XXII Encontro
Nacional
de Estudos
Populacionais

População, informação e sociedade:
Dinâmica demográfica e conhecimento no mundo pós-pandemia

07 a 11 Nov. 2022

VULNERABILIDADE SOCIAL NO MOSAICO SERTÃO VEREDAS-PERUAÇU E UNIDADES DE CONSERVAÇÃO ADJACENTES

João Victor Pereira Sabino Silvana Amaral Kampel

Resumo: Este artigo avalia a relação entre a organização em mosaico das Unidades de Conservação e a vulnerabilidade social no Mosaico Sertão Veredas Peruaçu e em unidades adjacentes. Adota-se o referencial de ativos e estruturas de oportunidade, organizado nos capitais financeiro, humano, social e físico natural, para explicar como recursos e contextos territoriais condicionam o acesso a oportunidades no interior das unidades e em seus entornos. A unidade de análise é uma grade de um quilômetro quadrado que cobre o interior das unidades e um buffer contíguo de dez quilômetros. As variáveis do Censo Demográfico de 2022 e do Censo Agropecuário de 2017 foram harmonizadas, desagregadas e padronizadas por transformação min max. O Índice de Vulnerabilidade Social resulta da média dos quatro subíndices. No conjunto geral, o índice apontou vulnerabilidade maior no interior do que no entorno, com médias de 0,536 no interior e 0,507 no entorno. O capital físico natural explicou a maior parte da diferença com 0,502 no interior e 0,415 no entorno. Os testes não paramétricos de Kolmogorov Smirnov e de Mann Whitney confirmaram a separação das distribuições, com valor de p menor que 0,001 e efeito consistente a favor do interior. Nas unidades de uso sustentável, o padrão se manteve, com médias de 0,536 no interior e 0,514 no entorno. Nas Áreas de Proteção Ambiental, o interior apresentou índice de 0,537 e capital físico natural de 0,505, frente a 0,508 e 0,424 no entorno. Os resultados indicam que a maior vulnerabilidade no interior decorre sobretudo de condicionantes físico territoriais, enquanto a contribuição financeira é secundária e as diferenças nos capitais social e humano são discretas. A heterogeneidade entre unidades denota uma necessidade de priorização espacial de investimentos em infraestrutura, serviços e mediação de conflitos, com foco em reduzir barreiras territoriais e ampliar oportunidades de caráter físico-territorial.

Palavras-chave: Unidades de Conservação, Mosaico, Vulnerabilidade Social, Ativos e Oportunidades, Gestão Territorial.

I. Introdução

As Unidades de Conservação (UCs) são territórios legalmente instituídos com o objetivo de proteger a biodiversidade, assegurar a funcionalidade ecológica, garantir a oferta contínua de serviços ecossistêmicos e resguardar valores culturais associados (IUCN, 2008). Sua função estratégica vai além da conservação, incluindo também a mitigação de impactos da fragmentação de habitats, da degradação do solo e de alterações hidrológicas e climáticas (Juffe-

Bignoli et al., 2014; Bellard et al., 2012; UNEP-WCMC; IUCN; NGS, 2018). A efetividade dessas áreas depende também da capacidade institucional, ecológica e territorial de resposta às pressões antrópicas no interior e no entorno (Naughton-Treves; Holland; Brandon, 2005).

Nesse contexto, os mosaicos de UCs instituem um arranjo de gestão em escala de paisagem. Previsto e regulamentado no SNUC, os mosaicos reúnem unidades contíguas ou próximas sob um conselho consultivo e um plano integrado de gestão, articulando órgãos e políticas setoriais (BRASIL, 2000; BRASIL/MMA, 2010; MMA, 2024; ICMBio, 2020). Tecnicamente, orienta-se por princípios de conectividade via redes e corredores ecológicos, em consonância com diretrizes internacionais para redes ecológicas (IUCN WCPA, 2020). Ao favorecer coordenação territorial, o mosaico pode associar-se a resultados ambientais e sociais em escala regional, ainda que condicionados por capacidade institucional, financiamento e participação social (Zanin et al., 2024; Melo; Irving, 2014). Como tais resultados dependem de mudanças no acesso a recursos e serviços, avaliar o desempenho dos mosaicos requer um referencial que conecte governança ambiental a oportunidades sociais.

Adota-se, para isso, a abordagem de ativos e estruturas de oportunidade (Katzman, 2000; Katzman; Filgueira, 2006). Ativos são recursos tangíveis e intangíveis controlados por indivíduos e famílias. Já as estruturas de oportunidade são os circuitos institucionais e relacionais, como o Estado, mercados, redes e família, que regulam acesso e renovação desses recursos. Ao incorporar a dimensão territorial nos perfis de ativos observamos que condições físico-naturais, acessibilidade e posição no espaço modulam a conversão de ativos em oportunidades. Para orientar a leitura empírica, os ativos são organizados em quatro capitais: financeiro, humano, social e físico-natural, o que permite examinar como a organização em mosaico se relaciona com oportunidades dispostas (ou indisponíveis) no território (Anazawa, 2012).

O capital financeiro corresponde à disponibilidade de recursos de alta liquidez, como salários, proventos e acesso a crédito, que sustentam a capacidade imediata de gastos e investimentos das famílias. O capital físico-natural compreende os recursos comuns e indivisíveis vinculados ao lugar de residência (condições ambientais, infraestrutura e serviços territoriais, acessibilidade e

riscos locais) que incidem diretamente sobre segurança e bem-estar social. O capital humano abrange o conjunto de habilidades, conhecimentos, escolaridade, experiência e condições de saúde que ampliam a capacidade de trabalho e as chances de geração de renda e de bem-estar. O capital social refere-se à capacidade relacional e institucional de famílias e comunidades de cooperar e acessar recursos, serviços e direitos por meio de redes, confiança e participação em organizações (Anazawa, 2012; Katzman, 2000).

O objetivo geral é avaliar, no Mosaico Sertão Veredas—Peruaçu (MSVP) e UCs adjacentes, como a organização do mosaico se relaciona com padrões de vulnerabilidade social no interior das UCs e em seus entornos. Objetivos específicos: (i) comparar categorias de manejo quanto à vulnerabilidade social; e (ii) identificar quais capitais (financeiro, humano, social e físico-natural) mais contribuem para os contrastes observados. Ao articular o funcionamento institucional dos mosaicos com a lente ativos—oportunidades, este estudo oferece uma importante base analítica para interpretar diferenças de vulnerabilidade social em escala de paisagem e produzir insumos para a priorização de ações públicas de infraestrutura, serviços e mediação de conflitos em territórios sob gestão integrada (Melo; Irving, 2014).

II. Área de Estudos

O MSVP insere-se no norte e noroeste de Minas Gerais, com pequena continuidade ao sudoeste da Bahia, em ecótono Cerrado—Caatinga sobre o chamado "Chapadão Central", cuja posição geomorfológica favorece a manutenção de fluxos ecológicos entre biomas. A base físico-ambiental combina veredas assentadas em solos hidromórficos alimentados pelo aquífero Urucuia, extensos latossolos e areias quartzosas, além de sistemas cársticos de alta relevância espeleológica, arqueológica e paleontológica no Vale do Peruaçu, possuindo atributos que sustentam conectividade ecológica e uso público voltado ao ecoturismo (FUNATURA, 2008; Saraiva, 2008). A literatura descreve explicitamente essa configuração: transição Cerrado—Caatinga; predominância de Cerrado como hotspot; veredas como ambientes chave; e o Peruaçu como núcleo cárstico de grande valor científico e turístico (Saraiva, 2008).

Do ponto de vista social, trata-se de território de baixa densidade populacional, com estrutura produtiva marcada por pecuária e agricultura extensivas, extrativismo de produtos do Cerrado e um crescente segmento de turismo de natureza e cultural. Estudos regionais destacam a presença de comunidades tradicionais (quilombolas, indígenas e sertanejas), historicamente articuladas por redes locais e por um imaginário cultural associado à obra Grande Sertão: Veredas, que tem sido apropriado em roteiros e ações de turismo literário, agregando valor patrimonial e identitário às iniciativas de desenvolvimento com base conservacionista (Menezes; Barroso, 2016).

O diagnóstico social, conforme Saraiva (2008), evidencia indicadores socioeconômicos abaixo da média nacional — renda e escolaridade; acesso a serviços básicos (abastecimento de água, esgotamento sanitário e coleta de resíduos); baixa densidade populacional e elevada razão de dependência —, além de estrutura produtiva concentrada em agropecuária extensiva, desigualdades de acesso a serviços públicos e trajetórias recentes de ocupação e transformação territorial desde a década de 1970, com efeitos sobre modos de vida e usos do solo.

Considerando o contexto físico-natural e social delineado, define-se um recorte espacial referenciado na proposta de mosaico consolidada pela FUNATURA. Esfera federal — Proteção Integral: Parque Nacional Cavernas do Peruaçu; Parque Nacional Grande Sertão Veredas. Esfera federal — Uso Sustentável: Área de Proteção Ambiental Cavernas do Peruaçu; Reserva Particular do Patrimônio Natural Arara Vermelha. Esfera estadual — Proteção Integral: Parque Estadual Lagoa do Cajueiro; Parque Estadual Mata Seca; Parque Estadual Serra das Araras; Parque Estadual Verde Grande; Parque Estadual Veredas do Peruaçu; Reserva Biológica Jaíba; Reserva Biológica Serra Azul. Esfera estadual — Uso Sustentável: Área de Proteção Ambiental Bacia do Rio Pandeiros; Área de Proteção Ambiental Cochá e Gibão; Área de Proteção Ambiental Lajedão; Área de Proteção Ambiental Serra do Sabonetal; Reserva de Desenvolvimento Sustentável Veredas do Acari. A espacialização das UCs e a população residente em domicílios particulares se encontra na Figura 1.

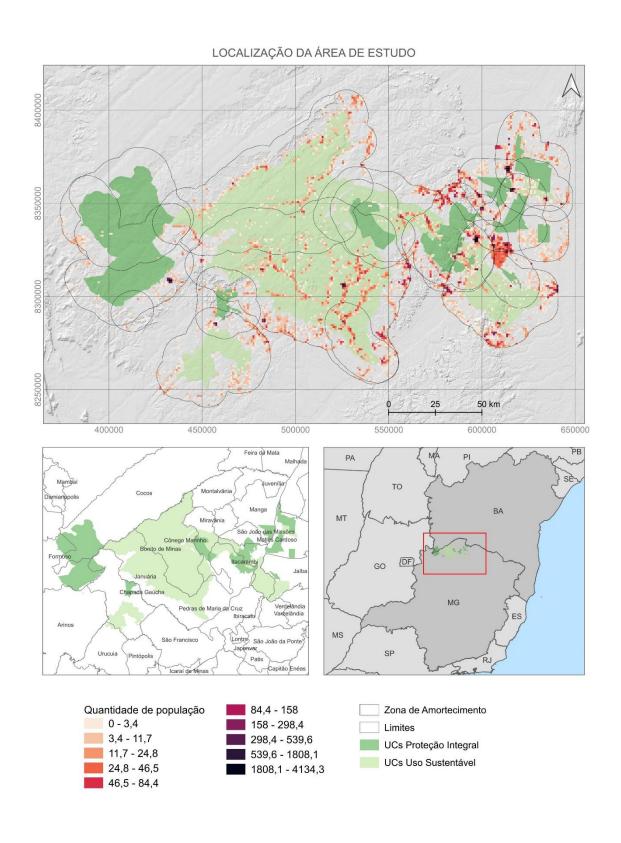


Figura 1 – Localização da Área de Estudos e Quantidade de População

A lista de UCs da figura anterior difere parcialmente do conjunto oficialmente associado ao MSVP, sobretudo na margem direita do rio São Francisco, onde não há UCs pertencentes ao MSVP. A área total compreende um buffer de 10 km do conjunto de UCs selecionadas. Adota-se buffer de 10 km por apresentar bom equilíbrio entre proximidade e alcance espacial no entorno imediato e padronizando a unidade de comparação entre UCs com áreas distintas.

III. Material e Métodos

A unidade espacial de análise para compreender os fenômenos encontrados na área de estudos definida é uma grade regular de 1 km², que recobre o interior das UCs e um buffer de 10 km contíguo ao perímetro conjunto das UCs. A resolução de 1 km² foi adotada por oferecer equilíbrio entre detalhamento espacial e robustez estatística, compatibilizando-se com o suporte das bases utilizadas e padronizando a unidade de comparação ao longo de todo o recorte.

A grade foi construída conforme o seguinte procedimento: os setores que compõem o interior e o entorno são carregados e projetados para um sistema de coordenadas UTM estimado automaticamente para facilitar a replicabilidade; calcula-se o envelope espacial e gera-se uma malha de quadrículas de 1.000 m x 1.000 m que cobre integralmente essa extensão; as células são filtradas por interseção com a união geométrica dos setores (preservando apenas as que incidem na área de estudo); cada célula recebe um identificador único sequencial; em seguida a malha é recortada utilizando o buffer de 10 km como referência; e por fim, a malha é reprojetada para o datum geográfico SIRGAS 2000 (EPSG:4674) e armazenada em formato GeoPackage, assegurando consistência geométrica e reprodutibilidade do insumo analítico.

A integração de bases partiu da leitura e harmonização de variáveis setoriais do Censo Demográfico do IBGE do ano de 2022 e de variáveis municipais do Censo Agropecuário do IBGE de 2017, com controle de consistência de códigos, tipos de dados e sistemas de referência. As informações setoriais e municipais foram associadas à grade de 1 km² por meio de operações de interseção espacial, do tipo overlay e intersects, executadas em sistema de coordenadas UTM, com dissolução por identificador de célula e, quando pertinente, ponderação pela

área de interseção para preservar somatórios. Ausências e valores nulos foram tratados por regras explícitas, com registro e checagens de consistência, incluindo validação topológica e reconciliação de totais. Para as variáveis originalmente reportadas em escala municipal, realizou-se desagregação para 1 km² com ponderação espacial baseada em classes específicas do MapBiomas, utilizando como pesos a fração agrícola por célula. Todo o fluxo foi mantido em projeção métrica local durante os cálculos e reprojetado ao final para SIRGAS 2000, preservando integridade geométrica e reprodutibilidade.

Os indicadores foram organizados segundo os quatro capitais do referencial analítico. No capital financeiro, utilizaram-se renda domiciliar, acesso a financiamento e intensidade produtiva agropecuária por célula. No capital humano, consideraram-se escolaridade e alfabetização, razão de dependência e a estrutura etária representada pela razão de jovens sobre adultos, e um sentido de renovação da população economicamente ativa (PEA). No capital social, mediram-se densidade e diversidade de equipamentos e instituições locais (estabelecimentos religiosos, saúde e ensino), participação associativa e acessibilidade a serviços essenciais estimada por distância mínima a equipamentos. No capital físico-natural, compuseram-se indicadores de saneamento domiciliar, que abrange abastecimento de água, esgotamento sanitário e manejo de resíduos, de suscetibilidade a movimentos de massa e de condicionantes físico-territoriais pertinentes à conversão de ativos em oportunidades. O Quadro 1 apresenta a organização dos indicadores em suas dimensões analíticas.

Quadro 1 – Dimensões e Indicadores que compõe a análise. CF: Capital Financeiro; CFN: Capital Físico-Natural; CS: Capital Social; CH: Capital Humano.

Dimensão	Indicador	Fonte	Descrição
CF	Renda Média do Responsável	IBGE (2022)	Renda média do responsável por célula normalizado para 0 a 1. Valor maior indica maior carência financeira.
	Número de Estabelecimentos com Produção	IBGE (2017); MapBiomas (2017)	Densidade/contagem de estabelecimentos com produção por célula (ajustada pela área/uso agro a partir do MapBiomas), normalizada e

	<u></u>		Savandala and social s
			invertida, onde valores maiores
			indicam menor dinamismo
			econômico e maior carência.
	Estabelecimentos agrícolas que obtiveram financiamento		Proporção ponderada (por
		IBGE (2017); MapBiomas (2017)	classes/uso agro) de
			estabelecimentos com financiamento
			na célula, normalizada e invertida,
			em que valores maiores refletem
			maior restrição de crédito
	Pessoal ocupado sem laço de parentesco com o proprietário	IBGE (2017); MapBiomas (2017)	Proporção ponderada de
			trabalhadores não familiares nos
			estabelecimentos da célula,
			normalizada e invertida, de modo
			que valores maiores expressem
			mercado de trabalho local mais fraco
			e maior carência financeira.
			Indicador que relaciona o destino do
			lixo, destino de esgoto, e a
		IDOE (2000)	quantidade de banheiros por
	Acesso a Recursos Sanitários	IBGE (2022)	morador. Entende-se que quanto
			maior o valor obtido maior a
			exclusão a recursos sanitários
	Suscetibilidade a movimentos de massa		Indicador baseado na morfologia do
			terreno, relacionando variáveis como
		SEMAD-MG (2025)	declividade, hipsometria, orientação
			e curvatura horizontal e vertical da
			vertente. Quanto maior o valor
			obtido, menores são as condições
			de moradia segura.
CFN			Indicador composto constituído por
	Acesso a recursos naturais e ecossistêmicos	IBGE (2022), CECAV (2025), IDE-SISEMA	indicadores de pressão por acesso à
			água, disponibilidade de tipos de
			solo adequados para manejo,
		(2025),	proximidade a elementos de
		MAPBIOMAS (2022)	geodiversidade, acesso a recursos
			pesqueiros e quantidade/qualidade
			florestal do entorno.
	Cobertura de telefonia móvel	ANATEL (2025)	Percentual da área/célula com sinal
			3G/4G/5G (ou presença de ERBs) e
			nível mínimo de serviço. Valor maior
			significa menor conectividade e
			menor barreira de comunicação.
CS	Densidade de estabelecimentos de convívio social	IBGE (2022)	Quantidade de equipamentos sociais
			(escolas, unidades de saúde,
			templos/centros religiosos ou
			comunitários) por km² dentro da
			célula.
			Indicador: densidade é normalizada
			e invertida
			e iliveriud

	Diversidade de estabelecimentos de convívio social	IBGE (2022)	Variedade de tipos de equipamentos sociais presentes na célula
	Acessibilidade a estabelecimentos de convívio social	IBGE (2022)	Distância média ao equipamento mais próximo de cada tipo (educação, saúde, religioso/comunitário) medida a partir do centro da célula
	Associação a cooperativas	IBGE (2017); MapBiomas (2017)	Proporção de estabelecimentos agropecuários na célula associados a cooperativas ponderada por classe agropecuária
СН	Razão de dependência	IBGE (2022)	Proporção de dependentes (0–14 e 65+) sobre a população em idade ativa (15– 64) na célula, normalizada, em que valores maiores indicam maior carência de capital humano.
	Desequilíbrio de gênero na alfabetização	IBGE (2022)	Diferença entre as taxas de alfabetização de mulheres e homens na célula, normalizada, onde valores maiores refletem maior desigualdade e pior condição.
	Razão entre jovens e adultos	IBGE (2022)	Relação entre a população de 15–29 anos e a de 30–64 anos na célula, normalizada, em que valores maiores sugerem pressão maior sobre educação/emprego e, portanto, maior carência.

Como os atributos selecionados apresentam naturezas e escalas distintas, como densidades, quantidades absolutas, proporções e variáveis binárias, todos os dados foram submetidos a um processo de padronização e normalização. Para isso, adotou-se o método Min-Max, que transforma os valores originais para uma escala comum entre 0 e 1, conforme a fórmula:

$$x_i = (v_i - min_i) / (max_i - min_i)$$

em que:

v_j é o valor original do atributo j; e min_j e max_j são os valores mínimo e máximo do atributo j da UC e entorno considerado na análise. Esse processo é essencial para garantir a comparabilidade entre indicadores de diferentes unidades e ordens de grandeza, além de preservar a proporcionalidade entre os valores durante a agregação ponderada.

A composição do índice ocorreu em dois níveis. Primeiro, calcularam-se subíndices de capital por média aritmética simples dos indicadores padronizados de cada capital, preservando a interpretabilidade de cada dimensão. Em seguida, obteve-se o Índice de Vulnerabilidade Social pela média simples dos quatro subíndices, em escala de zero a um, na qual valores mais elevados indicam maior vulnerabilidade. Os resultados, incluindo variáveis originais, subíndices e índice composto, foram armazenados em camadas do GeoPackage final, acompanhados de metadados de processamento. A Vulnerabilidade é dada pela fórmula:

IVS = Capital Social + Capital Físico Natural + Capital Social + Capital Humano / 4

As análises comparativas seguiram três abordagens sequenciais. Primeiro, calcularam-se estatísticas descritivas por estrato, incluindo média, mediana, quartis, intervalo interquartílico, assimetria e curtose, acompanhadas de curvas de densidade e de distribuição acumulada empírica para inspeção das formas das distribuições. Em seguida, avaliou-se a diferença entre interior das unidades de conservação e o entorno de dez quilômetros por meio do teste estatístico não paramétrico de Kolmogorov–Smirnov bicaudal, com cálculo do estatístico D, do valor crítico para alfa igual a 0,05 e da posição de maior divergência entre as curvas acumuladas, registrando a direção do efeito e as diferenças de média e de mediana. No mesmo contraste aplicou-se o teste de Mann–Whitney bicaudal, com estimação dos tamanhos de efeito, além da indicação da direção do efeito.

Por fim, compararam-se categorias de manejo e subconjuntos de interesse por meio do teste de Kruskal–Wallis, restrito a grupos com tamanho mínimo de quinze observações e, quando pertinente, ao universo de células no interior das unidades; as diferenças identificadas foram detalhadas por testes par a par com Mann–Whitney e ajuste de Holm para controle do erro do tipo um. Para reduzir dependência espacial, as inferências foram precedidas de filtro de rarefação espacial a três quilômetros entre centróides das células com dados válidos. Todos os procedimentos foram aplicados às quatro dimensões de capital e ao

Índice de Vulnerabilidade Social, com exportação das tabelas de resultados e das figuras correspondentes; complementarmente, produziram-se mapas temáticos e gráficos de radar para síntese visual e verificou-se a coerência espacial por meio de visualizações interativas.

IV. Resultado e Discussão

No conjunto de todas as unidades de conservação em análise, o IVS médio foi maior no interior do que no entorno, com 0,536 no interior e 0,507 no entorno. As medianas reforçam esse padrão, com 0,543 no interior e 0,509 no entorno, o que indica um deslocamento da distribuição para valores mais altos dentro das UCs. O capital Físico-Natural foi o principal responsável pelo contraste, com média de 0,502 no interior e 0,415 no entorno, o que representa uma diferença absoluta de 0,087. O capital Financeiro também contribuiu para a diferença, com média de 0,712 no interior e 0,687 no entorno, o que representa um acréscimo de 0,025 dentro das UCs, ou seja, variação positiva. Os capitais Social e Humano apresentaram variações pequenas, com médias de 0,699 e 0,701 no Social e de 0,232 e 0,223 no Humano, respectivamente, o que indica participação secundária desses componentes no resultado final.

O teste de Kolmogorov–Smirnov confirmou a separação das distribuições entre interior e entorno para o IVS, com D igual a 0,216 e valor de p menor que 0,001, superior ao valor crítico aproximado de 0,043 para o tamanho amostral observado. O teste de Mann–Whitney para o IVS indicou tamanho de efeito A12 igual a 0,652, delta de Cliff igual a 0,303 e estimador de Hodges-Lehmann próximo de mais 0,031, o que quantifica a maior vulnerabilidade no interior. Para o capital Físico-Natural, o teste de Kolmogorov–Smirnov retornou D igual a 0,234 e valor de p menor que 0,001, o que sustenta a interpretação de que as condições físico-territoriais agravam a vulnerabilidade dentro das UCs.

Para o capital Financeiro, o teste de Kolmogorov–Smirnov apontou D próximo de 0,238 e valor de p menor que 0,001, o que confirma diferença sistemática de renda e acesso financeiro entre interior e entorno. Para o capital Humano, o efeito foi pequeno, mas detectável, com D próximo de 0,081 e valor de p menor que 0,001, o que sugere um deslocamento discreto da distribuição no interior.

Para o capital Social, a diferença de médias foi próxima da neutralidade, o que indica que a estrutura relacional e de acesso institucional varia pouco entre interior e entorno no recorte analisado.

O ranking por unidade na escala geral evidencia heterogeneidade interna relevante. As maiores medianas de IVS foram observadas no Parque Estadual Serra das Araras (mediana 0,580; média 0,578; n = 137 células), na APA Cochá e Gibão (0,574; 0,571; n = 2.843) e na RDS Veredas do Acari (0,558; 0,558; n = 588), seguidas pelo Parque Nacional Grande Sertão Veredas (0,550; 0,562; n = 2.302) e pela APA Bacia do Rio Pandeiros (0,544; 0,541; n = 3.932). A Figura 2, Figura 3 e Figura 4, abaixo, apresentam a espacialização dos resultados de cada uma das dimensões e do IVS.

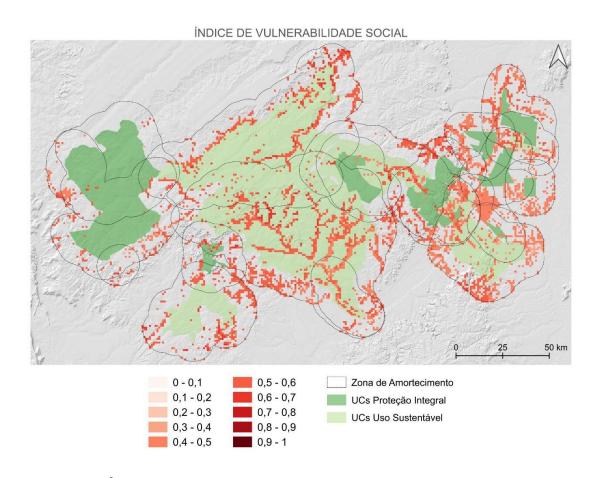


Figura 2 – Índice de Vulnerabilidade Social, Unidades de Conservação e Entorno

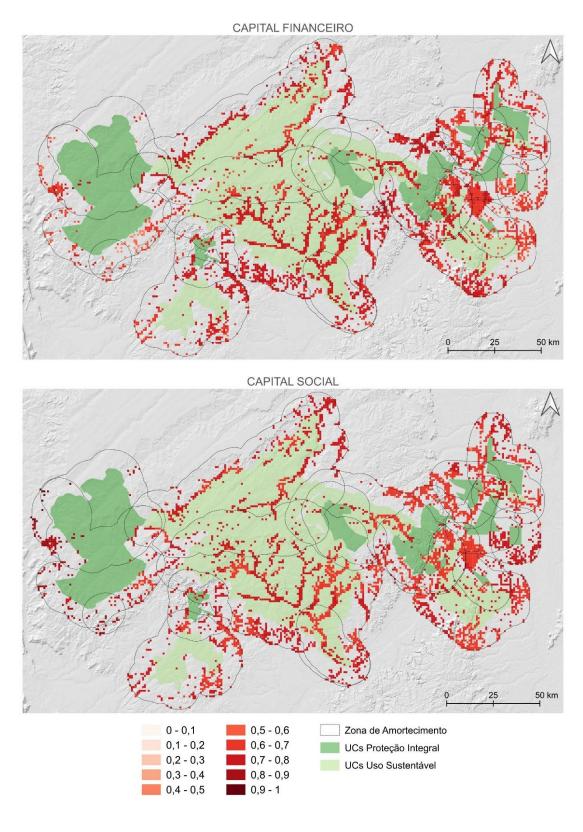


Figura 3 – Capital Financeiro (acima) e Capital Social (abaixo)

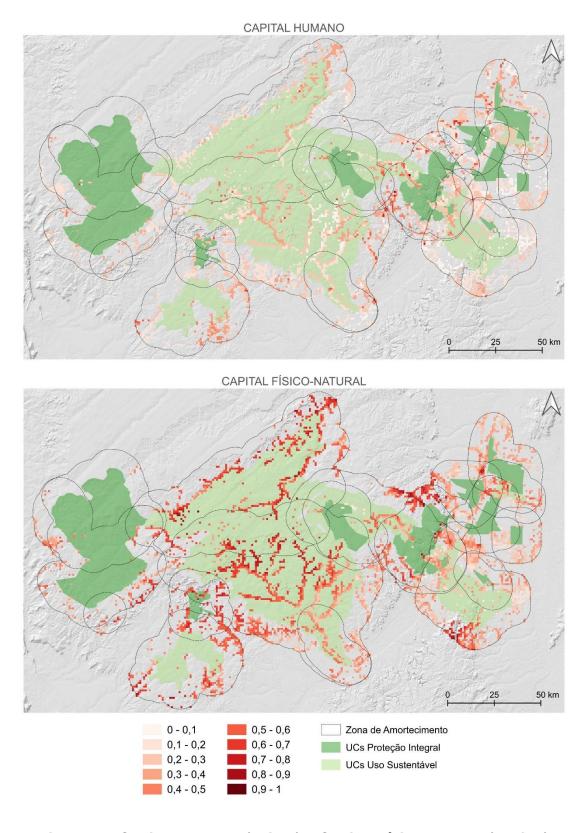


Figura 4 – Capital Humano (acima) e Capital Físico-Natural (abaixo)

No conjunto das unidades de conservação de uso sustentável, o IVS médio foi maior no interior do que no entorno, com 0,536 no interior e 0,514 no entorno. As medianas reforçam esse padrão, com 0,544 no interior e 0,520 no entorno, o que indica um deslocamento da distribuição para valores mais altos dentro das UCs. O capital Físico-Natural foi o principal responsável pelo contraste, com média de 0,504 no interior e 0,422 no entorno, o que representa um diferencial absoluto de 0,081 ponto. O capital Financeiro também contribuiu para a diferença, com média de 0,712 no interior e 0,701 no entorno, acréscimo de 0,011 ponto. Os capitais Social e Humano apresentaram variações pequenas, com 0,698 e 0,692 no Social e 0,231 e 0,215 no Humano, respectivamente, o que indica participação secundária dessas dimensões no resultado agregado.

O teste de Kolmogorov–Smirnov mostrou que as distribuições de IVS no interior e no entorno são diferentes. O valor D foi 0,173 com p menor que 0,001, acima do valor crítico estimado de 0,046 para o tamanho das amostras, o que confirma a separação entre os grupos. O teste de Mann–Whitney reforça essa conclusão. O índice A12 foi 0,614, indicando que em cerca de 61% das comparações uma célula do interior apresenta IVS maior do que uma célula do entorno. O delta de Cliff foi 0,229, o que corresponde a um efeito pequeno a moderado. O estimador de Hodges–Lehmann ficou em aproximadamente +0,023, quantificando o deslocamento típico do IVS a favor de valores mais altos no interior.

Para o capital Físico-Natural, o padrão é semelhante. O Kolmogorov–Smirnov resultou em D igual a 0,197 com p menor que 0,001, e o Hodges–Lehmann foi de cerca de +0,071, sinalizando que as condições físico-territoriais agravam a vulnerabilidade dentro das UCs. No capital Financeiro, o D foi 0,141 com p menor que 0,001, confirmando diferença sistemática entre interior e entorno. No capital Humano, o efeito foi pequeno, mas presente. O D foi 0,088 com p menor que 0,001, o A12 ficou em 0,527, o delta de Cliff em 0,054 e o Hodges–Lehmann em cerca de +0,009. No capital Social, o D foi 0,111 com p menor que 0,001, o A12 atingiu 0,540, o delta de Cliff foi 0,081 e o Hodges–Lehmann ficou próximo de +0,004. Em síntese, os testes indicam diferença clara para o IVS e para o Físico-Natural, diferença moderada para o Financeiro e diferenças pequenas, porém consistentes para Humano e Social.

O ranking por unidade (apenas uso sustentável) evidencia heterogeneidade interna. As maiores medianas de IVS ocorreram na APA Cochá e Gibão (mediana 0,574; média 0,571; n = 2.843), na RDS Veredas do Acari (0,558; 0,558; n = 588) e na APA Bacia do Rio Pandeiros (0,544; 0,541; n = 3.932). Em seguida aparecem a APA Lajedão (0,528; 0,524; n = 114) e a APA Cavernas do Peruaçu (0,503; 0,506; n = 1.185). A RPPN Arara Vermelha apresenta amostra muito reduzida (n = 3), o que impede estimativas robustas.

No subconjunto das Áreas de Proteção Ambiental, o padrão de maior vulnerabilidade no interior também foi verificado. A média do IVS foi 0,537 no interior e 0,508 no entorno, e as medianas foram 0,544 e 0,511, respectivamente. Esses resultados indicam que o deslocamento não se restringe às medidas centrais, mas envolve a distribuição como um todo. A análise específica por capitais mostra que o componente Físico-Natural responde pela maior parte do contraste. A média do capital Físico-Natural foi 0,505 no interior e 0,424 no entorno, diferença absoluta de 0,081 ponto. Esse resultado é consistente com condicionantes do território que dificultam a conversão de ativos em oportunidades, como acessibilidade, qualidade ambiental e exposição a riscos.

O capital Financeiro também contribui, porém de forma secundária, com médias de 0,712 no interior e 0,703 no entorno (diferença de 0,009 ponto). Os capitais Social e Humano apresentam variações discretas: no Social, as médias foram 0,698 no interior e 0,696 no entorno; no Humano, 0,231 e 0,211, respectivamente. Em conjunto, esses padrões indicam que o diferencial agregado observado nas APAs é explicado principalmente por restrições físicoterritoriais, com apoio financeiro moderado e menor participação das dimensões social e humana.

Os testes estatísticos confirmam a separação entre interior e entorno. O teste de Kolmogorov–Smirnov para o IVS resultou em D = 0,236, com valor de p menor que 0,001, superior ao valor crítico estimado (Dcrit \approx 0,051), o que indica diferença robusta entre as distribuições. O teste de Mann–Whitney reforça essa evidência: A12 = 0,648, delta de Cliff = 0,296 e estimador de Hodges–Lehmann \approx +0,030, quantificando a dominância do interior em magnitude e frequência. No capital Físico-Natural, o Kolmogorov–Smirnov apresentou D = 0,223 (p < 0,001) e Hodges–Lehmann \approx +0,087, sustentando seu papel central no contraste. No

Financeiro, os resultados apontam diferença menor, porém consistente (D = 0,142; p < 0,001; Hodges–Lehmann \approx +0,005). Nos capitais Humano e Social observam-se contrastes discretos, embora detectáveis: Humano com D = 0,124 (p < 0,001), A12 = 0,560, delta de Cliff = 0,119 e Hodges–Lehmann \approx +0,020; Social com D = 0,098 (p < 0,001), A12 = 0,528, delta de Cliff = 0,056 e Hodges–Lehmann \approx +0,002.

A heterogeneidade interna entre as APAs é relevante. As maiores medianas de IVS ocorrem na APA Cochá e Gibão (mediana 0,574; média 0,571; n = 2.843), na APA Bacia do Rio Pandeiros (0,544; 0,541; n = 3.932) e na APA Lajedão (0,528; 0,524; n = 114). Em seguida aparecem a APA Cavernas do Peruaçu (0,503; 0,506; n = 1.185) e a APA Serra do Sabonetal (0,484; 0,474; n = 859). Esses resultados indicam que, embora o padrão agregado aponte maior vulnerabilidade no interior das APAs, a intensidade do fenômeno varia entre unidades segundo seus contextos físico-territoriais e socioeconômicos.

V. Referências bibliográficas

ANAZAWA, Tereza Masuzaki. Vulnerabilidade e território no litoral norte de São Paulo: indicadores, perfis de ativos e trajetórias. Dissertação (Mestrado em Sensoriamento Remoto). São José dos Campos: INPE, 2012. Disponível em: http://urlib.net/8JMKD3MGP7W/3CB8UHH. Acesso em: 19/09/2025.

BELLARD, C.; BERTELSMEIER, C.; LEADLEY, P.; THUILLER, W.; COURCHAMP, F. Impacts of climate change on the future of biodiversity. Ecology Letters. Hoboken: Wiley, v. 15, n. 4, p. 365–377, 2012. Disponível em: https://doi.org/10.1111/j.1461-0248.2012.01764.x. Acesso em: 19/09/2025.

BRASIL, Ministério do Meio Ambiente (MMA). Portaria nº 482, de 14 de dezembro de 2010: estabelece procedimentos para reconhecimento de mosaicos e registro no CNUC. Brasília: MMA, 2010. Disponível em: https://antigo.mma.gov.br/estruturas/240/_arquivos/portaria_procedimentos_par a_reconhecimento_240.pdf. Acesso em: 19/09/2025.

BRASIL. Lei nº 9.985, de 18 de julho de 2000: institui o Sistema Nacional de Unidades de Conservação da Natureza — SNUC. Brasília: Presidência da República, 2000. Disponível em: https://www.planalto.gov.br/ccivil 03/leis/l9985.htm. Acesso em: 19/09/2025.

DUDLEY, Nigel (Ed.). Guidelines for Applying Protected Area Management Categories. Gland: IUCN, 2008. 86 p.

HILTY, Jodi; WUERTHNER, George; HAYWARD, Mary; TROMBULAK, Stephen C. (coord. IUCN WCPA). Guidelines for Conserving Connectivity through Ecological Networks and Corridors. Gland: IUCN WCPA, 2020. 124 p. Disponível em: https://portals.iucn.org/library/sites/library/files/documents/PAG-030-En.pdf. Acesso em: 19/09/2025.

INSTITUTO CHICO MENDES DE CONSERVAÇÃO DA BIODIVERSIDADE (ICMBio). Mosaicos e Corredores Ecológicos. Brasília: ICMBio, 2020. Disponível em: https://www.gov.br/icmbio/pt-br/assuntos/mosaicos-e-corredores-ecologicos. Acesso em: 19/09/2025.

JUFFE-BIGNOLI, D.; BURGESS, N. D.; BINGHAM, H.; BELLE, E. M. S.; DE LIMA, M. G.; DEGUIGNET, M.; BERTZKY, B.; MILAM, A. N.; MARTINEZ-LOPEZ, J.; LEWIS, E.; EASSOM, A.; WICANDER, S.; GELDMANN, J.; VAN SOESBERGEN, A.; ARNELL, A. P.; O'CONNOR, B.; PARK, S.; SHI, Y. N.; DANKS, F. S.; MACSHARRY, B.; KINGSTON, N. Protected Planet Report 2014: tracking progress towards global targets for protected areas. Cambridge: UNEP-WCMC, 2014. Disponível em: https://livereport.protectedplanet.net/. Acesso em: 19/09/2025.

KATZMAN, Rubén. Activos y estructuras de oportunidades: estudios sobre las raíces de la vulnerabilidad social en Uruguay. Revista de la CEPAL. Santiago: CEPAL, n. 70, p. 133–153, 2000. Disponível em: https://repositorio.cepal.org/. Acesso em: 19/09/2025.

KATZMAN, Rubén; FILGUEIRA, Fernando. As normas como bem público e privado: reflexões nas fronteiras do enfoque ativos, vulnerabilidades e estrutura de oportunidades (AVE-O). In: CUNHA, José Marcos Pinto (Org.). Novas

metrópoles paulistas: população, vulnerabilidade e segregação. Campinas: NEPO/UNICAMP, 2006. p. 67–94.

MELO, Gustavo Marini de; IRVING, Marta de Azevedo. Mosaicos de unidades de conservação: desafios para a gestão integrada e participativa para a conservação da natureza. Geografias. Belo Horizonte: UFMG, v. 10, n. 2, p. 46–87, 2014. Disponível em: https://periodicos.ufmg.br/index.php/geografias/article/download/13383/10615/35466. Acesso em: 19/09/2025.

MENEZES, A. T.; BARROSO, E. P. Turismo literário no Mosaico Sertão Veredas—Peruaçu. Anais da ANPTUR. Curitiba: Associação Nacional de Pesquisa e Pós-Graduação em Turismo, 2016. Disponível em: https://www.anptur.org.br/. Acesso em: 19/09/2025.

MINISTÉRIO DO MEIO AMBIENTE E MUDANÇA DO CLIMA (MMA). Mosaicos de Unidades de Conservação. Brasília: MMA, 2024. Disponível em: https://www.gov.br/mma/pt-br/assuntos/biodiversidade-e-biomas/gestao-integrada-de-paisagem/mosaicos. Acesso em: 19/09/2025.

NAUGHTON-TREVES, Lisa; HOLLAND, Margaret B.; BRANDON, Katrina. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annual Review of Environment and Resources. Palo Alto: Annual Reviews, v. 30, p. 219–252, 2005. Disponível em: https://doi.org/10.1146/annurev.energy.30.050504.164507.

PALMER, Arthur N. Cave Geology. Dayton: Cave Books, 2007. 454 p.

RORATO, Ana Carolina; SANTOS, Rodrigo O.; SIQUEIRA-GAY, Juliana; SÁNCHEZ, Luis E. A spatially explicit vulnerability assessment of Indigenous Lands in the Brazilian Amazon. Environmental Science & Policy. Amsterdam: Elsevier, v. 132, p. 43–55, 2022. Disponível em: https://doi.org/10.1016/j.envsci.2022.02.013.

SARAIVA, Vânia Marquez. Gestão integrada de áreas protegidas e estratégias de desenvolvimento territorial com base na conservação: da proposta do Mosaico Grande Sertão Veredas-Peruaçu. 2008. 133 f. Dissertação (Mestrado

em Desenvolvimento Sustentável – Gestão Ambiental) — Universidade de Brasília, Centro de Desenvolvimento Sustentável, Brasília, 2008.

SOUZA, Davi Oliveira de; LIMA, Marcos Aurélio de; FERREIRA, Marco Cezar. Vulnerabilidade ambiental em Unidades de Conservação na Amazônia Legal: uma análise multiescalar. Revista do Departamento de Geografia. São Paulo: USP, v. 45, p. 1–19, 2023. Disponível em: https://doi.org/10.11606/rdg.v45i0.194462.

TRAVASSOS, Luiz Eduardo Panisset. Princípios de Carstologia e Geomorfologia Cárstica. Brasília: ICMBio, 2019. 242 p.

TURNER, Billie L. II; KASPERSON, Roger E.; MATSON, Pamela A.; MCCARTHY, James J.; CORELL, Robert W.; CHRISTENSEN, Lindsay; ECKLEY, Noelle; KASPERSON, Jeanne X.; LUERS, Amy; MARTELLO, Marybeth Long; POLSKY, Colin; PULSIPHER, Alexander; SCHILLER, Andrew. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences. Washington, DC: National Academy of Sciences, v. 100, n. 14, p. 8074–8079, 2003. Disponível em: https://doi.org/10.1073/pnas.1231335100.

UNEP-WCMC; IUCN; NATIONAL GEOGRAPHIC SOCIETY. Protected Planet Report 2018. Cambridge: UNEP-WCMC e IUCN, 2018. Disponível em: https://livereport.protectedplanet.net/.

VÍAS, Juan; ANDREO, Bartolomé; PERLES, María J.; CARRASCO, Fernando; VADILLO, Inmaculada; JIMÉNEZ, Pedro. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeology Journal. Berlin: Springer, v. 14, p. 912–925, 2006. Disponível em: https://doi.org/10.1007/s10040-006-0023-6.

ZANIN, Paulo Rodrigo; CAVALCANTE, Rosane Barbosa Lopes; FLEISCHMANN, Ayan Santos; PONTES, Paulo Rógenes Monteiro; PERES, Carlos A. Do protected areas enhance surface water quality across the Brazilian Amazon? Journal for Nature Conservation, v. 81, e126684, 2024. Disponível em: https://doi.org/10.1016/j.jnc.2024.126684.