [Arquivo][Importar][Importar Dados Vetoriais e Matriciais...]

Importação 🗁 Dados

- (Arquivo...)

Dialogo

- (Olhar em : ▼ CursoAmeriGEOSS\CBERS)
- (Arquivos do tipo: ▼ Shapefile (*.shp)) * opção default da importação.
- (<u>Nome</u> PNCV_Limite_Sirgas2000.shp)
- (Abrir)

```
Importação 🗁 Dados
```

```
- (Unid.: ▼ graus), {Escala: 1/ = 100000}
              - (Projeção...)
              Projeções
              - (Sistemas $ LATLONG)
              - (Modelos da Terra <sup>$</sup> Datum->SIRGASS2000)
              - (Executar)
              Importação 🗁 Saída
              - (Categoria...)
              Lista de Categorias

    (Categorias $ Uso)

              - (Executar)
              Importação 🗁 Saída
              - {PI: Limite}
              - (Executar)
              - (Fechar)
       \Rightarrow Visualizando o limite do PNCV:
              SPRING C Principal
              Painel de Controle 🗁 PI Disponíveis
              - (Categoria / Plano de Informação - Uso 🤍 Limite).
              - ( ILI Linhas)
       \Rightarrow Alterando o visual do limite do PNCV:
              SPRING [Queimadas][PNCV]
              - [Editar][Plano de Informação...] ou 🚄
              Planos de Informação
              - (Visual)
              Visuais de Apresentação Gráfica 🗁 Linhas
              - (Cor...) - * na Aba Linhas.
              Selecionar Cor
              - Selecionar uma cor – Sugestão: vermelho ou amarelo
              - (OK) * veja se a linha mudou de cor.
              Visuais de Apresentação Gráfica
              - (<u>Largura</u> $ 2)
              - (Executar) * para confirmar a alteração.
              - (Fechar)
              Planos de Informação
              - (Fechar)
       \Rightarrow Identificando os polígonos do PNCV:
              SPRING [Queimadas][PNCV]
              Painel de Controle 🗁 Pl Disponíveis
              - (Categoria / Plano de Informação - Uso 🤍 Limite).
              - ( ILI Linhas)
              - [Temático][Edição Vetorial...]
              BARRA DE FERRAMENTAS - * Observe as opções de ferramentas de edição
disponíveis.
              - 🗰 - Ajustar - * Ajusta nós (une extremos de linhas). Caso a escala do dado esteja
```

corretamente definida, na linha de estado deve aparecer a mensagem: Nós Ajustados - 5.

- Construction - Poligonalizar - * Identifica regiões fechadas por linhas como um polígono: na linha de estado a mensagem deve ser: **Polígonos - 5**.

- 🧉 - Classes - * Associa classes temáticas aos polígonos

Editar Classe Temática

- (<u>Classes</u> ^{\$} Limite)

- (Operação: 🖲 Associar)

- (Entidade:
Polígono)

* Associar ao polígono maior com um click sobre ele.

* Associar ao polígono menor com um click sobre ele.

- (Fechar)

BARRA DE FERRAMENTAS

- * Botão para sair da edição
 ⇒ Visualizando o limite do PNCV preenchido:
 SPRING Principal
 Painel de Controle PI Disponíveis
 - (Categoria / Plano de Informação - Uso Limite).
 - (☑ Linhas)
 - (☑ Classes)

Exercício- Compatibilizar o Limite do Parque com as Imagens Temáticas

O cálculo de área queimada dentro do PNCV é realizada por uma operação que requer o uso de mesmo formato para as entradas. O limite do PNCV deve ser convertido para a mesma resolução, com mesmo número de linhas e colunas (na mesma região geográfica). A conversão de formato é realizada primeiro e depois o **Mosaico** é executado para copiar a matriz com o limite para um PI criado baseado em uma das imagens temáticas (as 2 imagens temáticas provenientes da classificação tem as mesma características).

```
⇒ Convertendo os polígonos do PNCV do formato vetorial para o matricial:
      SPRING [Queimadas][PNCV]
      Painel de Controle 🗁 PI Disponíveis
      - (Categoria / Plano de Informação - Uso 🧎 Limite).
      - ( I Linhas)
      - (☑ Classes)
      SPRING [Queimadas][PNCV]
      - [Temático][Vetor->Matriz]
      Vetor->Matriz
      - [Temático][Vetor->Matriz]
      - {Horizontal: 64}
      - {Vertical: 64}
      - (<u>Tipo</u> $ 8 bits sem sinal (0...255))
      - (Executar)
⇒ Visualizando o limite do PNCV em formato matricial:
      SPRING 
Principal
      Painel de Controle 🗁 Pl Disponíveis
      - (Categoria / Plano de Informação - Uso 🧎 Limite)
      - ( Matriz)
```

⇒ Criando PI para a o limite compatível a partir da imagem temática Iso95-T: SPRING **C** Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - Uso 🧎 *Iso95-T*) - [Editar][Plano de Informação...] ou 🚄 Planos de Informação - {Nome: Limite Iso95} - (Criar) - (Fechar) ⇒ Copiando Matriz do PI Limite para o PI Limite Iso95: SPRING C Principal Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - Uso 7 *Limite Iso95*) SPRING [Queimadas][PNCV] - [Arquivo][Imagem][Mosaico...] Mosaico - (Projetos \$ PNCV) - (<u>Categorias</u> Uso) - (Planos de Informação de Origem \$ Limite) - (Representações:
Matriz) - (Executar)

(Executor)

Exercício- Calcular a área queimada dentro do Limite do Parque

A área queimada, publicada nos meios de comunicação que citam o ICMBio, foi estimada em 65000 hectares. Utilizando a ferramenta de Tabulação Cruzada, calcularemos a área queimada detectada pelo CBERS-4 em resolução de 64 metros.

⇒ Calculando a área queimada detectada pelo classificador K-Médias: SPRING [Queimadas][PNCV] Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - Uso 7 *Limite Iso95*). SPRING [Queimadas][PNCV] - [Arquivo][Temático][Tabulação Cruzada...] Tabulação Cruzada - (PI de Intersecção...) **Categorias e Planos** - (<u>Categorias</u> Uso) - (Planos de Informação
 KMeans20-T) - (Executar) Tabulação Cruzada - (Executar) **Relatório de Dados** * Observe a área de intersecção entre as classes Limite e Queimada: 67340

hectares.

- (Fechar)

 \Rightarrow Calculando a área queimada detectada pelo classificador Isoseg: SPRING [Queimadas][PNCV] Painel de Controle 🗁 PI Disponíveis - (Categoria / Plano de Informação - Uso 7 *Limite Iso95*). SPRING [Queimadas][PNCV] - [Arquivo][Temático][Tabulação Cruzada...] Tabulação Cruzada - (PI de Intersecção...) **Categorias e Planos** - (Categorias \$ Uso) - (Planos de Informação \$ Iso95-T) - (Executar) Tabulação Cruzada - (Executar) **Relatório de Dados** * Observe a área de intersecção entre as classes Limite e Queimada. - (Fechar)

Exercício- Exportar a área queimada dentro do Limite do Parque em Formato KML

O formato KML permite a integração com outros dados já disponíveis no Google Earth. No SPRING, somente dados em formato vetorial são exportados em KML. A conversão de Matriz para Vetor deve ser executada no primeiro passo.

⇒ Recortando a matriz de área queimada para eliminar queimadas fora do PNCV: SPRING [Queimadas][PNCV] Painel de Controle PI Disponíveis

- (Categoria / Plano de Informação - Uso 7 *KMeans20-T*)

- (Matriz)

SPRING [Queimadas][PNCV]

- [Ferramentas][Recortar Plano de Informação]

Recortar Plano de Informação

- [Temático][Matriz->Vetor]
- (
 Selecionar Máscara)

- (PI...)

Categorias e Planos

- (<u>Categorias</u> ^{\$} Uso)
- (Planos de Informação \$ KMeans20-T)
- (Executar)

Auxiliar

- * Clicar dentro do polígono maior do PNCV..
- * Clicar dentro do polígono menor do PNCV.
- * Observe que os polígonos ficam selecionados em Vermelho.

Recortar Plano de Informação

- (Recorte: 🖲 PI Ativo)
- {PI Ativo: KMeans20-T_Rec}
- (Interno)
- (Executar)

```
⇒ Convertendo a matriz de área queimada para o formato vetorial:
      SPRING [Queimadas][PNCV]
      Painel de Controle 🗁 PI Disponíveis
      - (Categoria / Plano de Informação - Uso 7 KMeans20-T Rec)
      - (☑ Matriz)
      SPRING [Queimadas][PNCV]
      - [Temático][Vetor->Matriz]
      Matriz->Vetor
      - [Temático][Matriz->Vetor]
      - (Suavização de Arcos: • Sim)
      - (Tipo de Conversão $ Total)
      - (Executar)
⇒ Visualizando o limite do PNCV em formato vetorial:
      SPRING C Principal
      Painel de Controle 🗁 PI Disponíveis
      - (Categoria / Plano de Informação - Uso 7 KMeans20-T_Rec)
      - ( Classes)
⇒ Exportando a área queimada para KML:
      SPRING [Queimadas][PNCV]
      - [Temático][Exportar][Exportar Dados Vetoriais e Matriciais]
      Exportar
      - (Formato $ KML)
      - (Entidade $ Tudo)
      - (Salvar...)
      Dialogo
      - (Olhar em : ▼ CursoAmeriGEOSS\CBERS)
      - {Salvar Como: KMeans20-T_Rec}
```

```
- (Salvar)
```

Repetir os passos para as área queimadas detectadas pelo classificador Isoseg.