

Spatio-Temporal Database

Karine Reis Ferreira

(karine@dpi.inpe.br)

August 2010

Topics

(1) Dynamic Geospatial Data and Applications

(2) Ontology for Spatio-Temporal Data

(3) Representation of Spatio-Temporal Data(a) Existing Spatio-Temporal Database Models

(4) Spatio-Temporal Database Systems

Dynamic Geospatial Data

Technological advances in geospatial data collection.

Earth observation and GPS satellites

wireless and mobile computing, radio-frequency identification (RFIDs) and sensor networks

Dynamic Geospatial Data

Technological advances in geospatial data collection.

Applications which handle dynamic geospatial information

[Arraut, E. M. 2008]

oil spill on the ocean

hurricane and volcanic eruption monitoring

Levantamento, área de vida, uso e seleção de habitat de **Aves de Rapina** na região central do estado de São Paulo.

Julho de 2005 a junho de 2007 monitorando 6 aves de rapina por rádio-telemetria.

[Marco Granzinolli, 2009]

Todos os dados geo-espaciais estão variando ao longo do tempo: Uso e Ocupação do Solo (**geofield**) e Localizações dos animais (**geo-object**).

"Quanto tempo o animal 150.652 permaneceu em cada uso e ocupação do solo?"

"Em quais momentos o animal 150.652 sai do cerrado aberto e entra no campo cerrado"

Outros cultivos

Pinus

[Marco Granzinolli, 2009]

"Which month had the biggest number of infected eggs?"

"When and where were more than 80 infected eggs collected by each trap?"

[Monteiro et. al., 2009]

[INPE's Antarctica Program, 2010]

"When and where did objects o1 and o2 meet each other (considering a meeting when the distance between two objects is less than 2 meters)?"

"Where and when was there a spatiotemporal cluster of objects?"

Movement Monitoring

PRODES

"How was the state of a specific deforested region in 2002? (considering that this specific deforested region was not observed in 2002)?"

"how did a specific deforested region evolve over time between 2000 and 2008?"

"how did the deforested regions that started less than 2 kilometer far from the river r1 evolve over time?"

"when did a specific deforested region reach the municipality x?"

PRODES

PRODES

PRODES

Descobrir **padrões** de áreas desmatadas e como esses padrões evoluem no tempo:

é importante ter o conceito de **objeto** (área desmatada) e de **evolução desse objeto** ao longo do tempo.

[Silva et al., 2005] [Motta et al., 2009] [Bittencourt et al., 2008]

Dynamic Geospatial Data

Regarding spatio-temporal data, there are many distinct research areas in geographical information system (GIS) science:

Dynamic Geospatial Data

Regarding spatio-temporal data, there are many distinct research areas in geographical information system (GIS) science:

Ontology for Spatio-Temporal Data

Ontology for Spatio-Temporal Data

well-established classification of real world phenomena into: *continuants* and *occurrents* [Galton, 2008].

Continuants (entities that endure in the world through time): (a) can undergo changes, (b) has spatial parts but not temporal part, (c) is wholly present at each moment of its existence.

Ex.: a person, an aircraft, and a volcano

Ontology for Spatio-Temporal Data

well-established classification of real world phenomena into: *continuants* and *occurrents* [Galton, 2008].

Occurrents (entities that happen or go on in time - processes/events): (a) can not undergo change, (b) has temporal parts, and (c) is not wholly present at any time short of its entire durations.

Ex.: a persons' life, a flight and an eruption

Ontology for Spatio-Temporal Data

SNAP and SPAN ontologies [Grenon and Smith, 2004]

SNAP and SPAN ontologies have been applied to the geography domain, resulting in a geographical ontology. [Grenon and Smith, 2004]

Representation of Spatio-Temporal Data

Representation of Spatio-Temporal Data

Representation of Spatio-Temporal Data

Static geospatial information is represented in GIS following well-established ideas.

There is no consensus on how to represent dynamic geospatial information in computational systems.

Spatial information: every **spatial DBMS** (ex.: Oracle Spatial and PostGIS) follows a pattern to represent and query spatial information (**SFS-OGC**).

And spatio-temporal information?

"There are four stages in introducing temporal capacity into GIS: (0) static GIS, (1) temporal snapshots, (2) object change, and (3) events, actions and processes. Most current proprietary technologies are in stage zero..." [Worboys, 2005]

There are many proposals of spatio-temporal database models.

ontology of space and time and its representation through data types, relationships and operations among them.

There are many proposals of spatio-temporal database models.

There are many proposals of spatio-temporal database models.

There are many proposals of spatio-temporal database models.

Geospatial Event Model (Worboys and Hornsby, 2004)

Relationships between objects and events and between events and events.

Moving Feature Model (ISO, 2008)

Do not consider feature geometry deformation and changes in non-spatial attributes.

There are many proposals of spatio-temporal database models.

"A serious weakness of existing spatio-temporal models is that each of them deals with few common features found across a number of specific applications." [Pelekis at al. 2004]

Geo-Fields which	Geo-Objects which change over time		
change over time	Discrete geometry change	Continuous geometry change	
Snapshot Model,	STC Model, STOM Model	Moving Object Model,	
ESTDM Model, and	Three-domain Model, and	Geospatial lifeline, and	
Hierarchal Model	GEM Model	Moving Feature Model	

Geo-O			
geometry is fixed and non- spatial attributes change over time	geometry changes discretely over time and non- spatial attributes also can change.	geometry changes continuously over time and non-spatial attributes also can change.	Geo-Field which vary over time
- SAUDAVEL: egg traps - LUCC Modeling: cell space	- Municipal limit changes	 Movement monitoring (ex.: Aves de rapina e elefante marinho) PRODES: Evolution of deforested areas 	 PRODES: classified images Land Use and Land Cover Maps

(1) ESTDM [Peuquet and Duan,
 1995] → Variação do uso e cobertura do solo.

(2) Moving Object [Erwing et, al, 1999] → Trajetórias dos animais

How to answer these questions?

"Quanto tempo o animal 150.652 permaneceu em cada uso e ocupação do solo?"

"Em quais momentos o animal 150.652 sai do cerrado aberto e entra no campo cerrado"

Spatio-Temporal Database Systems

SECONDO: Moving Object Database

- SECONDO: A Database System for Moving Objects (http://dna.fernuni-hagen.de/Secondo.html/index.html)
- A prototype developed by University of Hagen, Germany
- Able to represent, store and query objects which move over time.

SECONDO: Moving Object Database

Moving Points (ex.: animais, veiculos e pessoas) oil spill on the ocean

Moving Regions (ex.: mancha de oleo)

Animal tracking monitoring

Iceberg tracking monitoring in Antarctica - SOS-Climate

For each data type α , the set of possible values and its carrier set A_{α} are:

$$\begin{aligned} A_{moving(\alpha)} &:= \{ f \mid f: \overline{A}_{instant} \to \overline{A}_{\alpha} \text{ is a partial function} \\ & \wedge \Gamma(f) \text{ is finite} \end{aligned}$$

 \overline{A} : carrier set without undefined value. $\Gamma(f): f$ consists only of a finite number of continuous components.

Each value f is a function describing the development over time of a value from the carrier set A_{α} .

Some Operations

Operation	Signature
trajectory	$moving(point) \rightarrow line$ $moving(points) \rightarrow line$
traversed	$moving(line) \rightarrow region$ $moving(region) \rightarrow region$
intersection	$moving(point) \ge moving(region) \rightarrow moving(point)$
distance	$moving(point) \times moving(point) \rightarrow moving(real)$
deftime	$moving(point) \rightarrow periods$
length	line \rightarrow real
min	$moving(real) \rightarrow real$

1) Animals $a_1 \rightarrow$ their locations change continuously over time.

2) Habitat fragmentation area $hF_1 \rightarrow its$ limit changes continuously over time.

animal_tracking (id: string, description: string, tracking: mpoint)

 $\begin{array}{c} \text{Image} a_1 \text{ from time 1 to 120} \\ hF_1 \text{ at time 1} \\ hF_1 \text{ at time 50} \end{array}$

1) Find all animals that are longer than 5000 km?

SELECT *
FROM animal_tracking
WHERE length(trajectory(tracking)) > 5000

2) Retrieve any pairs of animals, which, during their tracking, came closer to each other than 500 meters.

SELECT *
FROM animal_tracking AS t1, animal_tracking AS t2
WHERE t1.id <> t2.id AND
min(distance(t1.tracking, t2.tracking)) < 0.5</pre>

3) At what times was animal a1 within the habitat fragmentation area hF1 ?

SELECT deftime(intersection(a.tracking, h.habitat))
FROM animal_tracking AS a, habitat_frag AS h
WHERE a.id = 'a1' AND h.id = 'hF1'