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This study attempts to develop a methodology to quantify spatial patterns of

land cover change using landscape metrics. First, multitemporal land cover types

are derived based on a unified land cover classification scheme and from the

classification of multitemporal remotely sensed imagery. Categorical land cover

change trajectories are then established and reclassified according to the nature

and driving forces of the change. Finally, spatial pattern metrics of the land cover

change trajectory classes are computed and their relationships to human activities

and environmental factors are analysed. A case study in the middle reach of

Tarim River in the arid zone of China from 1973 to 2000 shows that during the

30-year study period, the natural force is dominant in environmental change,

although the human impact through altering water resources and surface

materials has increased dramatically in recent years. The human-induced change

trajectories generally show lower normalized landscape shape index (NLSI),

interspersion and juxtaposition index (IJI) and area-weighted mean patch fractal

dimension (FARC_AM), indicating greater aggregation, less association with

others and simpler and larger patches in shape, respectively. The results suggest

that spatial pattern metrics of land cover change trajectories can provide a good

quantitative measurement for better understanding of the spatio-temporal

pattern of land cover change due to different causes.

1. Introduction

Land cover change is one of the most sensitive indicators that echo the interactions

between human activities and the natural environment. In arid environments the

land cover change often reflects the most significant impact on the environment due

to human activities or natural forces. Remotely sensed data have been used for

environment change studies for decades and large collections of remote sensing

imagery have made the analysis of long-term changes of environmental elements

and the impact of human activities possible.

Land cover change detection focuses mainly on four aspects: (1) detecting if a

change has occurred, (2) identifying the nature of the change, (3) measuring the area

extent of the change, and (4) assessing the spatial pattern of the change (MacLeod

and Congalton 1998). Since the spatial pattern of change is recognized as a good
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indicator of the impact by the other three aspects, its research has become quite

active for the study of change detection (Nagendra et al. 2004, Narumalani et al.

2004).

Methods for studying the spatial pattern of land cover change can be grouped

into two categories, namely, temporal series analysis of ‘snapshot’-based patch

metrics and patch metric analysis on classified temporal categorical trajectories. The

former analyses the time series of patch metrics derived from individual ‘snapshot’

classified images, while the latter focuses on the metrics of categorical trajectories

derived from multitemporal images.

Temporal series analysis of ‘snapshot’-based patch metrics is a bi-temporal profile

method (Coppin et al. 2004). Using this method, multitemporal satellite images were

first classified into land cover classes for each acquisition date. Landscape metrics

are subsequently computed to quantify spatial patterns shown by these land cover

classes. The spatial pattern of land cover change on a ‘two-epoch’ timescale (i.e. the

change between two dates) can then be described based on the comparison of these

metrics (e.g. Dewidar 2004, Tang et al. 2005).With the accumulation of remotely

sensed images over the past decades, attempts have been made and reported on

applications that extend the bi-temporal profile method to multiple epochs (e.g.

Herold et al. 2003, McConnell et al. 2004).

Patch metric analysis on classified temporal categorical trajectories is a

multitemporal profile method based on categorical trajectory analysis. Methods

for temporal trajectory analysis were recently developed to trace paths of land cover

change for given locations (e.g. Mertens and Lambin 2000, Petit et al. 2001, Crews-

Meyer 2001, Liu and Zhou 2004). Zhou et al. (2004) have reported research where

categorical trajectories of land cover change were established and classified

according to the driving forces of the change, and pointed out the need for further

study of the spatial pattern of such trajectories. Southworth et al. (2002) inferred the

patterns of landuse change using landscape metrics of change trajectories. Crews-

Meyer (2004) assessed the temporal persistence of landuse and land cover through

the analysis of ‘pixel-history’ of the pattern metrics of cover classes.

The majority of spatial pattern analyses are currently based on the ‘snapshot’

method, which attempted to determine the track of spatial pattern hence to infer the

ecological process (Southworth et al. 2002, Crews-Meyer 2004). Thus, sometimes it

has been difficult to understand the causes of land cover change using this method.

For example, in areas that are frequently affected by flood in China’s arid zone, the

temporary water bodies will make great variations in ‘snapshot’ spatial pattern

indices, such as landscape metrics (McGarigal and Marks 1995), making it difficult

for the interpretation of the dynamics and causes of land cover change. Mertens and

Lambin (2000) stated that the manifestations of landscape processes can be better

reflected by the change trajectory patterns than the ‘snapshot’ approach.

Although some research progress has been reported about the patch metric

analysis on classified temporal categorical trajectories, the method needs to be

improved further. When Southworth et al. (2002) inferred the patterns of landuse

change using landscape metrics of change trajectories, the landuse was classified into

two classes, namely, forest and non-forest. Change trajectories (e.g.

forestRforestRnon-forest) were established based on three epochs, and the

landscape metrics of them were then computed. This research focused on the

categorical change of a given landuse type (i.e. forest) rather than the comparison of

different classes. Crews-Meyer (2004) assessed the temporal persistence of landuse
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and land cover through the analysis of ‘pixel-history’ of the pattern metrics of cover

classes. Trajectory classes of pattern metrics (e.g. ‘decrease in all three periods’,

‘decrease, stable, increase’ and ‘decrease, increase, increase’ for percentage of area—

PCT) were derived. This study principally focused on the trajectories of metrics,

rather than the metrics of change trajectories. Further research is therefore needed

to develop a methodology that quantifies the spatial pattern of change trajectories

so that the spatio-temporal pattern of the change can be better described and its

relation to environmental and human factors may be further explored.

This study seeks an efficient and practical method to quantify the spatial pattern

of land cover change that can be related to both human activities and natural

factors. The basic approach is to derive and interpret spatial pattern metrics of

multi-epoch trajectories of land cover change. This method integrates multitemporal

and multiscale remotely sensed data from various sources with a monitoring time

frame of 30 years, including historical and state-of-the-art high-resolution satellite

imagery. The history of land cover change for every location in the study area is

traced, and the nature, area extent and spatial pattern of such changes are also

analysed.

2. Methodology

The approach of this study is based on the post-classification comparison method,

which is commonly employed in remote sensing change detection studies. First,

multitemporal images are classified into land cover types for each acquisition date

using a unified land cover classification scheme. Then, land cover change

trajectories, or categorical ‘pixel history’, are established based on the classified

images. The trajectories are then reclassified according to the nature of land cover

changes. Finally, landscape metrics of the reclassified land cover change trajectories

are computed and analysed.

2.1 Study area and data

The study area is centred at about 41u59 N and 85u439 E in Donghetan Township,

Yuli County, Xinjiang Uygur Autonomous Region of China. It is located at the

middle reach of the Tarim River, the longest inland river of China. At the fringe of

Taklimakan Desert, the ‘green corridor’ of Tarim Basin is one of the most important

habitation areas in the arid zone of China. The landscape is typical in China’s arid

zone, with a generally dry and harsh environment, represented by typical desert

vegetation and soils. With the increasing land development in recent decades, the

fragile environment has experienced quite remarkable changes caused by cultivation

and infrastructure construction such as a dam, largely responding to the general

development trend and temporal effects of government policies and administrative

measures.

Five multitemporal remotely sensed images were acquired for change detection

for this study, including Landsat MSS (3 July 1973, 12 October 1976), Landsat TM

(25 September 1994), Landsat ETM (17 September 2000) and SPOT HRV (20 July

1984) multispectral images. In addition, a multispectral 4-m resolution IKONOS

image was also acquired of September 2000 to assist in field investigations and

accuracy assessment of the image classification. The IKONOS image was

georeferenced to a 1 : 10 000 map using 22 ground control points (GCPs). The

other images were then geometrically corrected and registered on the map
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coordinates using image-to-image registration with the master IKONOS image.

Efforts were made to control registration errors to within half a pixel of the image

concerned, so that the errors caused by misregistration would be less critical.

2.2 Classification

To minimize the seasonal impacts of remotely sensed data, the post-classification

comparison method was employed for image processing, since this method is less

sensitive to radiometric variations between the scenes (Mas 1999). Supervised
classification using the Maximum Likelihood Classifier was employed to classify

individual images independently, using a unified land cover classification scheme to

ensure that the classifications of the multiscale, multitemporal images are

compatible with each other (Zhou et al. 2008). Images were classified into the

Level 2 classes, which were subsequently merged into the five unified classes, as

listed in table 1. Note that because there was no cropland in the early period of this

study, the early-date images (1973–1985) were classified into four land cover types

only.

2.3 Post-classification processing

The spatial resolution of images affects landscape metric computation greatly
(Borak et al. 2000, Rocchini 2005). To make the classified land cover images

comparable in terms of landscape metrics, the images must have the same spatial

resolution. Our approach is to resample the classified images to 50 m, which is close

to the lowest spatial resolution (57 m) of all images using the majority rule

aggregation—the method that Petit and Lambin (2001) proposed.

After resampling, a majority filter (363) was applied to the classified images for

the removal of isolated pixels to minimize potential analytical errors.

2.4 Accuracy assessment

In this study we have chosen a stratified random sampling scheme for selecting

sample points of reference data for classification accuracy assessment. Seven
hundred and ninety sample points were selected and input to a GIS. They were then

Table 1. Unified land cover classification scheme for multiscale, multitemporal images. The
numbers denote the land-use class code in individual classifications (after Zhou et al. 2008).

Level 1
classes Level 2 classes

Landsat
ETM
(2000)

Landsat
TM

(1994)
SPOT
(1986)

Landsat
MSS

(1976)

Landsat
MSS

(1973) Unified classes

Cropland Cropland 1 1 – – – Cropland (1)
Grass and

woodland
Dense grass

and woodland
2 2 2 2 2 Grass and

woodland (2)
Sparse grass and

woodland
3 3 3 3 3

Mowing land 4 – – – –
Salty grass 5 5 5 5 5 Salty grass (3)

Water body Ponds 6 6 6 6 6 Water body (4)
River 7 7 7

Unused land Bare ground and
sand dunes

8 8 8 8 8 Bare ground (5)
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overlaid with the classified images as well as the high-resolution IKONOS

multispectral image.

Collecting reference data for accuracy assessment of multitemporal images always

presents a serious constraint, because simultaneous ‘ground truthing’ data over a

long period of time are very difficult, if not impossible, to find. In this study, we

could only acquire a high-resolution IKONOS multispectral image that was

simultaneous with the 2000 Landsat ETM data. Although the IKONOS image has a

high enough resolution for ‘ground truthing’, the ‘time gaps’ between this ‘reference

image’ and some historical images are large.

In this study, we used the IKONOS image as the source of the reference data to

assess the results of the 2000 Landsat ETM classifications. For the other four

historical images, we used the IKONOS image as the basis for comparison for

proper interpretation. By this means, obvious land cover changes such as grasslands

to water and bare ground to cropland could be reliably detected by image

interpretation. Field visits and interviews with elderly locals were also conducted for

sample points where a clear relationship between the present and historical images

could not be established.

2.5 Establishment and reclassification of land cover change trajectories

The concept and methodology of land cover change trajectory has been developed

(Mertens and Lambin 2000, Petit et al. 2001, Crews-Meyer 2001, Zhou et al. 2004,

2008). In this study the term trajectory of land cover change refers to successions of

land cover types (e.g. G: grass/woodland; C: cropland; S: salty grass; W: water body;

B: bare ground) for a given sample unit over more than two observations (epochs).

For example, land cover change of grasslandRwater bodyRgrasslandR
grasslandRcropland on a pixel over five observations can be specified as a

trajectory, meaning that the land was found to be grassland, water body, grassland

and cropland over the study period. For ease of discussion, a trajectory of this kind

is denoted as GRWRGRGRC.

To establish land cover change trajectories, all classified images were integrated in

GIS using raster format with ArcGIS GIS software. Based on the classification

scheme shown in table 1, all land cover change trajectories were established (a total

of 310 trajectories have been identified) and then reclassified into 10 trajectory

classes using a classification scheme proposed by Zhou et al. (2008), including four

unchanged classes (grass/woodland, salty grass, water body, bare ground), three

classes of human induced change (old cultivation, new cultivation, reservoirs/ponds)

and three classes of changes by natural causes (grass/woodland, flooded, bare

ground).

The unchanged class indicated that the same land cover type was found on the

sample point over the past 30 years. The human-induced change class includes

decisive changes due to human activities such as building dam/reservoir and

cultivation. Old cultivation indicated that land cover changed to and remained as

cropland since 1994. New cultivation indicated that land cover changed to and

remained as cropland as cropland since 2000. Reservoirs/ponds indicated that land

cover changed to and remained as water bodies since 1986. The natural change class

includes those indecisive changes due to the natural processes or minor human

activities such as light grazing. Grass/woodland indicated that land cover changed

periodically between grass/woodland and salty grass. Flooded area indicated that

land cover changed periodically between water and other land cover types. Bare
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ground indicated that land cover changed periodically between bare ground and

other land cover types.

2.6 Computation of landscape metrics

The computation of landscape metrics of land cover change trajectories was

conducted using FRAGSTATS, a program designed to compute a wide variety of

landscape metrics for categorical map patterns (McGarigal and Marks 1995,

McGarigal et al. 2002). In this study, since land cover change trajectories are

reclassified into 10 classes, only class-level metrics would apply. Four landscape

metrics that are commonly used in ecological studies and supported by

FRAGSTATS are used in this study, namely, Percentage of Landscape

(PLAND), Normalized Landscape Shape Index (NLSI), Interspersion and

Juxtaposition Index (IJI) and Area-weighted Mean Patch Fractal Dimension

(FARC_AM). The definition and meaning of these metrics are listed in table 2.

3. Results

Figure 1 shows the land cover change trajectory classification. In figure 1, land cover

change trajectories are classified according to whether a categorical change occurred

during the study period, and the cause of the change if it happened. The overall

accuracies for single-date image classifications range from 81.5% to 86.5%, with

Kappa coefficients ranging from 0.63 to 0.77 (table 3). The accuracies of most

individual land cover classes are over 75% (table 4). For the purpose of this study,

the classification yields a satisfactory, though not ideal, result.

Table 5 shows the results of spatial pattern metrics of land cover change

trajectory. The table illustrates the computation results at both Level 1 and Level 2

classes of change trajectories. As the purpose of this study is to assess the human

impact on the natural environment, cultivation classes are also merged for

computation of the metrics. Table 6 shows the area percentages of major trajectories

composed of Level 2 classes of change trajectories.

4. Discussion

4.1 The percentage of landscape (PLAND)

PLAND shows the abundance of the individual land cover change trajectory classes.

During the 30-year study period, the PLAND of unchanged area was 41.6%,

compared with that of human-induced changes (17.0%) and change by natural

factors (41.4%). For unchanged area, the PLAND of grass/woodland constitutes

80.3%, and for human-induced change, the PLAND of new cultivation reached

60.8%. For the categories of natural change, flooded area obviously dominates, with

a PLAND of 64.3%. The individual trajectory classes of change area also indicated

that more changes were related to natural factors, especially flood. Except for

‘flooded’ natural changes, other land cover changes (e.g. GRGRGRWRC (1.2%),

GRWRGRWRC (0.7%), BRWRBRBRB (0.5%)) were also related to flood.

The study area is quite remote, the population is quite small and the residents are

mostly semi-nomadic with a limited impact on the environment. Figure 2 shows the

inhabitances of the local residents over the study period. It is therefore

understandable that most of environmental change is due to natural forces (e.g.

flooding) rather than human activities.
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Table 2. Landscape metrics for analysing spatial patterns of land cover change trajectories (retrieved from McGarigal et al. 2002).

Abbreviation Name Equation* Interpretation

PLAND Percentage of Landscape

PLAND~Pi~

Pn

j~1

aij

A
|100

A measure of proportional abundance of each class in the
area, ranging from 0 to 100. PLANDR0 when class i
becomes increasingly rare, while PLAND5100 when the
entire area consists of a single class.

NLSI Normalized Landscape
Shape Index

NLSI~ ei{min ei

max ei{min ei

A measure of class aggregation, ranging from 0 to 1.
NLSI50 when the area consists of a single square or
maximally compact patch of the class; NLSI increases as
the class becomes increasingly disaggregated.

IJI Interspersion and
Juxtaposition Index

IJI~

{
Pm

k~1

eikPm

k~1

eik

0

B
@

1

C
Aln

eikPm

k~1

eik

0

B
@

1

C
A

2

6
4

3

7
5

ln m{1ð Þ |100

A measure of interspersion over the maximum possible
interspersion for the given number of classes, ranging
from 0 to 100. IJIR0 when the class is adjacent to only
one of the other classes. IJI5100 when the class is
equally adjacent to all other classes (i.e. maximally
interspersed and juxtaposed to other classes).

FARC_AM Area Weighted Fractal
Dimension Index

FARC AM~
Xn

j~1

2 ln 0:25pij

� �

ln aij

� �

 !
aij

Pn

j~1

aij

0

B
B
B
@

1

C
C
C
A

2

6
6
6
4

3

7
7
7
5

A measure of complexity of the shapes of class boundaries,
ranging from 1 to 2. It uses class area as a weighting
factor. FRAC_AMR1 for shapes with very simple
perimeters such as squares, and FRAC_AMR2 for
shapes with highly convoluted, plane-filling perimeters.

*Where i is the class of interest; j is the patch number of class i; Pi5proportion of the landscape occupied by class i; aij5area (m2) of patch ij; A5total
landscape area (m2); ei5total length of edge (or perimeter) of class i in terms of number of cell surfaces (including all landscape boundary and background
edge segments involving class i); min ei5minimum total length of edge (or perimeter) of class i in terms of number of cell surfaces; max ei5maximum total
length of edge (or perimeter) of class i in terms of number of cell surfaces; eik5total length (m) of edge in landscape between classes i and k; m5number of
classes present in the landscape, including the landscape border, if present; pij5perimeter (m) of patch ij.
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These results were inconsistent with the reports that claimed serious land

degradation in the middle and lower Tarim River (e.g. Feng et al. 2001, Jiang et al.

2005, Hou et al. 2007). We therefore argue that the scenario of land degradation

may vary from place to place along the Tarim River, thus more detailed land cover

change detection and analysis is needed, at least at the level of this study, before

conclusive statements can be made on the general status of land degradation in the

Tarim Basin.

However, it should also be noted that PLAND of new cultivation accounts for

10.6%, which reveals the significant acceleration of land conversion to croplands

Figure 1. The classification of land cover change trajectories from 1973 to 2000.

Table 3. Overall accuracy assessment of the classification results.

Accuracy measures 1973 1976 1986 1994 2000

Overall accuracy (%) 86.5 85.2 83.7 86.3 81.5
Kappa 0.68 0.63 0.67 0.77 0.68

Table 4. The accuracies for individual land cover classes.

Accuracy (%) 1973 1976 1986 1994 2000

Cropland Producer – – – 88.9 62.7
User – – – 70.6 89.0

Grass and
woodland

Producer 91.5 89.8 90.2 91.0 90.5
User 91.5 91.8 88.2 85.3 80.0

Salty grass Producer 86.1 92.3 60.7 80.0 61.9
User 73.8 49.0 79.1 82.8 61.9

Water body Producer 77.0 64.8 77.2 85.5 86.6
User 77.0 62.5 63.9 90.2 78.4

Bare ground Producer 62.7 66.7 68.6 68.6 67.6
User 66.7 75.6 85.4 90.9 89.6
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Table 5. Spatial pattern metrics of land cover change trajectories.

Level 1 classes Level 2 classes PLAND (%) NLSI IJI FRAC_AM

Unchanged Grass/woodland 34.4 0.161 57.9 1.229
Salty grass 0.1 0.302 0.0 1.083
Water body 0.6 0.235 31.4 1.048
Bare ground 6.5 0.131 26.1 1.146
All unchanged 41.6 0.161 58.8 1.238

Human-induced Old cultivation 2.1 0.226 50.7 1.074
New cultivation 10.6 0.137 61.2 1.120
Reservoirs/ponds 4.3 0.159 30.5 1.132
All cultivation 12.7 0.109 51.3 1.116
All human-induced 17.0 0.127 97.9 1.120

Natural Grass/woodland 6.5 0.250 61.5 1.127
Flooded 28.7 0.191 62.7 1.168
Bare ground 6.2 0.387 59.5 1.130
All natural 41.4 0.173 69.9 1.239

Table 6. The percentages of land cover change human-induced or natural change trajectories.

Level 1 classes Level 2 classes Trajectory classes Percentage

Human-induced Old cultivation GRGRGRCRC 1.6
SRSRGRCRC 0.2
GRGRSRCRC 0.1
GRSRGRCRC 0.1
Others 0.1

New cultivation GRGRGRGRC 4.6
GRGRGRWRC 1.2
SRSRSRSRC 0.8
GRWRGRWRC 0.7
Others 3.3

Reservoirs/ponds GRGRWRWRW 3.2
GRWRWRWRW 0.6
GRWRWRWRW 0.2
BRWRWRWRW 0.2
Others 0.1

Natural Grass/woodland GRGRSRGRG 1.2
GRSRGRGRG 1.1
SRSRGRGRG 1.0
SRGRGRGRG 0.7
Others 2.5

Flooded GRGRGRWRG 7.6
GRGRWRGRG 3.5
WRGRGRWRG 2.3
GRWRGRGRG 1.7
Others 13.7

Bare ground BRBRBRGRG 0.7
BRGRGRGRG 0.6
BRWRBRBRB 0.5
GRBRBRBRB 0.4
Others 4.0

*G: grass/woodland; C: cropland; S: salty grass; W: water body; B: bare ground. Trajectory
GRGRGRCRC indicated that land cover was grass/woodland, grass/woodland, grass/
woodland, cropland and cropland in 1973, 1976, 1986, 1994 and 2000.
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from 1994 to 2000, when human impact started to play an important role on

environmental change by altering the natural courses of water and surface materials

(e.g. constructing ditches in the 1990s, as shown in figure 2).

4.2 Normalized Landscape Shape Index (NLSI)

Measured by NLSI, different change trajectory classes have demonstrated some

clear differences in spatial aggregation. The human-induced change trajectories

generally show a higher-level of aggregation. The NLSI of all human-induced

Figure 2. The irrigation infrastructure and residential sites in the study area (compiled based
on the visual interpretation of 2000 IKONOS image, field investigation and the interview with
local residents in 2002).
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classes is 0.127, which is the minimum among all three Level 1 classes. The NLSI of

cultivation classes has shown a significant change (a 39% decrease) in landuse

pattern. The ‘old cultivation’ has a NLSI of 0.226, similar to those of other natural

classes. This indicates that cultivation style was still remaining on a small scale,

which did not put a significant impact on the natural environment. In contrast, the

NLSI of ‘new cultivation’ is 0.137, which is much less than that of ‘old cultivation’,

suggesting larger-scale farming, which made a large impact on the environment.

When merging adjacent patches of both ‘old’ and ‘new’ cultivation classes together,

the aggregated NLSI is only 0.109, significantly less than all other natural classes.

This confirms that recent cultivation exhibited a highly concentrated and aggregated

spatial pattern with simple large patches for the efficiency of landuse.

Figure 3 showed the area change of cropland from 1980 to 2000. The area of

cropland remained almost unchanged before 1990 but increased with a great pace in

the 1990s. The increase was mainly due to the rapid growth of cotton cropping as

the area of other types of cropland decreased slightly. This largely reflects the effects

of the local policies that encouraged cotton cropping in the 1990s by the government

of Xinjiang Uygur Autonomous Region.

Most cotton cropland was reclaimed by the ‘private or public enterprises,’ not by

local farmers and the characteristics of reclamation were commercial profit-oriented

agriculture by introducing large machinery, massive irrigation constructions and

other modern agriculture input. Because of the limitation of water resources in the

arid zone, the cropland must be supported by a well-established irrigation

infrastructure. Since the expense of constructing an irrigation infrastructure was

costly, the infrastructure will generally be concentrated (see figure 2). Thus, it will be

easily understood that the new cultivation displayed a highly concentrated and

aggregated spatial pattern.

4.3 The Interspersion and Juxtaposition Index (IJI)

IJI describes how a trajectory class spatially associates with other classes. Naturally

the unchanged trajectory classes show lower IJI (i.e. spatially adjacent to fewer other

trajectory classes) since a given change trajectory class tends to associate with its

Figure 3. The cropland change in Yuli County from 1980 to 2000 (compiled based on the
Statistic Year Book of Xinjiang Uygur Autonomous Region (Beijing: China Statistics Press) and
China Rural Statistical Year Book (Beijing: China Statistics Press)).
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corresponding cover type (e.g. unchanged bare ground, or sand dunes tend to be

surrounded by periodical changes between cover bare ground and other cover

types). Human-induced change generally shows lower IJI compared to natural

change trajectory classes. Spatially the cultivation classes show a tendency to be

associated with each other, shown by the IJI of all cultivation of 51.3, which is much

less than that of natural trajectory classes (IJI569.9). The reservoirs/ponds

trajectory class has shown a strong tendency to associate with unchanged water

bodies and flooding zones (i.e. the ‘flooded’ natural change trajectory) with a low IJI

of 30.5. In comparison, the natural change trajectories are more likely interspersed

with other change trajectory classes because they often represent the interchange

zone between different natural land cover types and areas with human impact.

4.4 Area Weighted Fractal Dimension Index (FRAC_AM)

Human-induced change has a lower shape complexity measured by Area Weighted

Fractal Dimension Index (FRAC_AM). For all Level 1 classes, human-induced

change has the lowest FRAC_AM of 1.120, which was less than 10%, compared

with those of unchanged (1.238) and natural (1.239) change trajectories. For

cultivation trajectory classes, the new cultivation (FRAC_AM51.120) has a more

complex shape than that of old cultivation (FRAC_AM51.074, 4% less than that of

old cultivation), suggesting that cropland in 2000 was expanded around old

cultivation fields. The boundaries of the expanded cropland in 2000 were more

complex because of the appearances of holes occupied by the 1994 cropland patches.

Actually, the change of shape complexity of old and new cultivation suggests the

spatial pattern of cropland expansion: the originally scattered small patches of

farmland found in 1994 were expanded to a larger area, and new cultivation is

unlikely to occur in the isolated new area because of limited support of irrigation

infrastructure.

5. Conclusion

Land cover change in the arid zone is caused by both human activities and natural

forces. Sometimes natural factors have a much larger impact than that of human

activities. To effectively estimate and describe the dominance and spatial

distribution of the forces that caused environmental change, we have proposed a

methodology that uses multitemporal remotely sensed imagery to derive land cover

change trajectory, and that subsequently computes landscape metrics of the change

trajectory as quantitative descriptive parameters.

This study extends previous research reported by Southworth et al. (2002) and

Crews-Meyer (2004) based on categorical trajectory analysis (Zhou et al. 2004,

2008). The landscape metric measurements have been introduced to analyse the

spatial pattern of land cover change trajectory classes based on the driving force of

environmental change. Taking this approach, the nature of change trajectories

(hence the history of the change) can be described by interpreting the metrics of the

spatial patches of change trajectories, thus forming a useful foundation for the

prediction of the spatial pattern of land cover change with the current driving forces

and constraints.

This research has selected four landscape metric measurements to describe the

spatial pattern of land cover change trajectory classes in the study area of the arid

zone in western China. The findings of the case study can be summarized as:
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1. PLAND of change trajectory classes is a good indicator for showing the

dominant process of environmental change. In the study area, the dominant

process of environmental change was still due to natural forces, but the impact

of human activities has increased significantly from 1994 to 2000.

2. Aggregation of patches of land cover change trajectory classes shows the

nature of change processes. A higher-level of aggregation often suggests a

more aggressive progress from a dominant driving force. In this study, the

human induced changes generally show greater aggregation, indicated by

lower NLSI, suggesting that human impact is more concentrated than the

changes caused by natural forces.

3. Among human-induced changes, the reservoirs/ponds class was closely

associated with only a few of the other change trajectory classes (e.g. flooding

zones), indicated by its low IJI. The cultivation classes also show low IJI with

the tendency of associating with each other.

4. The whole human-induced trajectory class shows a lower FRAC_AM than

those of natural changes, indicating less complexity in shape. This suggests

that large, relatively regularly shaped patches are the general spatial pattern

when lands were converted from natural cover types to cultivated lands or

reservoirs.

Numerous challenges, however, are also raised from this study. First, similar to all

other remote sensing studies, the uncertainty in classification and change detection

based on multitemporal and multiresolution remotely sensed images will always

produce a significant impact on the analytical results. To what extent the impact

may affect the final analytical results is certainly subject to further study. Secondly,

the interactions and associations among different land cover change trajectories

need to be further explored by introducing other landscape metrics or other spatial

pattern measures. The development of more comprehensive and representative

parameters to describe spatio-temporal patterns and processes shown by remotely

sensed data is also recommended.
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