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(Received 1 October 2004; in final form 22 January 2006 )

Residential population estimation was explored based on impervious surface

coverage in Marion County, Indiana, USA. The impervious surface was

developed by spectral unmixing of a Landsat Enhanced Thematic Mapper

(ETM + ) multispectral image. The residential impervious surface was then

derived by geographic information system (GIS) overlay of residential land class

and impervious surface. Regression analysis was conducted to develop

population density estimation models. We found that the residential impervious

surface-based approach provided the best population density estimation result,

with mean and median relative errors of 38% and 23%, respectively. An overall

population estimation error of 20.97% was achieved.

1. Introduction

Increasing population has generated great pressure on the sustainability of natural

resources and the environmental conditions. Population increase is often associated

with urban sprawl, resulting in a decrease of agricultural land and forested areas and

producing problems such as increased pressure on food security, loss of biodiversity,

and deterioration of environmental conditions. Timely and accurate estimation of

population distribution is of considerable significance for decision makers in urban

land-use planning and for a better understanding of the interactions between

population growth and social, economic and environmental conditions. The

traditional approach to population estimation is mainly based on a census, which

is labour-intensive, time-consuming and costly, and also encounters difficulties in

updating the database. Since the 1970s, remote sensing estimation of residential

population has been applied more frequently, as an increasing amount of space-

borne satellite data have become available (Lo 1986a, 2001, 2003, Langford et al.

1991, Sutton et al. 1997, 2001, Harvey 2002a,b, 2003, Li and Weng 2005). Lo (1986b)

summarizes four categories of population estimation approaches using remotely

sensed data. These methods are based on (1) counts of individual dwelling units

using high spatial resolution data such as aerial photographs (Lo 1995), (2)

measurements of urbanized land areas (Sutton et al. 1997, Lo 2001), (3) estimates

derived from land use classification (Langford et al. 1991, Lo 2003), and (4)

automatic image analysis based on spectral features (Harvey 2002b, 2003). These
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approaches have been reviewed in previous literature (Harvey 2002a, Li and Weng

2005).

In previous research, population estimation has been conducted with different

sensors of data that have various spatial resolutions; for example, high spatial

resolution aerial photographs (Lo and Welch 1977, Lo 1986b), medium spatial

resolution Landsat Thematic Mapper (TM) images (Harvey 2002b, 2003, Lo 2003,

Li and Weng 2005), and low spatial resolution data from the Defense

Meteorological Satellite Program Operational Linescan System (DMSP OLS)

(Welch and Zupko 1980, Sutton et al. 1997, 2001). Very high spatial resolution data,

such as aerial photographs and IKONOS, often prove difficult with regard to data

processing and analysis because of their huge data content and geometric distortions

in a large area, while low spatial resolution data, such as DMSP OLS, cannot

provide sufficiently detailed information for population estimation at the regional

and local levels. Hence, in practice, medium spatial resolution data, such as Landsat

TM/Enhanced TM (ETM + ) imagery, have become the primary source of data for

population estimation in recent years (Lo 1995, Harvey 2002b, 2003, Lo 2003, Li

and Weng 2005).

Previous population research using medium spatial resolution data frequently

used multispectral radiance or reflectance (Harvey 2002b, 2003, Li and Weng 2005).

The spectral signature-based method for population estimation has a common

problem, in that estimations are affected by the external conditions of satellite

imaging, such as the complexity of urban landscape, atmospheric conditions,

phonological conditions, and sun elevation angles on land cover reflectance.

Because population is not directly related to land cover surface reflectance captured

by remote sensors, population estimation is still a challenging task based purely on

remote sensing spectral signatures. It is important to derive reliable and stable

variables from remotely sensed data for population estimation. One approach is to

estimate population using land-use and land-cover (LULC) data, which has been

explored in previous research (Langford et al. 1991, Lo 1995, 2003). Another

possible approach is to use impervious surface coverage data (Ridd 1995, Wu and

Murray 2003, Wu 2004), which has not been examined in previous literature. The

latter is the focus of this study.

Impervious surfaces refer to any surfaces that water cannot infiltrate, and are

primarily associated with transportation and buildings (Bauer et al. 2004).

Impervious surfaces are relatively stable, and their proportions in an administrative

unit (such as census units) depend on the nature of land use and the pattern of land

use distribution. For residential areas, a large amount of impervious surface suggests

more buildings and/or roads, and is often associated with a large population. The

information on impervious surfaces can be developed using spectral mixture analysis

(SMA) of remotely sensed multispectral data (Wu and Murray 2003, Lu and Weng

2004, Wu 2004). This study aimed to estimate the residential population in Marion

County, Indiana, USA using a remote sensing derived impervious surface method,

and to compare its effectiveness with that of the residential class-based approach.

2. Study area

The study area selected for this research is located between 39u369 and 39u569 N and

85u569 and 86u199 W, Marion County, Indiana (figure 1). Indianapolis, the capital of

Indiana, is centred in Marion County. According to the US Census Bureau, the

county has a total area of 1044 km2, including 1026 km2 of land and 18 km2 of water.

3554 D. Lu et al.
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Indianapolis was called ‘plain city’ because of its flat topography (elevation ranges

from 218 to 276 m above mean sea level). Its flatness and relatively symmetrical

allocation provide the possibilities of expansion in all directions. Like most

American cities, Indianapolis has been experiencing areal expansion through

encroachment on agricultural land and other non-urban land as population

increases. Thus, a timely estimation of the population distribution is valuable for

urban land use planning.

3. Datasets

A Landsat 7 ETM + image, acquired on 22 June 2000, was used in this study. This

image was rectified to a common Universal Transverse Mercator (UTM) coordinate

system based on 1 : 24 000 scale topographic maps. A nearest-neighbour resampling

algorithm was used during image rectification and a root mean square error

(RMSE) of less than 0.5 pixels was obtained. An image-based dark object

subtraction method was used to convert the digital number (DN) to surface

reflectance (Lu et al. 2002). The ETM + data have eight bands, covering six

reflective bands with 30 m spatial resolution, one panchromatic band with 15 m and

one thermal band with 60 m spatial resolution. In this study, the six ETM +
reflective bands were used. A land use/cover classification image was used directly,

which was classified using a combination of maximum likelihood and decision tree

classifiers on the fraction images from the same ETM + image (Lu and Weng 2004).

Because residential land is the only relevant class in this study, the LULC map was

recorded as a binary image to develop an image of residential areas.

The 2000 census data in a shapefile format were used in this study. The

population data were organized as tract, block group, and block in the census

Figure 1. The study area – Marion County, Indiana, USA.
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database. There are 212 tracts, 658 block groups, and 13 989 blocks in

Marion County. Because of differences in coordinate systems between the census

data and the ETM + image, the geographic coordinates of the census data were

converted into UTM to be consistent with the coordinate system of the ETM +
image.

4. Methods

4.1 Spectral mixture analysis (SMA) of the Landsat ETM + image

SMA is regarded as a physically based image processing tool that assumes that the

spectrum measured by a sensor is a linear combination of the spectra of all

components (endmembers) within the pixel (Smith et al. 1990, Adams et al. 1995).

The mathematical model of SMA can be expressed as:

Ril~
Xn

k~1

fklRikzeil ð1Þ

where i51, …, m (number of spectral bands); k51, …, n (number of endmembers);

l51, …, p (number of pixels); Ril is the spectral reflectance of band i of a pixel, which

contains one or more endmembers; fkl is the proportion of endmembers k within the

pixel; Rik is known as the spectral reflectance of endmember k within the pixel on

band i, and eil is the error for band i in pixel l. For a constrained unmixing solution,

fkl is subject to the following restrictions:

Xn

k~1

fkl~1 and 0ƒfklƒ1 ð2Þ

The RMSE is often used to assess the fit of the model, and is computed based on

errors and number of spectral bands used:

RMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

i~1

Xm

i~1

ê2
il

 !,
mp

vuut ð3Þ

where êil is the estimated error or residual for band i in pixel l. With the SMA

approach, selecting high-quality endmembers is the key to successfully developing

high-quality fraction images. Many methods for endmember selection have been

developed (Smith et al. 1990, Quarmby et al. 1992, Settle and Drake 1993, Bateson

and Curtiss 1996, Tompkins et al. 1997, Garcia-Haro et al. 1999, Van der Meer

1999, Maselli 2001, Theseira et al. 2003). Image-based endmember selection

approaches are often used, because image endmembers can be easily obtained and

they represent the spectra measured on the same scale as the image data. Image

endmembers can be derived from the extremes of the image feature space, assuming

that they represent the purest pixels in the images (Mustard and Sunshine 1999). In

addition to the endmember selection, another important step in the SMA approach

is to select a suitable solution to unmix the spectral image. The least-squares

solution is the most commonly used method in solving a linear mixture model

(Smith et al. 1990, Shimabukuro and Smith 1991, Garcia-Haro et al. 1996) because

of its simplicity and ease of implementation. The SMA has been recognized as an

effective approach for many applications, such as improving urban LULC

3556 D. Lu et al.
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classification (Rashed et al. 2001, Lu and Weng 2004) and mapping impervious

surfaces (Wu and Murray 2003, Wu 2004).

In this study, principal component analysis (PCA) was used to transform the

geometrically and atmospherically corrected ETM + multispectral image into

principal components (PCs). The scatterplots of PC1 vs. PC2 and PC2 vs. PC3

(figure 2(a) and 2(b)) were constructed to select four endmembers: high albedo, low

albedo, soil, and vegetation. The characteristics of spectral reflectance of the selected

endmembers are illustrated in figure 3. After selection of the image endmembers, a

constrained least-squares solution was used to unmix the six ETM + reflective bands

into fraction images (figure 4). Visual checking of the fraction images and

comparison with the ETM + colour composite ensure that the derived fraction

images are satisfactory.

4.2 Development of the impervious surface image

Previous research has indicated that the impervious surface can be developed by

adding the high- and low-albedo fractions (Wu and Murray 2003). In general, the

high-albedo fraction image mainly represents impervious surface information in the

urban region and some dry soils in agricultural areas because of their similar

reflectance. The low-albedo fraction image is more complex than other fraction

images because it contains different features, such as water, building shadows in the

central business district, vegetation canopy shadows in forested areas, and dark

impervious surface materials (Lu and Weng 2004). It is important to remove the

non-impervious surface from the high- and low-albedo fraction images before they

are used to derive impervious surface images. The dense vegetation, bare soils in

agricultural areas and water areas do not have impervious surfaces and they have

highest fraction values in vegetation, soil and low-albedo fraction images,

respectively. Therefore, the pixels of these classes can be first masked out from

the fraction images with expert rules developed from the sample plots, which were

identified from very high spatial resolution aerial photographs (Lu and Weng 2004).

An impervious surface image is then produced by adding low- and high-albedo

endmembers. The impervious surface image has values ranging from 0 and 1

(corresponding 0–100% coverage of impervious surface). Figure 5(a) shows that

commercial/industrial/transportation (CIT) areas have the highest impervious

surface values, appearing white in the image. Residential areas appear bright grey

to grey, depending on the density. A quick comparison between the population

distribution and the impervious surface image indicates that CIT areas have

high impervious surface values but a very low population density. The analysis of

training sample plots for the CIT and agricultural areas indicates that the majority

of CIT areas (such as the downtown and airport) have an impervious surface

value greater than 75% and the majority of rural areas have less than 25%.

The impervious surface value in the majority of residential areas is in the range 25–

75%, in agreement with the study by Wu and Marray (2003). An adjusted

impervious surface image is thus developed by masking out the pixels with

impervious surface values greater than 75% or less than 25% (figure 5(b)), assuming

that the population is located in the residential areas. Another approach used to

extract the residential impervious surface is by geographic information system (GIS)

overlay of the residential classification image and impervious surface image

(figure 5(c)).

Residential population estimation 3557
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Figure 2. Scatterplots of two principal components illustrating the potential endmembers:
(a) PC1 vs. PC2; (b) PC2 vs. PC3.
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4.3 Development of population estimation models

The block group (BG) was used as the analytical unit. There are 658 BGs in this

study area. Two sample datasets were developed using a random sampling

technique. Half of the sample data (329 BGs) were used as a modelling data set

for the development of the population density estimation models, and the other half

(329 BGs) were used as a validation data set for accuracy assessment. The

population density was calculated for each BG (persons/km2). The percentage of

residential class for each BG was also calculated by the division of the number of

pixels of the residential class by the total number of pixels in a BG. The mean values

of original, adjusted and residential impervious surface for each BG were further

computed based on the overlay of the derived impervious surface images and the

population density map. Figure 6 illustrates these analytical procedures for

extraction of statistical variables. Linear and nonlinear regression analyses were

tested to identify suitable models for population density estimation. Population

density and its transformed variables using square roots and natural logarithms

were selected as dependent variables, and the percentage of residential area

(Resid_P), adjusted impervious surface (adjIMP), and residential impervious sur-

face (Resid_IMP) were used as independent variables. A casewise diagnosis with 2.5

standard deviations and scattergrams of population density and relevant imper-

vious surface variables were used to identify the outliers in the sample data.

Twelve observations (BGs) were then removed from the sample of 329 BGs during

the regression analysis. Thus, the population density estimation models were

developed based on the 317 BGs. A coefficient of determination (R2) was calculated

to evaluate the effectiveness of the regression models for the population density

estimation.

Figure 3. Reflectance characteristics of the four selected endmembers.
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4.4 Accuracy assessment

Accuracy assessment is an important part of the process of developing population

density estimation models. In addition to R2, which is often used to evaluate the

performance of a model based on the modelling data set, a relative error was used to

assess the model performance based on the validation data set. For an individual

case, the relative error is defined as:

RE~ Pe{Pg

� ��
Pg|100 ð4Þ

where Pe and Pg are the estimated and reference values, respectively. The residual

(Pe2Pg) for individual cases may be negative or positive, so the absolute value of the

residuals was further calculated by using the following formula:

Figure 4. Four fraction images developed using spectral mixture analysis of Landsat
ETM + data: (a) vegetation; (b) soil; (c) high albedo; (d ) low albedo.
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Mean relative error MREð Þ~

Pn

k~1

REkj j

n
ð5Þ

MRE is often influenced by extreme values, and cannot always effectively assess the

model performance. To avoid this problem, a median relative error (MdRE) was

also used in this research. The MRE and MdRE were calculated for each regression
model. The distribution of residuals for each model was also examined to

understand the error distribution in relation to population density.

5. Results

A scatterplot can reveal the relationship between two data variables. Figure 7(a)
shows the scatterplot of population density and percentage of the residential area.

Overall, a good linear relationship exists. However, when the residential area is less

Figure 5. Impervious surface images developed from high- and low-albedo fractions: (a)
impervious surface; (b) adjusted impervious surface which those pixel values greater than 75%
or less than 25% were masked out; (c) residential impervious surface which those pixel of non-
residential area were masked out.
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than 25% or greater than 85% in a BG, the linear relationship does not continue to

hold. This implies that population estimation with a very low or very high density

would be difficult or might produce large estimation errors if the models were not

optimal. Figures 7(b) and 7(c) illustrate the relationships between impervious surface

and population density, and indicate that samples with the highest impervious

surface fractions tend to have medium to low population density (Figure 7(b)).

This is because the CIT areas have large proportions of impervious surface but a

very low population density. However, adjusted impervious surface values show a

good linear relationship with population density (Figure 7(c)). Residential imper-

vious surfaces shows an even better linear relationship with population density

(Figure 7(d)).

This study indicates that the regression model using the residential impervious

surface approach appears to be the best model, with an R2 value of 0.82 and an

overall population estimation error of 20.97%. The significantly large MRE values

compared with corresponding MdRE values suggest that extreme values of

population density, especially the large relative errors from the low population

density, have a significant impact on the models (table 1). The best models for

population density estimation based on the R2 values are summarized in table 1,

where the square root of the population density was used as the dependent variable

and the percentage of the residential area, adjusted impervious surface, and

residential impervious surface were used as independent variables. The R2 values

range from 0.77 to 0.82, based on the modelling data set. Median relative errors

range from 23.1% to 26.3%, based on the validation data set, which represent the

population density estimation errors.

Figure 6. Framework for extraction of remote sensing variables based on integration of
population density and remote sensing-derived variables.
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Analysing error distributions is another way to understand the performance of

population estimation models. Figure 8 illustrates the distribution of relative errors

for the three models. All the models seem to have a common problem. Lower

population density areas appear to associate with higher relative errors, and tend to

Figure 7. Scatterplots between population density and: (a) percentage of residential areas in
a block group (BG); (b) impervious surface; (c) adjusted impervious surface; and (d)
residential impervious surface. For the data analysis, the impervious surface images are
rescaled to 0–1000 by multiplying by 1000 for each pixel, so the ranges of impervious surface
values are between 0 and 1000.

Table 1. A summary of the best models for population density estimation.

Method
Independent

variable Regression model R2 MRE MdRE Error

Resid Resid_P Sqrt_PD54.865 + 0.5576Resid_P 0.776 39.16 26.25 21.97
Imp_surf adjIMP Sqrt_PD523.201 + 0.1156adjIMP 0.782 58.89 24.49 1.87
Resid_Imp Resid_IMP Sqrt_PD510.674 + 0.0886Resid_IMP 0.821 38.04 23.13 20.97

Resid_P, percentage of residential area in a block group; adjIMP, mean value of the adjusted
impervious surface in a block group; Resid_IMP, mean value of the residential impervious
surface in a block group; Sqrt_PD, square root of population density.
For the data analysis, the impervious surface images are rescaled to 0–1000 by multiplying by
1000 for each pixel, so the ranges of adjIMP and Resid_IMP are between 0 and 1000.
R2 is the coefficient of determination, which is based on the modelling data set.
MRE and MdRE are mean and median relative errors (%), respectively, of the population
density based on the validation data set. Error means total population estimation error (%)
based on the overall data set in this study area.
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be overestimated. Conversely, higher population density areas tend to be

underestimated. Figure 8 indicates that when population density is less than

approximately 300 (persons per km2), population densities are often overestimated,

no matter which model is assessed, whereas when population density is greater than

approximately 3500 (persons per km2), population densities are often under-

estimated. A comparison of figures 8(a), 8(b) and 8(c) indicates that the use of

percentage of residential area in the population estimation can improve estimation

results in low population density areas.

Figure 9 plots reference against estimated population density data. It indicates

that use of percentage of residential area and residential impervious surface

Figure 8. Comparison of population estimation errors based on different remote-sensing
derived variables: (a) percentage of residential area; (b) adjusted impervious surface;
(c) residential impervious surface.
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improves population estimation results, especially for low-density areas. However,

all three models have a common problem, in that the population density is

underestimated in high-density areas.

6. Discussion and conclusions

Remote sensing-based population estimation is still a challenging task, especially for

residential regions with extremely high or low population densities. The residential

impervious surface provided the best population density estimation performance

with a median relative error of 23% and a total population error of 20.97%. A

major advantage of this approach is that the impervious surface is stable, and almost

independent of seasonal change and atmospheric conditions. Another advantage for

using the residential impervious surface is that the models developed may be

transferable to other study areas.

The impervious surface is a complex feature that can be made up of different

kinds of materials and can be of different types such as buildings, roads, parking lots

and sidewalks. The impervious surface is spectrally easily confused with bare soils.

Many factors may affect the success of extraction of impervious surfaces from

satellite imagery. For example, the complexity and mixture of different kinds of

impervious surfaces result in difficulty in identifying suitable endmembers. The

limited spectral channels and the high correlations among certain channels limit the

number of endmembers that can be used in the SMA. Moreover, the image-based

endmember selection method cannot ensure that sufficient numbers of typical

endmembers are obtained. This method assumes that typical endmembers are

always contained in the dataset used, but this assumption is not always true,

especially with complex urban environments. Hence, it is necessary to associate

image endmembers with reference endmembers of actual target materials (Adams

et al. 1995, Roberts et al. 1998a). Selection of reference endmembers from spectral

libraries or from field measurements is flexible, but it is difficult to account for all

possible features and processes due to the many factors influencing the data spectra.

For example, image reflectance spectra may not be accurately correspondent with

library reflectance spectra due to the effects of different atmospheric correction

methods. Conversion of spectral library data to the units of the image (e.g.

reflectance, radiance, or DN) or conversion of the image data to the units of spectral

library data may also be necessary. It is important to make sure that a spectral

library data approximates the image spectra in terms of wavelengths, bandwidths

and band shapes (Roberts et al. 1998a). To solve the dilemma between limited image

channels and the large number of endmembers required, a possible method is to use

multiple endmember models (Roberts et al. 1998b). The multiple-endmember SMA

approach permits a large number of endmembers to be modelled across a scene, and

has shown better performance than the standard SMA approach (Painter et al.

1998, Roberts et al. 1998b, Okin et al. 2001, Dennison and Roberts 2003). This

approach starts with a series of candidate two-endmember models and then

evaluates each model based on fraction values, RMSE and residual threshold, and

finally produces fraction images with the lowest error (Roberts et al. 1998b). The

multiple-endmember SMA approach may be more suitable for use in urban

environments.

The adjusted impervious surface has shown an improvement for population

estimation over the original impervious surface. It is important to select suitable

thresholds to remove those pixels with non-residential areas. The thresholds of 25%
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Figure 9. Comparison of population reference data and estimated population data based on
different remote-sensing derived variables: (a) percentage of residential area; (b) adjusted
impervious surface; (c) residential impervious surface.
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and 75% used in this study are based on the limited training samples of the CIT

areas and the agricultural areas. Some high-rise apartment buildings with very high

population densities may be masked out, but some CIT areas with less than 75% of

impervious surface values may remain in the impervious surface image. A similar

problem occurred in the areas with less than 25% of impervious surface. This is an

important factor influencing the population estimation performance. Integration of

the impervious surface image and the residential class is recommended to generate a

good residential impervious surface image, if an accurate classification map is

available.

This research suggests that with remote sensing-based methods, population is

often overestimated in residential areas with low population density, but under-

estimated in areas with high population density. Stratification of population density

has been demonstrated to be effective in improving estimation results (Lo 2003, Li

and Weng 2005). The pixel-based population estimation approach may provide a

better result than those based on census measurements (Harvey 2003). Based on the

findings of this study, we consider that a stratification of population densities,

combined with the pixel-based estimation models using the residential impervious

surface, may further improve population estimation performance. One important

source of errors for population estimation is from high-rise apartment buildings.

The optical sensor data such as TM/ETM + can only provide land surface

information and cannot provide height and intra-building information. The

incorporation of building height information in population estimation models

may improve model performance. Light Detection And Ranging (LiDAR) data, for

example, have been shown to be capable of extracting building height information

(Maas and Vosselman 1999, Barnsley et al. 2003), and may provide new insight for

population estimation through integration of LiDAR-derived information and

ETM + -derived variables. Some possible solutions have been proposed for

improving population estimation accuracy in low- or high-population density areas

(Harvey 2003, Lo 2003).
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