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A B S T R A C T   

Researches on the deforestation of the Amazon have gained prominence in the last recent years, mainly with the 
change in the policy regarding the facing of this phenomenon by the Brazilian government. Therefore, an un
derstanding about the causes that pressure the occurrence of deforestation remains relevant and has a leading 
role in the world. Therefore, the aim of this study is to perform the analysis of the spatial variability of the 
reasons for the deforestation in the Amazon Biome, in Brazil, (2010–2019). To achieve this goal, 14 variables 
were selected, the choice and adjustment of the regression model were determined and a diagnosis was carried 
out in order to verify the most appropriate model. To achieve this purpose, a geographic database was structured 
in a geographic information system environment. The main results revealed that the adjusted R2 of the 
Geographically Weighted Regression (GWR) was 0.96, that is, the GWR model explains 96% of the variations in 
deforestation. Therefore, it was observed a significant gain when using this model. In addition, it was also 
observed that the average variable of the number of oxen was, among those analyzed, the one that showed the 
highest correlation with deforestation. Thus, it was found that the livestock sector in southern Amazonia is the 
main economic agent that pressures large areas of deforestation, since stockfarming is practiced extensively. 
Finally, it was concluded that the municipalities with the largest areas of deforestation formed a cluster in the 
southern portion of the Amazon, in the arc of deforestation.   

1. Introduction 

Several researches have been investigating the removal of natural 
vegetation in areas of non-indigenous occupation, such as the current 
area in the Amazon Biome (Ometto et al., 2014; Fearnside et al., 2017). 
These studies have shown that deforestation triggers significant changes 
in the hydrological cycle (Vergopolan and Fisher, 2016), for example, 
the quality of waters and of the aquatic environments (Ríos-Villamizar 
et al., 2017), on the life of the remaining socio-diversity (Santos, 2018), 
the rising global and regional average temperature (Prevedello et al., 

2019), the intensification of extreme weather events (Boers et al., 2017; 
Zemp et al., 2017; Leite Filho et al., 2019) and also in the proliferation of 
infectious diseases and public health (Ellwanger et al., 2020). Thus, 
according to Nóbrega (2014), the deforestation is the biggest problem in 
the hydrographic basin of the Amazon River and its impacts can 
generate several consequences that may affect different geographical 
scales (local, regional and global). 

Some recent researches indicated that the reason of the accelerated 
deforestation in tropical forests is the growing search for wood (Brandt 
et al., 2016; Karsenty et al., 2017), biofuels (Edwards et al., 2014), 
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agricultural products (Laurance et al., 2014; Miyamoto, 2020) and also 
the road constructions (William, 2002; Laurance et al., 2006) and. An 
example of such an assertion is that in the 80s and 90 s decades, almost 
55% of new agricultural land in the world was acquired at the expense of 
intact tropical forests (Gibbs et al., 2010). This increase in the search for 
wood from tropical forests has been rapidly increasing year after year, 
due to the increased demand for wood derived products, mainly in the 
markets of Asia and in developing countries (Brandt et al., 2018). This 
problem represents a major challenge for the conservation of such areas, 
since tropical forests occupy a large part of the land required for agri
culture (Gibbs et al., 2010). 

The Brazilian Amazon deforestation has been monitored since the 
early 80s by the National Institute for Space Research (INPE) through 
the project Forest Monitoring of the Brazilian Amazon by Satellite 
(PRODES), which perform annual annually mapping of the deforestation 
areas (INPE, 2017a). With that, in the last decade, a tendency of 
reduction of the deforestation in the Brazilian Amazon has been 
observed. Unfortunately, this tendency has drastically changed in the 
recent years, and an increase of the deforestation has started gradually 
(Silva et al., 2020, 2021; Dang et al., 2019). In this sense, deforestation 
in the Amazon can be explained by several factors. Assunção et al. 
(2020) indicated an evidence of the influence of the effect of rural credit 
on the Brazilian Amazon deforestation. The authors point out that the 
change in the policy promoted a substantial reduction in deforestation, 
especially in municipalities that have livestock as their main economic 
activity. 

In addition to this, deforested areas are usually concentrated closer 
to roads (Pinheiro et al., 2016). Thereby, improvements in the transport 
infrastructure have intensified deforestation along its route and in places 
that are more bound to its influence (Silva et al., 2020). In this sense, 
Oliveira et al. (2020) affirms that the variables of distance from high
ways and urban centers were the ones that contributed the most to the 
area of the great probability of deforestation, since, to create these roads 
and cities, it was necessary to cut down trees and/or change the forest 
landscape. It is added to that, the increase in the human population 
density (Laurance et al., 2009). Laurance et al. (2009) also highlighted 
the factors that can affect physical accessibility to forests, materialized 
by the linear distances to the nearest paved highway, unpaved roads, 
and navigable rivers. The roads also facilitate the selective extraction of 
wood of commercial interest. 

Stockfarming is another factor often mentioned in terms of defores
tation in Brazil (Walker et al., 2013; Picoli et al., 2020). This is due to the 
growing demand from the national and international market for bovine 
meat, which requires larger extensions of area for the development of 
pastures (Walker et al., 2013; Picoli et al., 2020). In the Amazon, live
stock ranching is often practiced in conjunction with agriculture (San
tos, 2018). Thus, the areas of pasture and soybean cultivation play a 
fundamental role in the deforestation of the Brazilian Amazon (Picoli 
et al., 2020; Mammadova et al., 2020) and this occurs since farmers, 
ranchers, and lumber traders find ways to get around the agreements 
and legislation (Carvalho et al., 2019). In this sense, according to Costa 
et al. (2017), soybean plantations have increased in the south of the 
Brazilian Amazon, especially in the states of Rondônia and Mato Grosso. 

In contrast, there are the inhibiting deforestation areas, such as 
indigenous lands (BenYishay et al., 2017; Santos, 2018) and the con
servation units (Assunção et al., 2015; Folharini et al., 2021; Rudke 
et al., 2020; West and Fearnside, 2021). As a result, Assunção et al. 
(2015) attributes 56% of the reduction in the forest loss in the period 
2004–2009 to the conservation policies implemented in the Amazon 
between the years of 2004 and 2008. 

Thus, it was chosen as a hypothesis the fact that deforestation in the 
Amazon Biome occurs predominantly through livestock ranching and 
agricultural crops in the southern portion of this region. Therefore, it is 
important to visualize the spatial nature of deforestation in tropical 
forests and on each area compared to the others. For this purpose, 
explicit spatially analyses are increasingly been used to solve the 

problems derived from spatial autocorrelation. For example, the Moran 
index is the most common statistic test for detecting spatial autocorre
lation, which includes tests for visualizing clustering through global 
testing and creating meaningful and clustering maps using local statis
tics tests, such as the Local Indicators of Spatial Autocorrelation - LISA 
(Anselin and Rey, 2014). It was observed that this methodology, for the 
analysis of deforestation, is not recurrent in the Amazon, but the work 
from Walker et al. (2000) and Fagua et al. (2019). Walker et al. (2000) 
performed diagnoses of spatial autocorrelation on land cover data in the 
Choco-Darien Ecoregion, which occupies part of the areas of Panama, 
Colombia, and Ecuador. Fagua et al. (2019) used the Moran Index to 
identify the cities where deforestation, through livestock and refores
tation, was significantly clustered in the Brazilian Amazon. Salame et al. 
(2016), for example, used the Moran Index to analyze forest fires and 
deforestation in the Brazilian Amazon during the period from 1999 to 
2004. In addition, finding a logical statistical relationship between 
deforestation and its causes is helpful in order to quantify its influence 
and prioritize this variable in forest conservation programs at the local 
and national levels. 

Common regression methods, such as, Ordinary Least Squares (OLS), 
can only analyze a relationship between the response variable and the 
explanatory variables, but do not consider a spatial dependency (Anselin 
and Rey, 2014). The local spatial analysis creates a relationship between 
the results of spatial techniques and the visualization capacity of the 
Geographic Information System (GIS) (Fotheringham et al., 2002), while 
spatial patterns are ignored in the correlations of global statistics (Wu 
et al., 2010). Therefore, spatial regression techniques, including 
geographically weighted regression (GWR) (Leung et al., 2000; Fother
ingham et al., 2002) can be used to analyze spatial causes in defores
tation (Wu et al., 2010; Naibbi and Healey, 2014). 

Although some statistical models, for instance the general regression 
models, have been applied to study the deforestation and its causes in 
some studies, models of spatial autocorrelation and spatial regression 
have rarely been applied. Therefore, first, the spatial trend patterns of 
deforestation in the Brazilian Amazon were assessed using the Global 
Moran Index and LISA to detect the spatial autocorrelation between 
deforestation and its causes. Then, the performance of the OLS and GWR 
models were compared, in order to explain the relationship between 
deforestation and its causes. Thus, the aim of this research was to carry 
out the analysis of the spatial variability of the causes of deforestation in 
the Amazon Biome, in Brazil, in the last decade (2010–2019). 

The article is structured into five parts. The first section presents, 
respectively, the introduction, which contains the theoretical founda
tions of the Brazilian Amazon deforestation and its causes. Section 2 
describes the materials and methods used in this study. The third part 
displays the results followed by the discussion section. The fourth sec
tion is devoted to discuss the results. Finally, in the last section, the 
conclusions and recommendations for future research were described. 

2. Material and methods 

2.1. Study area 

The study area included the 550 municipalities located in the 
Amazon Biome, which are part of the states of Acre, Amapá, Amazonas, 
Pará, Rondônia, Roraima, and part of the municipalities of Mato Grosso, 
Maranhão, and Tocantins (Fig. 1). The vegetation is predominantly 
composed of forests (Ferreira et al., 2005), however, it was identified the 
transition zones of the Amazon and the Cerrado (Pires and Costa, 2013; 
Santos, 2018). The Amazon rainforest is crucial for the maintenance of 
the planetary health, due to its vital role in the regulation of the Earth’s 
climate (Ellwanger et al., 2020). In addition, the Amazon has a unique 
biome in many aspects, with importance in different spheres of life 
(Ellwanger et al., 2020), and also, it is extremely rich from a biological 
point of view, with approximately 420 million ha in Brazil (Simon and 
Garagorry, 2005). 
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2.2. Data 

The data on deforested areas in the Amazon Biome was obtained 
from the National Institute for Space Research (INPE/TerraBrasilis, 
2020) through the Amazon Deforestation Monitoring Satellite Project 
(PRODES Amazônia). As mentioned before, there are several causes that 
can help to explain the occurrence of the Brazilian Amazon deforesta
tion. Therefore, it was highlighted researches in the Amazon by Laur
ance et al. (2002), Aguiar et al. (2007), Diniz et al. (2009) and in the 
most recent studies by Silva et al. (2020) and Silva et al. (2021) and the 
research carried out by Trigueiro et al. (2020) for the Cerrado Biome. 
With this purpose, from the consulted bibliography and from the 
empirical experience, the variables described in Table 1 were chosen for 
analysis, classified into Response, Socioeconomic, Ecological, Physical 
and Climate Variable, according to Trigueiro et al. (2020). 

The data of the vector files of the limits of the municipalities located 
in the Amazon Biome were obtained through the Brazilian Institute of 
Geography and Statistics (IBGE), which is the official registration agency 
and for the elaboration of the political-administrative division in the 
country. This database was processed in Qgis and the statistical analyzes 
in R. 

2.3. Analytical strategy 

It was assessed the global spatial autocorrelation of deforested areas 
by the use of the Moran Index. Subsequently, LISA was applied (Anselin, 
1995) for the local deforestation analyses by municipalities. 

When choosing and adjusting the models for estimating deforesta
tion, the set of predictor variables were evaluated in order to verify those 
that best describe the response variable, and thus to be applied to the 
model. To select the co-variables of the proposed model, the stepwise 
method of variable selection was used along with the Akaike’s criterion 
(AIC) (the model with the lowest AIC was chosen). This method previ
ously checks partial F statistics for all variables in the model. The 
determination of the variables that have the greatest influence on the 
deforestation of environmental preservation areas is necessary to 
determine the factors that may possibly have a considerable impact on 
the practice of the Amazon biome deforestation (Trigueiro et al., 2020). 

The F statistical tests were performed in order to verify the existence 
of spatial autocorrelation in the Ordinary Least Square (OLS) model, in 
which high values of the residuals were observed. Thus, the Geograph
ically Weighted Regression (GWR) was applied. According to Fother
ingham et al. (2002) the GWR model can be written as: 

yi = β0 (ui , vi) + xi1β1 (ui , vi) + ... + xipβp (ui , vi) + εi (1) 

In which, yi is the value of the response variable from the i-th point in 
space, xi1, …, xip are the p co-variables of the i-th point, ui and vi are the 
geographic coordinates, βk (ui , vi) represents the value of the effect of 
the k-th covariable for previously determined geographic co-variables 
and finally εi is any random error. Therefore, the GWR model recog
nizes that spatial variations in the relationships could exist and provide a 
way for them to be measured. 

In the GWR, an observation is evaluated accordingly to its proximity 
to the local i, in a way in which a ponderation of an observation is no 
longer constant, but can vary with i. The observational data closer to i 
have more influence in relation to the farther observational data. 
Consequently, it can be estimated the regression parameters as follows: 

β̂(ui, vi) = ( X⊤W(ui , vi)X )
− 1X⊤W(ui , vi)Y (2) 

In which X is the matrix of co-variables, Y is the values vector of the 
response variable, ̂β represents the estimate value of β and W(ui , vi ) is a 
n × n matrix, in which the elements outside the diagonal are zero and 
the diagonal elements exhibit the geographic ponderation of each one of 
the n data, observed in the regression point i. In the process of evalua
tion, an iterative maximization algorithm is required to estimate the 
parameters model in the local i. In this work, the models were evaluated 
based on the data from the AIC, R2 and Moran’s I of the residues. 

In this paper, a GWR model estimates deforestation controlled by the 
average forest area (Forest), the average number of oxen (Cattle), 
average area of temporary cultures (Cultures), the average amount of m3 

of wood extracted (Woods), the agricultural credit (AgriCredit) and 
distance from the deforested area to the roads (RoadDist) (Selected 
variables using the Stepwise selection method). Thus, based Eq. (1) we 
are interested in proposing the following GWR model:   

Fig. 1. Study area.  
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3. Results 

The map shown in Fig. 2 reveals the grouping of municipalities with 
a high deforested areas average in the municipalities in the southern 
portion of the Amazon in the last decade, especially in the municipalities 
in the northern portion of the state of Mato Grosso (MT), southern 
portion of Pará (PA), and far west of Rondônia (RO). Through Fig. 2, 
three High-High (HH) clusters are observed, the largest of which has 72 
municipalities and has an interconnection with the states of Mato Grosso 
and Pará. On the other hand, it was possible to identify three Low-Low 
(LL) LL-type clusters, with a total of 198 municipalities, in Amazonas 
(AM) and Amapá (AP). 

This LISA result indicated the presence of spatial clusters type high- 
high (HH), which means they form a set of municipalities with high rates 
of the considered variable that are surrounded by other municipalities 
with the same characteristics. Contrary, the low-low (LL) clusters form a 
set of municipalities with low variable rates considered. 

On Table 2, it is shown the correlation matrix of the co-variables used 
in the models. It appears that the average variable in the number of oxen 
has the greatest correlation with deforestation. In general, co-variables 
do not show strong correlations with each other, which helps to avoid 
possible multicollinearity problems. According to Vatcheva et al. 
(2016), the adverse impact of ignoring multicollinearity in the results 
and in the interpretation of the data in the regression analysis is very 
well documented in the statistical literature. 

In this way, the Ordinary Least Squares (OLS) regression model was 
applied. The OLS regression model was used to identify statistically 
significant associations between the response variable and the co- 
variables. Thus, the associations between the average Amazon biome 
deforestation and co-variables (Socioeconomic, Ecological, Physical and 
Climatic) were evaluated. 

Table 3 shows the co-variables selected for the model, the regression 
coefficients, standard error, significance of the coefficients and finally, 
the variance inflation factor (VIF), which was calculated in order to 
identify the existence of multicollinearity. The co-variables chosen for 
the model are the following: average of the area of forest (Forest), 
average of the number of oxen (Cattle), average of the area of temporary 
cultures (Cultures), average amount of m3 of wood extracted (Woods), 
the agricultural credit (AgriCredit) and distance from the deforested 
area to the roads (RoadDist). All covariates were significant (p value <
0.01). 

It was identified that the estimated coefficients for the variables 
Forest, Cattle, Cultures, Wood, and AgriCredit were positive, that is, 
there is a positive association with the average deforestation. Therefore, 
in theory, the higher the values of the variables Forest, Cattle, Cultures, 
Wood, and AgriCredit in the municipality, the greater average of the 
deforestation is observed. In contrast, the RoadDist variable provides a 
negative coefficient, which implies that the higher the value of this 
variable, the lower the deforestation. 

Regarding the assumption of multicollinearity, all variables VIF 
value < 1.5, indicated that there is no multicollinearity in the OLS 
regression model. The adjusted R2 indicated that the models were able to 
explain about 77% of the total variance of deforestation in the Amazon. 
However, the residues of the OLS model dissipated a significantly 

Table 1 
Description of the variables with the respective categories, measurement units, 
and information sources.  

Category Description Unit Source 

Response 
variable 

Average annual deforested 
area between 2010 and 2019, 
standardized by the area of 
each municipality 

km2 TerraBrasilis 
INPE (2020) 

Socioeconomic Average number of bovine 
livestock between 2010 and 
2019, standardized by the 
area of each municipality 

Heads/ 
Unit 

SIDRA/IBGE 
(2020) 

Socioeconomic Number of people residing in 
the urban zone accordingly 
to the 2010 census, 
standardized by the area of 
each municipality 

Count/ 
Unit 

INPE (2017) 

Socioeconomic Number of people residing in 
rural zone accordingly to the 
2010 census, standardized by 
the area of each municipality 

Count/ 
Unit 

INPE (2017) 

Socioeconomic Average of the estimative of 
the population in 2010 and 
2019 

Count/ 
Unit 

SIDRA/IBGE 
(2020) 

Socioeconomic Average agricultural rural 
credit provided by financial 
institutions between 2013 
and 2019, standardized by 
the area of each municipality 

Each R$ 
1000.00 

Banco Central do 
Brasil (2020) 

Socioeconomic Average livestock rural credit 
provided by financial 
institutions from 2013 to 
2017, standardized by the 
area of each municipalitya 

Each R$ 
1000.00 

Banco Central do 
Brasil (2020) 

Socioeconomic Average area with temporary 
crops cultivated between 
2010 and 2019, standardized 
by the area of each 
municipality 

km2 TerraBrasilis 
INPE (2020) 

Socioeconomic Average Gross Domestic 
Product between 2013 and 
2015, standardized by the 
total populationa 

Each R$ 
1000.00 

SIDRA/IBGE 
(2020a) 

Socioeconomic Wood removal between 2010 
and 2019 

m3 SIDRA/IBGE 
(2020a) 

Ecological Area of native vegetation 
remnant standardized by the 
area of each municipality. 
(2020) 

km2 TerraBrasilis 
INPE (2020) 

Physical Conservation unit of full- 
time use. (2020) 

km2 TerraBrasilis 
INPE (2020) 

Physical Indigenous lands (2020) km2 TerraBrasilis 
INPE (2020) 

Physical Average distance between 
deforested areas and the 
closest official roads per 
municipality wood removal 
between 2010 and 2019 

km TerraBrasilis 
INPE (2020) 
MMA (2017) 

Climatic Average annual precipitation 
per municipality in the driest 
month (1970–2002)a 

mm Fick and 
Hijmans (2017)  

a Data available only for this period.  

Deforestationi = β0 (ui, vi) + Foresti1β1 (ui, vi) +Cattlei2β2 (ui, vi)

+RoadDisti3β3 (ui, vi) + Agricrediti4β4 (ui, vi)+ Culturesi5β5 (ui, vi)+Woodi6β6 (ui, vi)+ εi
(3)   
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positive spatial autocorrelation (Global Moran’s I = 0.161, p-value =
0.001), thus, the assumption of the OLS regression, that the residues are 
independent, is not satisfied. To fill this gap, the GWR spatial model was 
used to characterize the relationship between deforestation averages 
and co-variables. Thus, to help understand the results, maps with the 
distribution of the raw data of the explanatory variables of the GWR 
model were presented in supplementary material (Figs. S1, S2, S3, S4, 
S5, S6 and S7). 

In Table 4, the GWR coefficients for deforestation are presented in 
terms of statistical measures, such as: minimum, first quartile, median, 
third quartile and maximum. The adjusted R2 of the GWR is 0.96, that is, 
the GWR model explains 96% of the variations in deforestation. 
Therefore, there is a significant gain when using the GWR model. 

One of the great advantages of the GWR model is that through the 
local R2 it is possible to highlight the areas that the model had a better 

Fig. 2. LISA Map of deforestation in Amazon Biome.  

Table 2 
Correlation matrix of the OLS regression model.   

Deforestation Forest Cattle Cultures Wood Agricredit RoadDist 

Deforestation 1 0.24 0.83 0.21 0.32 0.17 − 0.12 
Forest 0.24 1 0.16 − 0.02 0.18 − 0.06 0.39 
Cattle 0.83 0.16 1 0.04 0.19 0.13 − 0.11 
Cultures 0.21 − 0.02 0.04 1 0.03 0.06 − 0.07 
Wood 0.32 0.18 0.19 0.03 1 0.04 − 0.02 
Agricredit 0.17 − 0.06 0.13 0.06 0.04 1 − 0.18 
RoadDist − 0.12 0.39 − 0.11 − 0.07 − 0.02 − 0.18 1  

Table 3 
Adjustment of the OLS regression model.  

Variables Estimate Std. Error t value p value VIF 

(Intercept) 2.30E+02 6.15E+01 3.737 <0.001 – 
Forest 1.56E− 02 2.87E− 03 5.435 <0.001 1.268 
Cattle 6.58E− 03 1.85E− 04 35.418 <0.001 1.103 
Cultures 3.44E− 03 4.08E− 04 8.428 <0.001 1.008 
Wood 3.60E− 03 5.47E− 04 6.59 <0.001 1.069 
AgriCredit 3.44E− 05 1.36E− 05 2.527 0.011780 1.052 
RoadDist − 3.32 1.44 − 2.301 0.021768 1.257 
R2 0.77     
AIC 8888.836      

Table 4 
Adjustment of the GWR model.  

Variables Min. 1st Qu. Median 3rd Qu. Max. Global 

(Intercept) − 4.9923E+02 − 3.8096E+01 6.3518E+01 1.6818E+02 9.0109E+02 230.0255 
Forest − 1.4265E+00 6.5449E− 03 4.4305E− 02 3.9817E− 01 2.1466E+00 0.0156 
Castte − 4.2193E− 03 5.2483E− 03 7.2310E− 03 9.9752E− 03 2.1545E− 02 0.0066 
Cultures − 1.6517E− 01 4.8284E− 03 2.8306E− 02 4.7177E− 02 1.5876E− 01 0.0034 
Wood − 4.9125E− 01 − 6.1970E− 04 4.0789E− 03 1.1041E− 02 1.0244E+00 0.0036 
AgriCredit − 7.1681E− 05 − 4.1162E− 06 1.4280E− 05 4.3302E− 05 1.9905E− 04 0.0000 
RoadDist − 1.4788E+02 − 3.2234E+00 2.2546E+00 1.8890E+01 1.2295E+02 − 3.3164 
R2 0.96      
AIC 8013.09       
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performance. Thus, it is possible to have a spatial visualization of the 
model’s performance to explain deforestation. The higher R2 values 
were found mainly in the states of Pará, Amazonas (southern portion), 
Mato Grosso (northern portion), Acre and Rondônia. In the vast majority 
of municipalities in those states, the R2 values were higher than 0.8 
(Fig. 3). 

It is important to mention that the model was able to give a reliable 
representation of the deforestation in the region, since most of the 
municipalities that showed a high correlation are inserted in the axis 
known as the “arc of deforestation”. This axis comprises the regions 
south of AM, north of RO, north of MT, and south and east of PA, and is 
known by this name due to the current status of the epicenter of 

deforestation in the Amazon (see Costa and Pires, 2010; Silva et al., 
2019). 

In this sense, it was evaluated the behavior of the coefficients of the 
selected co-variables in the GWR model. Fig. 4 shows the significance of 
the coefficient values for credit to agriculture. In general, on this step, 
the set of explanatory variables was evaluated to verify those that could 
best describe the response variable, and thus, that could be applied to 
the model. Positive coefficients were observed, and the highest values 
were observed in the states of Acre, Amazonas, Roraima, and Pará 
(west). 

Temporary crops showed positive coefficients (Fig. 5) in most mu
nicipalities, with the exception of the states of Roraima and Acre (east/ 

Fig. 3. Local R2 of the GWR regression model.  

Fig. 4. Regression coefficient for the agricultural credit variable.  
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south). The highest coefficients were observed in the north and east of 
the state of Pará, Maranhão, in the central part of the Amazonas and 
Acre (west/north). The regression coefficients were significant for most 
regions, with the exception of the states of Amazonas (western/northern 
portions) and some areas of Tocantins and Maranhão. 

All states showed positive coefficients of the average production of 
wood resulting from the deforestation of the Amazon Biome. The 
southern portion of Mato Grosso was an exception, contrary to the 
others states, it had a negative relationship with deforestation (that is, 
for this region, greater amounts of temporary culture imply less defor
estation). The states of Amazonas, Pará, northern Mato Grosso, Roraima 
and the southern part of Mato Grosso showed significant coefficients 
(see Fig. 6). 

Furthermore, given a hypothetical situation that most of the co
efficients are positive and the minority is negative, these regions with 
negative coefficients are considered to be atypical regions (outliers) and 
for this reason, should be further investigated. 

In the vast majority of states, positive coefficients were found 
regarding the relationship between the average number of oxen and 
deforestation. Higher coefficients were identified in the states of Pará 
(mainly in the north/east portion), Roraima, Amazonas (north) and 
Amapá (north). Their respective significance is shown in Fig. 7. 

One of the advantages of the GWR model is that the direction of the 
relationship between deforestation and the number of cattle can vary 
spatially. In some municipalities, this relationship was positive (0.005) 
that is, the increase in the number of oxen implies an increase in 

Fig. 5. Regression coefficient for the temporary culture variable.  

Fig. 6. Regression coefficient for the wood production variable.  
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deforestation. However, in the southwestern portion of the state of Mato 
Grosso, livestock is practiced in natural fields, associated with the 
Pantanal Biome. So, the increase in the number of cattle do not imply an 
increase in deforestation (Santos and Mota, 2017; IBGE, 2020b). 
Therefore, finding regions that show signs of different correlation for the 
same variable do not imply errors in the model, but they elucidate 
different behaviors that vary spatially. 

In addition, it was mentioned three other aspects: (1) the differences 
in the size of the areas of the municipalities analyzed, (2) the way of 
raising cattle, and (3) the location of municipalities in areas of transition 
between Biomes. 

Regarding the size of the municipalities, when looking at Figs. 7 and 
S3, it was possible to notice that the coefficient values were high (the 
reddest part of Fig. 7) even in places with a few heads of cattle (Fig. S3). 

This occurrence can be explained because, even though the municipality 
has only a few cattle (when compared to larger municipalities), that was 
the main variable capable of explaining the “little deforestation” that 
occurred in the region during the analyzed period (Fig. S1). 

In the second case, the increase in the ox variable may be more 
related to the type of cattle production (e.g., intensive production, which 
is based on the creation of cattle confined in small areas), which does not 
require the expansion of pasture areas. 

In the third case, there are the municipalities located in the transition 
zones with other biomes. For example, the breeding of cattle in areas of 
natural pasture, without necessarily occurring deforestation. This occurs 
in certain phytophysiognomic types of the Cerrado Biome (biome sur
rounding the Amazon biome), the rural formations, which are culturally 
used for the breeding of cattle. 

Fig. 7. Regression coefficient for the average oxen variable.  

Fig. 8. Regression coefficient for the variable distance from the road.  
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Regarding the distance from roads to the deforestation area, the 
municipalities of Mato Grosso presented negative coefficients, that is, 
the greater the distance to roads, the lower the deforestation. The other 
municipalities presented positive weights. In Fig. 8, the significance of 
the coefficients is provided. 

The average of the forest area in nearly all regions showed positive 
coefficients. The highest coefficients were found in the states of Mato 
Grosso (south), Pará (north/east) and Tocantins. The states of Ama
zonas, Roraima, Amapá, Acre and Rondônia also had positive co
efficients (their respective significance is given in Fig. 9. 

Finally, to verify the local significance of each variable of the GWR 
model, the maps with their respective p-values are presented in the 
supplementary material (Figs. S8, S9, S10, S11, S12 and S13). 

4. Discussions 

This can be considered the first analysis that presents the correlation 
of deforestation with the largest number of variables for all the munic
ipalities in the Amazon Biome area, in Brazil. Generally, most researches 
focuses on the analysis of ‘isolated’ spatial clippings, for example, states, 
municipalities, indigenous lands, or Conservation Units (BenYishay 
et al., 2017; Ríos-Villamizar et al., 2017; Gollnow et al., 2018; Aldrich 
et al., 2020; Assunção et al., 2020; Carvalho et al., 2020). 

14 variables, classified as socioeconomics, ecological, physical and 
climatic, were surveyed. Those variables were defined accordingly to 
the literature, but it was observed that not all of them responded posi
tively to the occurrence of deforestation. 

In regards to the ecological data, it was incorporated the co- 
variables: areas of indigenous lands and integral protection conserva
tion units. However, they showed no correlation with the response 
variable. 

The results obtained through the LISA Map indicated the grouping of 
deforested areas in the southern portion of the Amazon Biome. This 
region coincides with the states that occupy the top of the list of those 
with the most deforested areas in the Amazon, Pará (34.46%), Mato 
Grosso (32.34%) and Rondônia (13.76%) (INPE/Terrabrasilis, 2021), 
and that region is comprised in the area commonly called as the “arc of 
deforestation” (Fearnside, 2017; Garcia et al., 2019; Oliveira et al., 
2019). In this sense, Fearnside (2017) states that approximately 80% of 
the forest loss in the Brazilian Amazon had occurred in the “arc of 

deforestation”, which is a crescent-shaped strip along the southern and 
eastern edges of the forest. 

Sathler et al. (2018) studied the dynamics of deforestation and 
human development in the 211 small and medium-sized municipalities 
(in population terms) in the Amazonian arc of deforestation in Brazil. 
The authors’ findings shows that there are four well-defined macro-
deforestation frontiers that exhibit distinct interactions between forest 
loss, socio-demographic and economic characteristics, and levels of 
human development: the stagnant frontier, the dynamic frontier of 
deforestation, the consolidated frontier, and the internal frontier of 
deforestation (Sathler et al., 2018). In other words, the results from this 
paper reinforce that it is needed a policy aimed at containing defores
tation must be focused at this area. 

According to Reydon et al. (2020), deforestation occurs mainly when 
property rights are not clearly established, and it occurs mainly on areas 
which are directly or indirectly under the responsibility of the State. 
Thus, it is believed that the insertion of a variable on the land-ownership 
structure would contribute to details of the way in which deforestation 
occurs. However, it was noted that the availability of land structure 
variables is still being produced for the Amazon. 

In addition to the above, generally, the result of R2 for the OLS 
regression was in the order of 0.77. However, the assumption that the 
residues were independent was not satisfied, and to fill this gap, the 
GWR spatial model was used. Thus, the adjusted R2 of the GWR reached 
0.96, which means that this model explained 96% of the variations in 
deforestation. Therefore, there is a significant gain when using the GWR 
model. In addition, according to Trigueiro et al. (2020), this model 
supports the use of analyzes that consider spatial variability to assess 
factors associated with deforestation in the municipal or regional con
texts. In the analysis of spatial variability, the highest values for R2 were 
found mainly in the states of Pará, Amazonas (southern portion), Mato 
Grosso (northern portion), Acre and Rondônia, all comprised in the arc 
of deforestation, as mentioned. 

The explanation for this phenomenon is directly related to the 
expansion of the soy cultivated area, in the state of Mato Grosso, and 
also the recent advances in the state of Pará. In addition to that, Aldrich 
et al. (2020) suggested that agriculture has been a profitable sector in 
recent years, especially for soy exports (Soterroni et al., 2019). On the 
other hand, according to Gollnow et al. (2018), Brazil’s Soy Moratorium 
solidified the commitment of the world’s largest traders to prevent the 

Fig. 9. Regression coefficient for the variable forests.  
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purchasing of soy from deforested production areas after July 2006. 
Furthermore, Oliveira et al. (2020) highlighted the extensive raising 

of beef cattle (Müller-Hanse et al., 2019; Yanai et al., 2020), as a cause 
for the occurrence of deforestation. Additionally, Carvalho et al. (2020) 
claimed that about 60% of all deforested land in the Brazilian Amazon is 
covered with pasture, placing the livestock ranching in evidence as one 
of the main causes for deforestation. 

The high concentration of deforestation is explained by Yanai et al. 
(2020), which claimed that after the initial stage of deforestation, me
dium and large landowners bought lots of settlers to establish farms to 
raising cattle. In addition, according to the authors, the rate of defor
estation per lot was higher among land concentrators compared to 
non-concentrators, or small landowners, showing the concentration 
speed of deforestation lots in the Amazon (Yanai et al., 2020). 

The results showed that the average co-variable for the number of 
oxen had the highest correlation with deforestation in three states, Pará, 
Mato Grosso, and Rondônia, indicating possible cattle-ranching in the 
southern portion of the Amazon. This phenomenon puts pressure on 
larger areas of forest, since the practice of cattle-ranching in the Amazon 
is traditionally performed extensively, where cattle are raised on the 
loose, requiring large extensions of pasture (Santos, 2014). 

In this sense, for 2019, the data on the number of cattle generated by 
the Brazilian Institute of Geography and Statistics (IBGE) indicated that, 
among the states of the Brazilian Amazon, Mato Grosso is the one with 
the largest number of bovine cattle-ranching. Also, according to IBGE 
(2020a), the states of the Amazon region had the greatest positive 
variation in the number of cattle between the period of 1985–2019. 

It is added to that, the record for the exportation of bovine meat, 
explained mainly by the Chinese demand, which was reflected in the 
prices of the entire chain, from the calf to the final consumer (IBGE, 
2020a). That occurred due to the low stock of pork, a consequence of a 
plague that affected the specie, impairing an expanding domestic mar
ket, leaving China in the need to supply its domestic demand by 
importing animal protein. From Brazil only, this country acquired 497.7 
thousand tons of beef, between the years of 2018 and 2019 (IBGE, 
2020a). 

Additionally, it was mentioned that the areas of small fragments of 
forest were facilitators of new fronts of deforestation in the Amazon, 
especially at the edges of the east side (Fig. 8). These areas are associated 
with those already consolidated in the central west portion of the 
country. Due to this fact, in the last 32 years, fragments of Amazonian 
forest ranging from 1 to 100 ha have experienced a wide range of 
ecological changes (Laurance et al., 2011). Laurance et al. (2011), 
indicated that the effects of fragmentation will probably interact syn
ergistically with other anthropogenic reviews, such as logging, hunting, 
and, especially, fire, creating an even greater danger for the Amazonian 
biota. Silva et al. (2014) stated that the impact of fragmentation is 
greater in the southern portion of the Amazon Biome, since this area is 
drier than most of the lands to the north of this region, with fragmented 
seasonal semi-deciduous forests and closed by pasture, and, to a lesser 
extent, for agricultural crops. 

The occurrence of roads also had influence on the fragmentation of 
forests and consequently deforestation. In this sense, Laurance et al. 
(2014) affirmed that the rapid proliferation of roads strongly influences 
agriculture, consequently, leading to newly deforested areas. Addition
ally, the authors assessed the distances between the roads and major 
deforestation fires and concluded that the largest areas were close to the 
roads (Laurance et al., 2014). In addition to the above, there is a cycle in 
the Amazon in which the roads already structured contribute to the 
emergence of secondary roads. Barber et al. (2014) evaluated the rela
tionship between deforestation to the existing networks of highways, 
navigable rivers, and all other roads, including more than 190,000 km of 
unofficial roads. For the authors, most deforestation occurs closer to the 
main roads (Barber et al., 2014) that facilitates or schooling of agri
cultural production. 

Thus, temporary crops, mainly of grain cultivation, play an 

important role in the deforestation of municipalities located in the 
Amazon Biome. According to CONAB (2018), the areas occupied by the 
main grains cultivated in the country showed growth in the munici
palities of the Amazon. Thus, the expansion of the agricultural com
modity still impose a considerable threat to the Amazon and Cerrado 
biomes (Frey et al., 2018), especially soybeans, in the state of Mato 
Grosso (Gusso et al., 2017), the largest Brazilian producer of this grain. 
For Mier and Teran (2016), in general, soy bean production in South 
America has become a symbol of commodity crops produced on a large 
scale for the agribusiness aimed at global markets. According to Garret 
et al. (2018), the intensification of crops occurred more quickly in the 
regions with shorter distances to the soy processing facilities, as is 
observed in the state of Mato Grosso and the extreme south of Rondônia. 
According to Costa Silva (2014), the advance of soy agribusiness in the 
Brazilian Amazon results from the process of agricultural modernization 
derived from the action of capital in rural areas. In the case of soybeans, 
the growth and consolidation of the cultivation area benefit from the 
guarantee of production flow to the foreign market through the 
Madeira-Amazonas Waterway. 

The activities in the field are financed by agricultural credit (agri
culture and livestock). In this study, the results revealed that the vari
able credit for agriculture has an influence in the deforestation. This is 
corroborated by the variable quantity of ox, already mentioned. 
Therefore, it is observed that banks’ credit contributes indirectly to 
deforestation. Despite this, Assunção et al. (2020) stated that in 2008 the 
Brazilian government conditioned the granting of rural credit in the 
Amazon to stricter requirements as an attempt to contain deforestation. 
For example, Low Carbon Agriculture - ABC Program) and financial 
support from conservation programs (Carvalho et al., 2020) were ana
lized. Despite this, Assunção et al. (2020) observed that the relationship 
between credit and deforestation can be different between municipal
ities with different economic activities. Furthermore, it was observed 
that agricultural production in Brazil has been less dependent on credit 
and has undergone several technological improvements, allowing the 
production to increase at the intensive margin (Assunção et al., 2020). In 
addition to that, when markets are not complete, exogenous credit 
variations should affect agricultural production decisions and, therefore, 
deforestation (Assunção et al., 2020). 

5. Conclusions and recommendations 

This research has revealed the spatial variability of the causes for 
deforestation in the Amazon Biome, in Brazil, occurred in the last decade 
(2010–2019). Thus, through the results it is possible to conclude that:  

1. The municipalities with the largest deforested areas form a cluster in 
the southern portion of the Amazon, which is known as the arc of 
deforestation;  

2. In general, the co-variables do not present strong correlations with 
each other, avoiding multicollinearity problems;  

3. The ajusted R2 with the Geographical Weighted Regression (GWR) 
was 0.96, that is, the GWR model explains 96% of the variations in 
deforestation. Therefore, there is a significant gain when using the 
GWR model compared to the Ordinary Least Squares (OLS) model, in 
which the R2 value was 0.77.  

4. It was found that the estimated coefficients for the variables Forest, 
Cattle, Crops, Wood and AgriCredit were positive, that is, there is a 
positive association with the average of the areas deforested by the 
municipality; In addition, the co-variable average of the number of 
oxen, presented the greatest correlation with deforestation;  

5. From the analysis of spatial variability, it was concluded that the 
highest values for R2 were found mainly in the states of Pará, Ama
zonas (southern portion), Mato Grosso (northern portion), Acre, and 
Rondônia, reinforcing that deforestation is consolidated in the 
deforestation arc. 
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For future studies, an analysis of co-variables that are related to the 
land structure in the Amazon Biome and that compose the Rural Envi
ronmental Register (CAR), which is a database still under construction in 
Brazil, is recommended. Additionally, specialized studies on the impact 
of rural credit, for livestock and agriculture, on deforestation are rec
ommended for future researches. This has a great importance since past 
studies have pointed out that agricultural credit can help reduce 
deforestation, a reality that is not observed in this study. It was observed 
that the AgriCredit co-variable showed a positive association with the 
average of the areas deforested by the municipality. 
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Aguiar, A.P.D., Câmara, G., Escada, M.I.S., 2007. Spatial statistical analysis of land-use 
determinants in the Brazilian Amazonia: exploring intra-regional heterogeneity. 
Ecol. Model. 209 (2–4), 169–188. https://doi.org/10.1016/j. 
ecolmodel.2007.06.019. 

Barber, C.P., Cochrane, M.A., Souza Jr., C.M., Laurance, W.F., 2014. Roads, 
deforestation, and the mitigating effect of protected areas in the Amazon. Biol. 
Conserv. 177, 203–209. https://doi.org/10.1016/j.biocon.2014.07.004. 

BenYishay, A., Heuser, S., Runfola, D., Trichler, R., 2017. Indigenous land rights and 
deforestation: evidence from the Brazilian Amazon. J. Environ. Econ. Manag. 86, 
29–47. https://doi.org/10.1016/j.jeem.2017.07.008. 

Brandt, J.S., Nolte, C., Agrawal, A., 2016. Deforestation and timber production in Congo 
after implementation of sustainable forest management policy. Land Use Pol. 52, 
15–22. https://doi.org/10.1016/j.landusepol.2015.11.028. 

Brandt, J.S., Nolte, C., Agrawal, A., 2018. Deforestation and timber production in Congo 
after implementation of sustainable management policy: a response to Karsenty et al. 
(2017). Land Use Pol. 77, 375–378. https://doi.org/10.1016/j. 
landusepol.2018.04.056. 

Boers, N., Marwan, N., Barbosa, H.M.J., Kurths, J., 2017. A deforestation-induced tipping 
point for the South American monsoon system,. Sci. Rep. 7, 41489. https://doi.org/ 
10.1038/srep41489. 

Carvalho, W.D., Mustin, K., Hilário, R.R., Vasconcelos, I.M., Eilers, V., Fearnsid, P.M., 
2019. Deforestation control in the Brazilian Amazon: a conservation struggle being 
lost as agreements and regulations are subverted and bypassed. Perspectives in 

Ecology and Conservation 17 (Issue 3), 122–130. https://doi.org/10.1016/j. 
pecon.2019.06.002. 

Carvalho, R., Aguiar, A.P.D., Amaral, S., 2020. Diversity of cattle raising systems and its 
effects over forest regrowth in a core region of cattle production in the Brazilian 
Amazon. Reg. Environ. Change 20 (44), 1–13. https://doi.org/10.1007/s10113-020- 
01626-5. 

Costa, O.B., Matricardi, E.A.T., Pedlowski, M.A., Cochrane, M.A., Fernandes, L.C., 2017. 
Spatiotemporal mapping of soybean plantations in Rondônia, western Brazilian 
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