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A Spatial-Temporal Modeling Approach to
Reconstructing Land-Cover Change Trajectories

from Multi-temporal Satellite Imagery
Desheng Liu∗ and Shanshan Cai†

∗Department of Geography and Department of Statistics, The Ohio State University
†Department of Geography, The Ohio State University

Temporal trajectories of land-cover change provide important information on landscape dynamics that are critical
to our understanding of complex human–environment adaptive systems. The increasing availability of long time
series of satellite images, especially the recent free release of multi-decadal Landsat satellite archive, presents
a great opportunity to improve our ability to detect land-cover change over multiple dates and advance land
change science. In this article, a spatial-temporal modeling approach is developed for reconstructing land-cover
change trajectories from time series of satellite images. The change detection method represents an enhancement
to the conventional post-classification comparison. The key innovation lies in the use of Markov random field
theory to model spatial-temporal contextual information explicitly in the classification of time series images.
When evaluated using a time series of seven Landsat images in a case study of southeast Ohio, the spatial-
temporal modeling approach yielded significantly more accurate and consistent trajectories of land-cover change
than conventional non-contextual approaches. The results from the case study demonstrate the effectiveness of
the change detection method in reconstructing land-cover change trajectories and also highlight the utility of
spatial-temporal contextual information in improving the accuracy and consistency of land-cover classifications
across space and time. Key Words: change detection, land-cover change trajectories, Landsat imagery, post-classification
comparison, spatial-temporal contextual information.

Las trayectorias temporales de cambio de cobertura terrestre proporcionan información importante sobre la
dinámica del paisaje que son fundamentales para nuestra comprensión de los complejos sistemas de adaptación
humano-ambientales. La creciente disponibilidad de largas series temporales de imágenes de satélite, en especial
el reciente libre lanzamiento de archivos de varios decenios del satélite Landsat, presentan una gran oportunidad
para mejorar nuestra capacidad para detectar el cambio de la cobertura terrestre durante múltiples fechas y
promover la ciencia del cambio de la tierra. En este artı́culo se ha desarrollado un enfoque de modelado espacio-
temporal para reconstruir las trayectorias del cambio de cobertura terrestre de las series temporales de imágenes
de satélite. El método de detección de cambio representa una mejora a la convencional comparación post-
clasificación. La clave de la innovación radica en el uso de la teorı́a de campo aleatorio de Markov para modelar
información contextual espacial-temporal de forma explı́cita en la clasificación de imágenes de series de tiempo.
Cuando se evaluó utilizando una serie de tiempos de siete imágenes Landsat en un caso de estudio del sureste de
Ohio, el enfoque del modelo espacio-temporal produjo trayectorias mucho más precisas y coherentes del cambio
de la cobertura terrestre que los enfoques convencionales no contextuales. Los resultados del caso de estudio
demuestran la eficacia del método de detección de cambios en la reconstrucción de trayectorias de cambios de
cobertura terrestre y también resaltan la utilidad de la información contextual espacio-temporal en la mejora
de la precisión y coherencia de las clasificaciones de la cobertura terrestre a través del espacio y del tiempo.
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1330 Liu and Cai

Palabras claves: detección de cambios, trayectorias de cambio de cobertura terrestre, imágenes Landsat, comparación
post-clasificación, información contextual espacio-temporal.

With the increased pace, extent, and inten-
sity of human alterations of the Earth’s land
surface, the last several decades have wit-

nessed unprecedented land-use and land-cover change
(LULCC) at a broad range of spatial and temporal scales
(Turner et al. 1990; Meyer 1994; Steffen et al. 2004).
The dramatic changes in land use and land cover im-
pact the Earth system in myriad ways, including global
climate change, loss of biodiversity, and soil degra-
dation, among others (Vitousek et al. 1997; Lambin
et al. 1999; Foley et al. 2005). Understanding the spatial
and temporal dynamics of LULCC, its natural and an-
thropogenic causes, and its potential impacts and con-
sequences is crucial to sustainable human development,
and has thus received great attention from various re-
search communities, leading to the emergence of a new
interdisciplinary research field, increasingly referred to
as land change science (Rindfuss et al. 2004; Turner, Lam-
bin, and Reenberg 2007).

Remote Sensing of Land-Cover Change

One critical component of land change science is
the observation and monitoring of land-cover change
at various spatial and temporal scales (Rindfuss et al.
2004; Turner, Lambin, and Reenberg 2007). Although
traditional field-based approaches can provide detailed
and spatially disaggregated information on land-cover
change, they are limited by their spatial extent and tem-
poral frequency (Petit, Scudder, and Lambin 2001). In
this regard, satellite remote sensing has been playing a
major role in land-cover change monitoring due to its
capability to observe the land surface in a repetitive and
consistent manner over large areas. In particular, the
Earth-observing satellite missions of the Landsat pro-
gram have been acquiring time series of satellite imagery
of the Earth every sixteen to eighteen days since 1972
(U.S. Geological Survey [USGS] 2003), providing the
longest satellite records on land-cover dynamics over
the past four decades throughout the world (Williams,
Goward, and Arvidson 2006). The unparalleled tem-
poral span of the Landsat time series together with its
relatively sufficient spatial resolution and spectral cov-
erage have made it the most widely used satellite data
in LULCC studies (Goward and Williams 1997; Cohen
and Goward 2004).

Despite the great potential offered by the long time
series of Landsat imagery, most LULCC studies only
use a pair of Landsat images acquired at two points in
time for land-cover change detection and modeling
(Mertens and Lambin 2000; Kennedy, Cohen, and
Schroeder 2007; Mena 2008; Huang et al. 2010).
This bi-temporal change analysis is sufficient for
LULCC studies focusing on the rate and spatial pattern
of net change in a given time period. More often
than not, however, the transition process underlying
land-cover change is of more interest because it is
critical to understand when and how human impacts
alter the landscapes (Mertens and Lambin 2000; Petit,
Scudder, and Lambin 2001; An and Brown 2008;
Mena 2008). As an emergent property of coupled
human–environment systems, land-cover change,
especially over a long time period, often follows
nonlinear, reversible, and time-varying pathways that
are too complex to be represented by observations
at two dates (Mertens and Lambin 2000; Braimoh
and Vlek 2005). For example, Vågen (2006) found a
complex nonlinear temporal pattern of deforestation
in Madagascar using a time series of Landsat images
acquired on five different dates and concluded that
such patterns would not have been seen if observations
from only two dates had been used. Similarly, Mertens
and Lambin (2000) developed a multivariate spatial
model of satellite-derived land-cover change trajec-
tories associated with different deforestation processes
in southern Cameroon. Their results showed that
modeling land-cover change trajectories over several
observation years improved the projection of areas with
a high probability of change over projections based
on observations from only the previous period alone.
Therefore, temporal sequences of land-cover classes de-
rived from satellite images at multiple dates (i.e., more
than two dates), henceforth called land-cover change
trajectories (Mertens and Lambin 2000), are needed
for better characterization of land-cover dynamics of
complex human–environment adaptive systems.

The concept of multi-temporal land-cover change
trajectory analysis is obviously not new (see Lambin
1997; Mertens and Lambin 2000), but its applications
in LULCC studies have not been widely explored com-
pared with traditional bi-temporal land-cover change
analysis. This has perhaps been in part due to the limited
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1331

access to a longer satellite time series, especially Landsat
data. The recent opening of the Landsat archive to the
public for free Web-based access has greatly improved
the accessibility of multi-temporal Landsat data (USGS
2008), opening up an unprecedented opportunity to ad-
vance land-cover change trajectory analysis for LULCC
studies. It is anticipated that there will be growing
interest from the land change science community in
making use of the freely available multi-temporal Land-
sat data to analyze the trajectories of land-cover change
over the past decades. Due to the complex nature
of land-cover dynamics, however, challenges remain
in the accurate reconstruction of land-cover change
trajectories from multi-temporal satellite imagery. To
meet the increasing need for change trajectory analysis,
change detection techniques based on multi-temporal
satellite imagery must be advanced accordingly.

Multi-temporal Change Detection Techniques

Many computer techniques have been developed for
detecting land-cover change using satellite data during
the past three decades. Summaries of existing change
detection techniques can be found in numerous review
papers, such as Coppin et al. (2004), Lu et al. (2004),
and Singh (1989). Due to the dominance of bi-temporal
change analysis, most of these techniques are developed
for detecting changes using images at two dates only
(Coppin et al. 2004; Kennedy, Cohen, and Schroeder
2007; Huang et al. 2010). By contrast, techniques de-
signed for multi-temporal change analysis using images
at more than two dates are much fewer and largely
limited to two groups: (1) temporal trajectory analysis
of satellite imagery time series and (2) multi-temporal
post-classification comparison.

Temporal trajectory analysis detects changes directly
by modeling temporal signatures of change processes
of interest using the time profiles of high-temporal-
frequency satellite data such as Advanced Very High
Resolution Radiometry (AVHRR) and Moderate Res-
olution Imaging Spectrometry (MODIS; Myneni et al.
1997; Coppin et al. 2004; Lunetta et al. 2006). This
technique is particularly useful for detecting subtle sea-
sonal and interannual changes in ecosystem properties
that are not easily discernable by bi-temporal change
detection techniques (Coppin et al. 2004; Kennedy,
Cohen, and Schroeder 2007). Recently, trajectory-
based change detection techniques have been de-
veloped to monitor forest disturbance history using
dense Landsat time series (Kennedy, Cohen, and
Schroeder 2007; Huang et al. 2010). However, the time

profile–based technique is mainly restricted to a few
specific change processes with characteristic temporal
signatures at large spatial scales (e.g., forest disturbance
and vegetation dynamics; Coppin et al. 2004), so it is
not suitable for detecting a potentially large number of
general transitions between different land-cover classes
over time.

On the other hand, post-classification comparison
first classifies multi-temporal satellite images into
land-cover classes independently at each date and
then compares the classified land-cover sequences
successively to construct the trajectories of land-cover
change. In contrast with temporal trajectory analysis,
post-classification comparison is typically applied
to higher spatial resolution imagery (e.g., Landsat
imagery) to generate detailed change transitions
between different land-cover classes. This technique
was initially developed to detect land-cover transitions
between two dates (i.e., the “from–to” land-cover
changes), and its extension to more than two dates
represents a natural way to track land-cover change
trajectories over multiple dates.

To date, post-classification comparison has been used
predominantly for reconstructing land-cover change
trajectories in various LULCC studies (e.g., Lucas et
al. 1993; Alves and Skole 1996; Mertens and Lambin
2000; Petit, Scudder, and Lambin 2001; Southworth
et al. 2004; Braimoh and Vlek 2005; Mena 2008; Kuem-
merle et al. 2009). It is well known, however, that the
accuracy of post-classification comparison is highly de-
pendent on the land-cover classification results at each
date (Coppin et al. 2004). By its very nature, land-
cover classification from satellite imagery inherently
possesses various classification errors caused by factors
such as noise in satellite observations, spectral confu-
sion among different land-cover classes, and limitations
of classification algorithms. Consequently, when multi-
temporal land-cover results of the same area are com-
bined, classification errors generated at each date will
inevitably be propagated to the post-classification com-
parison process, potentially leading to poor accuracy in
the resulting change trajectories (Singh 1989; Foody
2002). This issue becomes increasingly more critical as
longer time series of satellite images are involved in
post-classification comparison. Therefore, to achieve
sufficient accuracy on land-cover change trajectories,
accurate and consistent land-cover classification results
across space and time are needed for multi-temporal
post-classification comparison. To this end, spectral in-
formation directly from satellite observations is usu-
ally not enough, and the spatial and temporal context
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1332 Liu and Cai

related to land-cover change trajectories must be incor-
porated in the classification (Boucher, Seto, and Journel
2006; D. S. Liu, Kelly, and Gong 2006; D. S. Liu et al.
2008; Powell et al. 2008; D. S. Liu and Chun 2009).

The purpose of this article is to develop an advanced
change detection method based on post-classification
comparison for reconstructing land-cover change tra-
jectories from multi-temporal satellite imagery. Cur-
rent approaches for post-classification comparison have
proven to be substantially affected by error propa-
gation due to their ignorance of important spatial-
temporal context of land-cover change trajectories (D.
S. Liu and Chun 2009). In this article, we present
a novel spatial-temporal modeling approach for post-
classification comparison to minimize error propagation
in post-classification comparison and improve the ac-
curacy of land-cover change trajectories. Specifically, a
spatial-temporal contextual classification model is de-
veloped to exploit the use of spatial-temporal contex-
tual information in improving land cover classifications
over multiple dates. This spatial-temporal contextual
classification model extends the previous work by D. S.
Liu, Kelly, and Gong (2006) and D. S. Liu et al. (2008)
for land-cover change detection at two dates to multiple
dates for detecting land-cover change trajectories.

The rest of the article is organized as follows. We
first present basic notations and lay out the change
detection problem. We then introduce in detail an
advanced change detection method in which spatial-
temporal contextual information is modeled for better
mapping of land-cover change trajectories. After that,
we apply the change detection method to a case study
of land-cover change in southeast Ohio, where com-
plex trajectories of land-cover change associated with
secondary forest succession have been observed. To
evaluate the method, we compare it with conventional
non-contextual change detection methods and demon-
strate the values of spatial-temporal contextual infor-
mation in change detection. Finally, we conclude the
article with discussions on some critical issues in land-
cover change detection.

Problem Statement

Suppose a time series of remote sensing images
has been acquired in the study area of interest at
m (m > 2) different dates. The time series of images
are assumed to have been well registered to each other.
Let each pixel in the image time series be referenced
by a pair of indexes (s, t), where s is an index of spa-

tial location and s ∈ S = {1, . . . , n}, with n being the
total number of pixels in each image; t is an index of
time and t ∈ T = {1, . . . , m}. Let the multi-temporal
images be denoted by X = {X(s,t)|s ∈ S, t ∈ T}, where
X(s,t) represents the observed spectral data of pixel (s, t).
Let the underlying multi-temporal land-cover process
be denoted by L = {L(s,t)|s ∈ S, t ∈ T}, where L(s,t)
represents the class label of pixel (s, t) and belongs to
one of k land-cover classes {l1, . . . , lk}.

Our goal is to reconstruct the trajectories of land-
cover change over the m dates at each pixel location
s (s ∈ S), L(s,1) → · · · → L(s,m), from the observed
multi-temporal image data set X. To this end, the most
straightforward approach is post-classification compar-
ison, by which land-cover change trajectories can be
easily established from land-cover classification maps
at different dates. Given this, our problem is essen-
tially one of multi-temporal land-cover classification.
That is, to generate the land-cover change trajectories
at all pixel locations, we need to map the underlying
multi-temporal land-cover process L through the clas-
sification of the multi-temporal images X.

In a Bayesian framework, the optimal classification
of multi-temporal images X is determined by the maxi-
mum a posteriori (MAP) classification rule,

L∗ = arg max
L

{P (L|X)}, (1)

where L∗ denotes the MAP estimate of the multi-
temporal land-cover process; P (L|X) is the posterior
probability of the land-cover process L given the data
X; and arg max

L
{P (L|X)} stands for the multi-temporal

classification that maximizes the posterior probability.
Solving Equation 1 involves two tasks: modeling

the posterior probability distribution and searching
for the MAP solution using an optimization algo-
rithm, both of which are difficult due to the complex
spatial-temporal structure (i.e., spatial-temporal depen-
dence) of the multi-temporal images and the land-cover
process. To simplify the model specification and op-
timization, most LULCC studies do not consider
the spatial-temporal structure and conveniently as-
sume spatial-temporal independence among pixels,
with which the joint multi-temporal land-cover clas-
sification can be decomposed into independent land-
cover classification at each pixel. This leads to a
non-contextual classification model in which the class
label of each pixel is solely determined by its spectral
information. The MAP classification rule in Equation 1
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1333

for the non-contextual model is then reduced to

L∗
(s,t) = arg max

L(s,t)

{
P

(
L(s,t)

∣∣X(s,t)
)}

; for s ∈ S, t ∈ T.

(2)
Although the non-contextual approach to multi-
temporal land-cover classification is conceptually sim-
ple and computationally appealing, the important
spatial-temporal context related to land-cover change
trajectories is completely discarded in the classification.
In the next section, we present a novel spatial-temporal
modeling approach to the stated classification problem
to improve the accuracy and consistency of land-cover
change trajectories.

Methods

MAP-MRF Classification Framework

In contrast to the conventional non-contextual clas-
sification model that uses spectral information only, a
spatial-temporal contextual classification model is de-
veloped in this article to integrate both spectral in-
formation and spatial-temporal contextual information
in the classification. Using Bayes’s theorem, the MAP
classification rule in Equation 1 can be written as:

L∗ = arg max
L

{
P (L) × � (X |L )

}
, (3)

where P (L) is the prior probability of the land-cover
process L; and �(X|L) is the likelihood of the data
X given L. Equation 3 provides a generative model-
ing framework to our classification problem that allows
us to model spectral information and spatial-temporal
contextual information separately.

The prior probability P (L) takes into account our
a priori knowledge about the spatial-temporal con-
text of the underlying land-cover process. Markov ran-
dom field (MRF) theory provides a convenient and
consistent approach to modeling such contextual re-
lationships through characterizing local statistical de-
pendences among image pixels in terms of conditional
prior distributions (Besag 1986; Dubes and Jain 1989;
Cressie 1993; Li 2001). As such, we develop a three-
dimensional MRF model to account for the spatial-
temporal dependences of the underlying land-cover
process (Solberg, Taxt, and Jain 1996; Melgani and Ser-
pico 2003; D. S. Liu, Kelly, and Gong 2006; D. S. Liu et
al. 2008). To do so, it is necessary to define a neighbor-
hood system on which the spatial-temporal contextual
dependences will be established. For this purpose, we
define a second-order spatial-temporal neighborhood

Figure 1. The spatial-temporal neighborhood system used in the
Markov random field (MRF) model. The spatial-temporal neighbors
of pixel(s, t), N(s, t), include (1) spatial neighbors, NS(s, t), (2) past
temporal neighbors, NT1 (s, t), and (3) future temporal neighbors,
NT2 (s, t).

system (Figure 1) by extending the neighborhood sys-
tem defined at two dates in D. S. Liu, Kelly, and Gong
(2006) to multiple dates. As illustrated in Figure 1, the
neighbors of pixel (s, t), denoted by N(s, t), consist of
a subset of spatial-temporally adjacent pixels around
the pixel. Given the defined neighborhood system, the
land-cover process L is said to be a three-dimensional
MRF if the conditional distribution of the land-cover
class at an arbitrary pixel (s, t) given all other pixels
in the multi-temporal images is only dependent on its
spatial-temporal neighbors for all s ∈ S and t ∈ T:

P
(
L(s,t)

∣∣L−(s,t)
) = P

(
L(s,t)

∣∣LN(s,t)
)
, (4)

where L−(s,t) = {L(s ′,t ′)|(s ′, t ′) �= (s, t)} represents the
class labels of all pixels other than pixel (s, t); and
LN(s,t) = {L(s ′,t ′)|(s ′, t ′) ∈ N(s, t)} represents the class
labels of all spatial-temporal neighbors of pixel (s, t).
Based on the Hammersley–Clifford theorem (Hammer-
sley and Clifford 1971), the joint distribution of an MRF
is a Gibbs distribution defined on the same neighbor-
hood system:

P (L) = 1
Z

exp [−U(L)]= 1
Z

exp
[
−

∑
c∈C

Vc(Lc)
]
,

(5)
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1334 Liu and Cai

where Z is a normalizing constant called the partition
function; U(L) is called the energy function; c is a
clique;1 C is the set of all cliques; Lc is the value of
L at the pixels in clique c; and Vc(Lc) is the potential
function of Lc . Equation 5 provides a simple form to
specify the joint distribution of an MRF in terms of the
clique potential functions Vc(Lc) in the corresponding
Gibbs distribution.

The likelihood function �(X|L) represents the con-
tribution of observed spectral data to the land-cover
classification. Given that the spatial-temporal depen-
dence among image pixels is modeled through the prior
distribution P (L) using MRF theory, we assume condi-
tional independence for �(X|L) to simplify the model
specification (Besag 1986). Consequently, the likeli-
hood function is modeled as the product of the marginal
likelihood function at each pixel:

� (X |L ) =
m∏

t=1

n∏
s=1

f
(
X(s,t)

∣∣L(s,t)
)
, (6)

where f (X(s,t)|L(s,t)) is the marginal likelihood func-
tion at pixel (s, t).

With Equations 5 and 6, we obtain a mathemati-
cally tractable MAP-MRF framework for Equation 3
to model the joint multi-temporal land-cover classifi-
cation with integrated use of spectral information and
spatial-temporal contextual information (Li 2001). The
MAP solution, however, is computationally prohibitive
to obtain due to the combinatorial nature of the joint
optimization over all possible values of L. To simplify
the optimization, we use a computationally feasible al-
gorithm called iterated conditional modes (ICM) to ap-
proximate the MAP solution (Besag 1986). Instead of
maximizing the joint posterior probability over all im-
age pixels simultaneously, ICM maximizes the condi-
tional posterior probability of each pixel sequentially:

L∗
(s,t) = arg max

L(s,t)

{
P

(
L(s,t)

∣∣X(s,t), LN(s,t)
)}

= arg max
L(s,t)

{
f
(
X(s,t)

∣∣L(s,t)
) × P

(
L(s,t)

∣∣LN(s,t)
)}

.

(7)
The conditional prior distribution P (L(s,t)|LN(s,t)) can
be easily derived from Equation 5 (Li 2001):

P
(
L(s,t)

∣∣LN(s,t)
) = 1

Z(s,t)
exp

[−U
(
L(s,t)

∣∣LN(s,t)
)]

= 1
Z(s,t)

exp
[
−

∑
c∈C(s,t)

Vc(Lc)
]
, (8)

where U(L(s,t)|LN(s,t)) is the spatial-temporal energy
function at the pixel (s, t), which will be specified in the
following section; C(s, t) is the set of cliques containing
pixel (s, t); and Z(s,t) is a normalizing constant.

It should be noted that the classification of each
pixel in Equation 7 depends on the class labels of its
neighboring pixels, the classifications of which further
depend on their neighboring pixels. The class labels of
the neighboring pixels of all pixels are not available at
the beginning of the classification, however, and must
be estimated to solve Equation 7. ICM uses an itera-
tive approach to obtain the estimates of all class labels.
Specifically, the class labels at all pixels are initially es-
timated using the non-contextual model as outlined in
Equation 2. This generates the initial spatial-temporal
neighbors, from which ICM proceeds to update the
classification based on Equation 7 until convergence is
reached. Because the results of ICM are highly depen-
dent on the initial classification, we use a competitive
machine learning algorithm, support vector machines
(SVM), to obtain the initial class labels and the like-
lihood estimate as suggested by D. S. Liu, Kelly, and
Gong (2006). Figure 2 provides a flowchart for the ICM
scheme to the MAP-MRF classification framework.

Specification of Spatial-Temporal Energy Functions

To model the varying statistical dependence of pixel
(s, t) on its spatial-temporal neighbors, pixels in N(s, t)
are divided into three mutually exclusive subsets (Fig-
ure 1): (1) spatial neighbors, denoted by NS(s, t); (2)
past temporal neighbors,2 denoted by NT1(s, t); and (3)
future temporal neighbors,3 denoted by NT2(s, t). The
total spatial-temporal energy function U(L(s,t)|LN(s,t))
in Equation 8 is then modeled as the sum of three energy
functions associated with the three subsets of neighbors:

U
(
L(s,t)

∣∣LN(s,t)
) = US

(
L(s,t)

∣∣LNS(s,t)
)

+ UT1

(
L(s,t)

∣∣LNT1 (s,t)
) + UT2

(
L(s,t)

∣∣LNT2 (s,t)
)
,

(9)

where US is the spatial energy function, and UT1 and
UT2 are the past and future temporal energy functions,
respectively. According to Equation 8, specifying the
spatial-temporal energy function amounts to defining
the corresponding clique potential functions. For com-
putational and mathematical convenience, we define
homogenous potential functions for cliques of size two
(i.e., a clique consists of only two neighboring pixels;
see Li 2001). Therefore, the spatial and temporal energy
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1335

Figure 2. Flowchart of the iterated con-
ditional modes (ICM) scheme to the
maximum a posteriori-Markov random
field (MAP-MRF) classification frame-
work. The classification is initialized (i =
1) by Support Vector Machines (SVM)
using spectral information only and then
updated iteratively with estimated con-
textual information (i = 2 . . .) until
convergence between two iterations is
reached (i = Q). The spatial-temporal
neighbors at an arbitrary iteration (i = q
+ 1) are from the classification maps in
the previous iteration (i = q).

functions in Equation 9 are specified in the following
as the sum of pairwise potential functions of pixel (s, t)
and its neighboring pixels within the respective neigh-
borhood subset.

The spatial energy function in Equation 9 mod-
els the dependence of the land-cover classes of spa-
tially neighboring pixels. Given that pixels adjacent
to each other tend to come from the same land-cover
class, the spatial energy function is specified to en-
courage assigning the same class labels to spatially
neighboring pixels. This essentially imposes a spatial
smoothness effect on the classification, which can re-
duce the speckle errors inherent in non-contextual
classification models and thus mitigate error propaga-
tion in post-classification comparison. Specifically, the
spatial energy function is characterized by the agree-
ment in class labels between each pixel and its spatial
neighbors:

US
(
L(s,t)

∣∣LNS(s,t)
) =

∑
(s ′,t ′)∈NS(s,t)

VS
(
L(s,t), L(s ′,t ′)

)
;

VS
(
L(s,t), L(s ′,t ′)

) = −β1 I
(
L(s,t) = L(s ′,t ′)

)
, (10)

where VS(L(s,t), L(s ′,t ′)) is the pairwise potential func-
tion of pixel (s, t) and its spatial neighbor (s ′, t ′); β1 is
a nonnegative parameter controlling the significance of
spatial dependence; and I (L(s,t) = L(s ′,t ′)) is an indica-
tor function that is equal to 1 if L(s,t) = L(s ′,t ′) is true
and 0 otherwise.

The two temporal energy functions in Equation 9
model the dependence of land-cover classes of tem-
porally neighboring pixels. As a crucial component of
multi-temporal land-cover classification, temporal de-
pendence plays an important role in reconstructing
land-cover change trajectories. In this article, we con-
sider two types of temporal dependence: temporal rela-
tion and temporal exclusion. Temporal relation models
the general dependence structure based on transition
probabilities of land-cover classes from one date to an-
other date, which permits the exchange of temporal in-
formation in the classification and thus links land-cover
classifications at two consecutive dates. One common
consequence of error propagation in post-classification
comparison, however, is the occurrence of illogical
land-cover transitions in resulting land-cover change
trajectories. For example, a transition from urban to
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1336 Liu and Cai

crop is unlikely in most situations, and a transition from
grass to forest would not occur in a short time period.
Therefore, temporal exclusion is used to model the neg-
ative dependence such that the occurrence of illogical
land-cover transitions between temporally neighboring
pixels will induce a penalty in terms of an increase in the
temporal energy function (D. S. Liu, Kelly, and Gong
2006). This will greatly reduce illogical transitions in
the final land-cover change trajectories. Specifically,
the past temporal energy function UT1 is characterized
by:4

UT1

(
L(s,t)

∣∣LNT1 (s,t)
)

=
∑

(s ′,t ′)∈NT1 (s,t)
VT1(L(s,t), L(s ′,t ′));

VT1(L(s,t), L(s ′,t ′)) = −β2 P
(
L(s,t)

∣∣L(s ′,t ′)
)

+ β3 I (L(s ′,t ′) �⇒ L(s,t)), (11)

where VT1(L(s,t), L(s ′,t ′)) is the pairwise potential func-
tion of pixel (s, t) and its past temporal neighbor
(s ′, t ′); β2 and β3 are nonnegative parameters control-
ling the temporal relation and temporal exclusion, re-
spectively; P (L(s, t)|L(s ′, t ′)) is the temporal transition
probability from class L(s ′,t ′) to class L(s,t) that can be
estimated by methods developed in D. S. Liu et al.
(2008); and I (L(s ′,t ′) �⇒ L(s,t)) is an indicator function
that is equal to 1 if the transition from L(s ′,t ′) to L(s,t) is
illogical and 0 otherwise. The illogical transitions can
be defined by expert knowledge (H. Liu and Zhou 2004;
D. S. Liu, Kelly, and Gong 2006; Townsend et al. 2009).
In the same vein, the future temporal energy function
UT2 is characterized by5:

UT2

(
L(s,t)

∣∣LNT2 (s,t)
)

=
∑

(s ′,t ′)∈NT2 (s,t)
VT2(L(s,t), L(s ′,t ′));

VT2(L(s,t), L(s ′,t ′)) = −β4 P
(
L(s ′,t ′)

∣∣L(s,t)
)

+ β5 I (L(s,t) �⇒ L(s ′,t ′)), (12)

where VT2(L(s,t), L(s ′,t ′)) is the pairwise potential func-
tion of pixel (s, t) and its future temporal neighbor
(s ′, t ′); β4 and β5 are nonnegative parameters control-
ling the temporal relation and temporal exclusion, re-
spectively; and P (L(s ′,t ′)|L(s,t)) and I (L(s,t) �⇒ L(s ′,t ′))
are defined similarly as in Equation 11.

Model parameters involved in the preceding three
spatial-temporal energy functions (i.e., β1, . . . , β5 in
Equations 10–12) are crucial to the classification, as
they determine the importance of different components

in the total spatial-temporal energy functions in Equa-
tion 9. We estimate these parameters by minimizing the
error rates of training data using a genetic algorithm
(Tso and Mather 1999; D. S. Liu et al. 2008).

Accuracy Assessment

Accuracy assessment is an integral component of
any remote sensing classification and change de-
tection study (Foody 2002; Congalton and Green
2009). For land-cover change detection based on post-
classification comparison, accuracy assessment can be
performed with both classification results and change
detection results. In the case of land-cover classifica-
tion, accuracy assessment generally follows an error
matrix–based approach (Congalton and Green 2009).
Specifically, a classification error matrix is first con-
structed by cross-tabulating the classified land-cover
classes at a number of randomly sampled testing pixels
against their corresponding ground classes. Then, accu-
racy measures such as overall accuracy and kappa statis-
tics are calculated from the classification error matrix
(Congalton and Green 2009). When multi-temporal
land-cover classification is involved, classification ac-
curacy at each date can be assessed independently using
a separate classification error matrix for each date (e.g.,
Mertens and Lambin 2000; Petit, Scudder, and Lambin
2001; F. Yuan et al. 2005).

For land-cover change detection, a rigorous accuracy
assessment should also follow an error matrix–based ap-
proach similar to the one used for land-cover classifica-
tion (van Oort 2007; Congalton and Green 2009), but
constructing a change detection error matrix is gener-
ally challenging due to the difficulties in collecting suf-
ficient testing samples of land-cover changes over time
(Congalton and Green 2009). This is particularly true
for change detection involving more than two dates
in which the number of possible change trajectories
is large. In the absence of sufficient testing samples of
land-cover change, alternative approaches that do not
rely on a change detection error matrix are needed for
accuracy assessment of change detection. In this ar-
ticle, two approaches are used to assess the accuracy
of land-cover change trajectories. The first approach
seeks to estimate the overall accuracy of change detec-
tion using classification accuracies at individual dates
under two extreme conditions: a pessimistic accuracy
and an optimistic accuracy (van Oort 2007). The pes-
simistic accuracy is simply calculated as the product of
overall classification accuracies at individual dates by
assuming no temporal correlation among classification
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1337

Figure 3. The study area, southeast Ohio,
United States. Landsat 5 TM images acquired
in 2008 were shown in false color composite
(bands 7 + 4 + 2) and clipped to the five-county
study area. (Color figure available online.)

errors (D. Yuan, Elvidge, and Lunetta 1998). The opti-
mistic accuracy is determined by the minimum of over-
all classification accuracies at individual dates with the
assumption of maximum positive temporal correlation
among classification errors (van Oort 2007). The ratio-
nale for this approach lies in the fact that a positive
temporal correlation generally exists between classifi-
cation errors at different dates (Burnicki, Brown, and
Goovaerts 2007; D. S. Liu and Chun 2009). Although
the actual temporal correlation is unknown, it should
be larger than zero (i.e., no correlation) and smaller
than one (i.e., maximum positive correlation). Thus,
the two extreme accuracy measures together provide a

Table 1. Summary of satellite images used in the case study

Year Satellite sensor Acquisition date Path/row

1977 Landsat 2 MSS 18 July 1977 20/32,20/33
1983 Landsat 4 MSS 26 June 1983 18/32,18/33

22 August 1983 19/32,19/33
1988 Landsat 5 TM 8 June 1988 18/32,18/33

15 June 1988 19/32,19/33
1993 Landsat 5 TM 31 July 1993 18/32,18/33

9 August 1993 19/32,19/33
1998 Landsat 5 TM 6 July 1998 18/32,18/33

13 July 1998 19/32,19/33
2003 Landsat 5 TM 25 June 2003 18/32,18/33

20 July 2003 19/32,19/33
2008 Landsat 5 TM 6 June 2008 18/32,18/33

17 July 2008 19/32,19/33

reasonable range for the true change detection accu-
racy. The second approach is based on the rationality
analysis of reconstructed land-cover change trajecto-
ries (H. Liu and Zhou 2004). As mentioned earlier, the
propagation of classification errors in post-classification
comparison could result in illogical land-cover transi-
tions between two consecutive dates (e.g., urban →
forest). Given multi-temporal images at m dates, the
land-cover change trajectory at each pixel location
consists of m − 1 land-cover transitions, which can be
determined to be logical or illogical based on expert
knowledge. Although all m − 1 land-cover transitions

Table 2. Illogical land-cover transitions over five-year
periods

To

From W F C G U M

W 0 1 0 0 0 1
F 0 0 0 0 0 0
C 0 1 0 0 0 0
G 0 0 0 0 0 0
U 1 1 1 0 0 1
M 0 1 0 0 1 0

Note: Land-cover categories: W = water; F = forest (a closed canopy stand
of trees); C = crop; G = grass/shrub; U = urban; M = mine (surface mining).
The number 1 in the transition matrix indicates an illogical transition (i.e.,
a transition that is highly unlikely to occur within a five-year interval in
the context of the study area).
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1338 Liu and Cai

Figure 4. Examples of the land-cover
classification maps from 1988 to 2008
clipped to a subset of 200 by 200 pixels for
illustration purposes. Note: MLC = max-
imum likelihood classification; SVM =
support vector machines; STM = spatial-
temporal modeling. (Color figure avail-
able online.)

being logical at one pixel location does not necessarily
mean that the corresponding land-cover change trajec-
tory is correct, the occurrence of one or more illogical
transitions at one pixel location would definitely indi-
cate the presence of errors in the land-cover change
trajectory. Therefore, the percentage of illogical land-
cover transitions at each of the m − 1 time periods and
the percentage of illogical land-cover change trajecto-
ries over all m dates can be calculated to measure the
illogical errors in change detection results.

Case Study

Study Area: Southeast Ohio

The case study focuses on land-cover changes asso-
ciated with overall forest recovery in southeast Ohio.
There, the landscape has been significantly impacted

by underground and surface strip mining over the past
120 years. Yet economic shifts and other processes in the
region have allowed for the recovery of forests and other
vegetation throughout the region, particularly after the
1930s; this was hastened by federal and state govern-
ment investment in creating state and national forests
on eroded agricultural and timber lands (Wilson 1993).
Simultaneously, nonforest land cover is also expand-
ing in the region, which serves to fragment, reverse,
or accelerate successional processes in unexpected ways
(McSweeney and McChesney 2004). The result is a
landscape in which the fundamental dynamic trajecto-
ries of land-cover change are complex, heterogeneous,
and nonlinear patchy in nature. Therefore, Ohio’s
southeast provides an excellent site for testing our
change detection method to identify complex trajec-
tories of land-cover change from time series of satellite
imagery.
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1339

Table 3. Classification accuracies for all seven years
measured in overall accuracy (Overall) and kappa

statistics (Kappa)

MLC SVM STM

Year
Overall

(%) Kappa
Overall

(%) Kappa
Overall

(%) Kappa

1977 77.1 0.657 83.2 0.744 92.5 0.887
1983 77.2 0.663 81.6 0.723 92.0 0.879
1988 86.1 0.793 90.9 0.860 95.3 0.928
1993 80.5 0.707 88.2 0.823 95.7 0.936
1998 86.0 0.789 90.3 0.855 94.8 0.923
2003 81.6 0.724 90.1 0.852 94.2 0.913
2008 80.3 0.745 88.2 0.848 93.6 0.918

Note: MLC = maximum likelihood classification; SVM = support vector
machines; STM = spatial-temporal modeling.

The study area includes five contiguous counties
within southeast Ohio: Athens, Hocking, Perry, Ross,
and Vinton (Figure 3). These five counties were chosen
because they are broadly representative of the southeast,
capturing the region’s range of economic and ecologi-
cal characteristics (McSweeney and McChesney 2004).
Hocking County was one of the first to be completely
denuded of forest cover, and today its secondary forests
are among the state’s oldest. Athens County has more
of its land in small farming. Land use in Perry and Vin-
ton counties has traditionally been dominated by min-
ing. Whereas most surface mines in Perry County have
been reclaimed and now form part of Wayne National
Forest, coal mines remain active in Vinton County
(McSweeney and McChesney 2004). Ross County is
relatively different from the other four counties, as agri-
culture has dominated land uses for the last several
decades and there is small coverage of forested areas.

Landsat Data and Reference Data

A time series of satellite images acquired from
Landsat MSS/TM sensors were downloaded from the

Table 4. Overall accuracy of land-cover change
trajectories

Overall accuracy

Pessimistic (%) Optimistic (%) Average (%)

MLC 23.2 77.1 50.2
SVM 39.0 81.6 60.3
STM 64.9 92.0 78.5

Note: MLC = maximum likelihood classification; SVM = support vector
machines; STM = spatial-temporal modeling.

USGS Web site with the help of the GloVis (Global
Visualization Viewer) tool. The Landsat image time se-
ries were distributed at seven time points from 1977
to 2008 with a rough five-year interval (Table 1). All
MSS and TM images were processed at Level 1T by the
USGS. The spatial resolutions of the Landsat products
are 60 m for MSS images and 30 m for TM images. A
careful examination indicated that all TM images were
accurately aligned with each other. Therefore, image-
to-image registration was not performed for TM images.
Instead, all MSS images were resampled to 30-m reso-
lution and registered to TM images. The root mean
square error (RMSE) for each MSS image was within a
half-pixel.

Based on our knowledge of the study area, a clas-
sification scheme of six general land-cover classes was
adopted here including water, forest, crop, grass/shrub,
urban, and mine, from which the illogical land-cover
transitions within a five-year interval were defined
based on expert knowledge (Table 2). To facilitate land-
cover classification and accuracy assessment, reference
land-cover classes were collected at randomly sampled
pixels for each of the seven years. Due to the chal-
lenge in collecting reference land-cover data over the
past thirty-one years, a variety of methods and data
sources were explored in the data collection process,
including field surveys, visual interpretation of aerial
photographs, mine permit maps, and topographic maps.
Field surveys were conducted in spring 2009. Aerial
photographs in selected areas were acquired through
National Aerial Photograph Program (NAPP) for 1983;
National High Altitude Photography (NHAP) for the
years 1988, 1993, and 1998; and the Ohio Statewide
Imagery Program (OSIP) for 2003 and 2008. Mine per-
mit maps in 1988, 1993, 2003, and 2008 were obtained
from an annual report on Ohio mineral industries by
the Ohio Department of Natural Resources (ODNR).
Ohio 7.5-minute series topographic maps were obtained
from USGS publications for the years 1977 and 1983.
Reference data were randomly split into two indepen-
dent subsets: One served for training purposes and the
other was used for accuracy assessment.

Classification and Change Detection Results

Land-cover maps at seven dates were generated
by classifying the Landsat image time series of
the study area using the proposed spatial-temporal
modeling (STM) approach. Land-cover change
trajectories were then constructed from the seven clas-
sification maps by multi-temporal post-classification
comparison. For the purpose of comparison, land-cover
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1340 Liu and Cai

Table 5. Summary of illogical land-cover transitions resulted in the time series of classification maps

Time period W→F W→M C→F U→W U→F U→C U→M M→F M→U Total

1977 MLC 0.04 0.00 5.29 0.05 0.55 0.99 0.15 0.08 0.12 7.27
↓ SVM 0.36 0.00 5.56 0.01 0.02 0.10 0.01 0.05 0.04 6.15

1983 STM 0.12 0.00 0.23 0.00 0.00 0.00 0.00 0.03 0.00 0.38

1983 MLC 0.11 0.00 3.06 0.40 1.04 1.06 0.13 0.07 0.13 6.00
↓ SVM 0.04 0.00 4.63 0.07 0.05 0.21 0.01 0.02 0.06 5.08

1988 STM 0.09 0.02 0.55 0.01 0.00 0.00 0.01 0.03 0.06 0.78

1988 MLC 1.85 0.01 1.38 0.02 0.53 1.23 0.07 0.21 0.06 5.36
↓ SVM 1.40 0.01 1.29 0.08 0.75 2.00 0.13 0.01 0.03 5.70

1993 STM 0.64 0.01 0.17 0.02 0.18 0.13 0.04 0.02 0.01 1.23

1993 MLC 0.17 0.00 4.79 0.01 0.11 0.34 0.07 0.02 0.05 5.57
↓ SVM 0.26 0.00 2.73 0.05 0.11 0.71 0.06 0.01 0.17 4.10

1998 STM 0.23 0.01 0.44 0.01 0.04 0.15 0.03 0.01 0.06 0.96

1998 MLC 0.09 0.01 2.89 0.01 0.16 0.19 0.08 0.01 0.08 3.52
↓ SVM 0.27 0.00 2.26 0.04 0.16 0.84 0.11 0.00 0.06 3.76

2003 STM 0.10 0.00 0.33 0.01 0.03 0.06 0.02 0.01 0.02 0.58

2003 MLC 0.05 0.00 1.04 0.07 0.08 0.09 0.11 0.07 0.12 1.63
↓ SVM 0.09 0.00 1.28 0.02 0.04 0.38 0.11 0.00 0.10 2.04

2008 STM 0.03 0.00 0.16 0.00 0.01 0.04 0.01 0.00 0.02 0.28

Note: All numbers are in percentages; 0.00 represents < 0.01. MLC = maximum likelihood classification; SVM = support vector machines; STM =
spatial-temporal modeling.

classification and change detection were also conducted
using a non-contextual approach based on maximum
likelihood classification (MLC). The MLC-based non-
contextual approach serves as the benchmark for the
proposed STM approach because it represents one of the
most widely used methods in current LULCC studies.
In addition, given that the proposed spatial-temporal
classification was initialized by SVM, land-cover clas-
sification and change detection results were also ob-
tained from SVM for additional comparison. As SVM
only uses spectral information, the comparison between
SVM and the proposed STM approach can reveal the

Table 6. Summary statistics of the reconstructed
land-cover change trajectories

All change trajectories
Illogical change

trajectories

Total number
Percentage

(%)
Total

number
Percentage

(%)

MLC 55,150 63.2 40,636 24.9
SVM 51,749 59.1 36,307 23.7
STM 19,775 32.4 10,529 4.0

Note: MLC = maximum likelihood classification; SVM = support vector
machines; STM = spatial-temporal modeling.

usefulness of spatial-temporal contextual information
in mapping land-cover change trajectories.

Due to the large size of the study area, the time series
of classification maps over the entire study area cannot
be shown here. For illustration purposes, examples of
the land-cover classification maps from 1988 to 2008
clipped to a subset of 200 by 200 pixels are shown in
Figure 4. It can be seen that more spatial coherence
was achieved in the classified maps by the proposed ap-
proach (STM) compared with the two non-contextual
approaches (MLC and SVM), indicating that the use
of spatial-temporal contextual information is effective
in reducing the “salt-and-pepper” effect.

Classification Accuracy Assessment. Accuracy
assessment was performed for all land-cover classifica-
tion results using reference data at individual dates.
Table 3 summarizes the classification accuracies mea-
sured by overall accuracy and kappa statistics for all
three approaches under comparison. The classification
accuracies for the benchmark approach (MLC) were
low to moderate and varied greatly within the seven
dates, with overall accuracies ranging from 77 percent
to 86 percent and kappa statistics from 0.66 to 0.79.
In particular, classification accuracies in 1977 and 1983
were considerably lower than those in the later years,
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A Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change 1341

Figure 5. Number of changes over seven dates
from maximum likelihood classification (MLC).

which might be due to the lower spatial resolution and
fewer spectral bands of MSS images for the first two
dates. For the non-contextual classifications based on
SVM, the overall accuracies and kappa statistics were
moderate and varied from 82 percent to 91 percent and
from 0.72 to 0.86, respectively. Similar to MLC, classi-
fication accuracies were much lower in 1977 and 1983
than in the later years. By contrast, classification results
obtained from the proposed STM approach were con-

sistent and accurate at all dates, with overall accuracies
at about 92 percent to 96 percent and kappa statistics
at about 0.88 to 0.94. Comparatively, for the two non-
contextual classification methods, SVM outperformed
MLC with 4 percent to 8 percent higher in overall
accuracies and 0.06 to 0.12 higher in kappa statistics.
Further improvements on the initial results of SVM
were obtained by using spatial-temporal contextual in-
formation in STM: Overall accuracies increased by

Figure 6. Number of changes over seven dates
from support vector machines (SVM).
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1342 Liu and Cai

Figure 7. Number of changes over seven dates
from spatial-temporal modeling (STM).

4 percent to 10 percent and kappa statistics increased by
0.06 to 0.16. Consequently, significant improvements
were achieved by the STM approach over the bench-
mark approach (MLC): Overall accuracies increased 9
percent to 20 percent and kappa statistics increased 0.14
to 0.27. Moreover, in contrast to MLC and SVM, clas-
sification accuracies in 1977 and 1983 were comparable
to later years in STM, indicating that the use of spatial-
temporal contextual information could compensate for
the lower spatial resolution and fewer spectral bands of
MSS images.

Change Detection Accuracy Assessment. Based
on the classification accuracies in Table 3, the over-
all accuracies of the resulting land-cover change
trajectories were estimated under two extreme condi-
tions (Table 4). First, multiplying the individual over-
all classification accuracies gave the pessimistic overall
change detection accuracy, which was 23.2 percent for
MLC, 39.0 percent for SVM, and 64.9 percent for STM.
Second, the minimum of the overall classification ac-
curacies at all dates determined the optimistic overall
change detection accuracy: 77.1 percent for MLC, 81.6
percent for SVM, and 92.0 percent for STM. In addi-
tion, the average of the pessimistic and optimistic ac-
curacies was calculated to represent the middle point of
the two extreme conditions, yielding 50.2 percent, 60.3
percent, and 78.5 percent for MLC, SVM, and STM, re-
spectively. Clearly, all of the accuracy measures showed
that the land-cover change trajectories reconstructed by

the proposed approach (STM) were much more accu-
rate compared with those from the two non-contextual
approaches (MLC and SVM). This is consistent with
the classification results reported in Table 3, confirming
the effectiveness of the spatial-temporal contextual in-
formation in reconstructing accurate land-cover change
trajectories.

The percentages of the nine illogical land-cover tran-
sitions defined in Table 2 are reported for each of the
six time periods from 1977 to 2008 (Table 5). For all
three approaches, transitions from crop to forest (C →
F) and urban to crop (U → C) account for most of the
illogical transitions. Despite the superior classification
performance of SVM over MLC, the percentages of il-
logical land-cover transitions were comparable between
SVM and MLC, indicating that a competitive classi-
fier utilizing only spectral information might not be
sufficient to generate temporally consistent land-cover
results. In contrast, nearly all illogical land-cover tran-
sitions resulting from the proposed approach were sig-
nificantly less than those from the two non-contextual
approaches. This clearly demonstrates the effectiveness
of the temporal contextual information (i.e., the tempo-
ral exclusion component in STM) in reducing illogical
transitions.

Summary of Change Trajectories. Table 6 sum-
marizes several statistics of the resulting land-cover
change trajectories, where all change trajectories rep-
resent pixels that had changed at least once over the
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Figure 8. Normalized histogram of change frequency of all change
trajectories (i.e., trajectories with at least one land-cover change).
The x axis represents the number of changes, which ranges from one
to six given the seven dates. The y axis represents the percentages
of pixels experiencing one to six changes. Note: MLC = maximum
likelihood classification; SVM = support vector machines; STM =
spatial-temporal modeling.

seven dates and illogical change trajectories correspond
to pixels with at least one illogical transition listed in
Table 2. With six land-cover classes and seven dates,
the classification results based on MLC and SVM gen-
erated more than 50,000 different land-cover change
trajectories, the vast majority of which are illogical.
The large number of illogical change trajectories can
be attributed to the propagation of classification errors.
With the use of spatial-temporal information, the to-
tal numbers of all and illogical change trajectories were
greatly reduced by STM. Nevertheless, it is not possible
to validate these statistics without knowing the number
of true change trajectories. Therefore, the percentage of
all (or illogical) change trajectories (i.e., the area rate

of the change trajectories) is compared for further eval-
uation. Both non-contextual approaches (MLC and
SVM) showed that about 60 percent of the study area
had changed during the past thirty-one years. This high
change rate was unexpected based on expert knowledge
of the study area and visual inspection of the Land-
sat images. The overestimated change rates by MLC
and SVM were a typical result of the propagation of
classification errors in post-classification comparison
(Pontius and Lippitt 2006). In contrast, the overall
change rate was dramatically reduced to 32 percent with
the proposed approach (STM), demonstrating that the
use of spatial-temporal contextual information led to
substantial reductions in pseudo-changes due to classi-
fication errors. Finally, the illogical land-cover change
trajectories from STM accounted for 4 percent of the
study area, much smaller than the results obtained from
MLC (24.9 percent) and SVM (23.7 percent). This
result was consistent with that in Table 5, which fur-
ther confirmed the usefulness of a temporal exclusion
component in reducing illogical change trajectories. It
should be mentioned that the percentages of illogical
change trajectories in Table 6 are a little smaller than
the cumulative sums of total illogical transitions over
six time periods reported in Table 5 because one illog-
ical land-cover change trajectory can have more than
one illogical transition.

Figures 5 through 7 show the maps of the number of
changes (i.e., change frequency) detected at each pixel
over seven dates by the three approaches. The two non-
contextual approaches (Figure 5 and Figure 6) demon-
strate high change frequency throughout the study area,
particularly in Ross County and Perry County. In con-
trast, the STM approach (Figure 7) shows generally
lower change frequency. Figure 8 shows the further
breakdown of the number of changes over seven dates
for all change trajectories (i.e., trajectories with at least
one land-cover change). It is clear that MLC and SVM
were significantly different from STM in the distribu-
tion of change frequencies. Particularly, MLC and SVM
estimated that about 30 percent of pixels had changed
three times or more over seven dates and 8 percent
changed five times or more, whereas the numbers were
only 5 percent and 0.2 percent, respectively, according
to STM. As the probability of observing a land-cover
change trajectory with a high change frequency is gen-
erally small (H. Liu and Zhou 2004), the result showed
that the two non-contextual approaches not only over-
estimated the overall change rate but also overestimated
the change frequency.
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Discussion and Conclusions

Land-cover change, especially over a long time pe-
riod, often follows a complex pathway that can’t be well
captured by satellite observations at two dates. Tempo-
ral trajectories of land-cover change constructed from
satellite images over multiple dates can better charac-
terize the complex nature of land-cover dynamics and
thus have the potential to improve our understanding of
human–environment adaptive systems. The increasing
availability of long time series of satellite images, espe-
cially the recent free release of multi-decadal Landsat
satellite archives, presents a great opportunity to en-
hance our ability to monitor land-cover change more
frequently and promote the move from traditional bi-
temporal change analysis to multi-temporal change tra-
jectory analysis. To achieve this, it is imperative to
develop accurate and efficient change detection meth-
ods that can take advantage of the increasing temporal
depth of satellite images to track the trajectories of land-
cover change over time. In this article, we developed
one such change detection method and evaluated its
performance with a time series of seven Landsat images
in southeast Ohio.

One of the most important properties of land cover
and land-cover change is its strong dependence over
space and time (i.e., spatial autocorrelation and tem-
poral dependence). This dependence structure is fun-
damental to remote sensing of land-cover classification
and change detection because it defines the spatial-
temporal context of land-cover dynamics at individual
pixels. Despite this fact, most change detection methods
do not account for the contextual dependence and thus
are non-contextual in nature. The method developed in
this article distinguishes itself for its integrated contex-
tual (both spatial and temporal) approach to land-cover
change detection. The key innovation lies in the use of
MRF theory to model spatial-temporal contextual in-
formation explicitly in the classification of time series
images. Compared with conventional non-contextual
approaches, the contextual approach achieved superior
performance in the change detection results in the case
study, which demonstrates the critical role of spatial-
temporal contextual information in generating accu-
rate and consistent trajectories of land-cover change.
Specifically, due to the inherent uncertainty of spectral
information in resolving different land-cover classes,
land-cover classification based on spectral information
alone generally does not conform to its underlying con-
textual constraints as illustrated by the lack of spatial
contiguity (e.g., “salt-and-pepper” effect) and temporal

consistency (e.g., illogical land-cover transitions). The
use of spatial-temporal information can impose contex-
tual constraints on land-cover results and thus mitigate
the impact of spectral uncertainty in classification: (1)
spatial contextual constraints tend to increase spatial
smoothness (or autocorrelation) of classification results,
which can remove speckle errors and thus reduce spu-
rious changes; and (2) temporal contextual constraints
can improve the temporal consistency of classification
results over multiple dates and reduce illogical land-
cover transitions. As a consequence, the resulting land-
cover classification becomes more consistent with its
spatial-temporal context, which in turn leads to im-
proved accuracy and consistency of change detection
results.

Accuracy assessment for change detection is a com-
plex and challenging task. The main difficulty arises
from the lack of sufficient reference data to capture a
potentially large number of change classes, which pre-
vents the construction of a change detection error ma-
trix. In the case of this study, reference data were only
available for land-cover classification at each date but
not for change detection over seven dates. For this rea-
son, change detection results were evaluated using two
alternative approaches: one based on individual classi-
fication accuracies and the other based on the trajec-
tory results themselves. The two approaches provided
useful accuracy indicators to compare different change
results, which served our purpose of evaluating the pro-
posed change detection method. Nevertheless, it should
be acknowledged that the accuracy measures used in
the two approaches were not as complete and rigorous
as those derived from a change detection error matrix
if sufficient reference data on change trajectories are
available. For example, both pessimistic accuracy and
optimistic accuracy focus only on the overall accuracy
of all trajectories, but sometimes it is necessary to as-
sess the accuracy of specific change trajectories (e.g.,
trajectories related to forest recovery). In addition, al-
though rationality analysis of the change results can
identify illogical change trajectories, the accuracy of
logical change trajectories remains unknown. Further
efforts are needed to improve change detection accu-
racy assessment.

Land-cover change trajectories are defined in this
article as a temporal sequence of land-cover classes
observed at multiple dates. This definition is based
on a discrete representation of landscape by categor-
ical fields and emphasizes transitions between land-
cover classes over multiple dates. In other words,
this article focuses on drastic changes in the form of
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land-cover conversions, the complete replacement of
one land-cover class by another (e.g., deforestation and
urbanization). Land-cover change also includes another
important form called land-cover modifications, how-
ever, which are associated with more subtle changes
within a land-cover class but not drastic changes in
its overall classification (e.g., agricultural intensifica-
tion; Lambin, Geist, and Lepers 2003; Lambin and
Linderman 2006). To detect subtle changes within
land-cover classes, change detection methods should
be based on a continuous representation of land sur-
face attributes at the seasonal and interannual scales
(Lambin and Linderman 2006). In this sense, the pro-
posed change detection method is not suitable for
detecting subtle changes due to land-cover modifica-
tions. Trajectory-based change detection methods (e.g.,
Kennedy, Cohen, and Schroeder 2007; Huang et al.
2010) might be used to capture the subtle changes based
on their unique temporal profile established from time
series of satellite data or their continuous derivatives
(e.g., vegetation indexes, surface temperature).

In summary, this article presents an advanced change
detection method based on post-classification com-
parison for reconstructing land-cover change trajecto-
ries from time series of satellite images. The method
differs from the conventional post-classification com-
parison change detection in that a novel STM ap-
proach instead of the commonly used non-contextual
approach is developed to improve multi-temporal land-
cover classification. When evaluated using a time series
of seven Landsat images in a case study of southeast
Ohio, the STM approach yielded significantly more re-
liable trajectories of land-cover change compared with
two conventional non-contextual approaches. The re-
sults demonstrate the effectiveness of the change de-
tection method in reconstructing land-cover change
trajectories and also highlight the utility of spatial-
temporal contextual information in improving the ac-
curacy and consistency of land-cover results across space
and time. This research has important implications for
land change science. The change detection methodol-
ogy developed in this article is general enough to be
readily applicable to other LULCC studies with differ-
ent satellite data and landscapes. Models based on accu-
rate and consistent land-cover change trajectories can
better explain the complex dynamic change processes
and allow more reliable projections of future changes.
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Notes
1. A subset of pixels, c, is a clique if any two different pixels

of c are neighbors.
2. NT1 (s, t) ≡ 
 (
 stands for empty set) at t = 1 because

pixels at the start of the time series have no past temporal
neighbors.

3. NT2 (s, t) ≡ 
 at t = m because pixels at the end of the
time series have no future temporal neighbors.

4. UT1 = 0 at t = 1 because pixels at the start of the time
series have no past temporal neighbors (i.e., NT1 (s, t) ≡

 for t = 1).

5. UT2 = 0 at t = m because pixels at the end of the time
series have no future temporal neighbors (i.e., NT2 (s, t) ≡

 for t = m).
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