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Abstract. Techniques based on multi-temporal, multi-spectral, satellite-sensor-
acquired data have demonstrated potential as a means to detect, identify, map
and monitor ecosystem changes, irrespective of their causal agents. This review
paper, which summarizes the methods and the results of digital change detection
in the optical/infrared domain, has as its primary objective a synthesis of the
state of the art today. It approaches digital change detection from three angles.
First, the different perspectives from which the variability in ecosystems and the
change events have been dealt with are summarized. Change detection between
pairs of images (bi-temporal) as well as between time profiles of imagery derived
indicators (temporal trajectories), and, where relevant, the appropriate choices
for digital imagery acquisition timing and change interval length definition, are
discussed. Second, pre-processing routines either to establish a more direct
linkage between remote sensing data and biophysical phenomena, or to
temporally mosaic imagery and extract time profiles, are reviewed. Third, the
actual change detection methods themselves are categorized in an analytical
framework and critically evaluated. Ultimately, the paper highlights how some
of these methodological aspects are being fine-tuned as this review is being
written, and we summarize the new developments that can be expected in the
near future. The review highlights the high complementarity between different
change detection methods.

1. Introduction

Ecosystems are in a state of permanent flux at a variety of spatial and temporal

scales all around the world. Causes of these fluxes can be natural as well as

anthropogenic, or may be a combination of the two. Moreover, scientific evidence

clearly points to the fact that impacts of, for example, global change on land

surface attributes are not uniformly distributed on the face of the Earth. The fact

that sustainability has become a primary objective in present-day ecosystem

management has as one of its consequences the continuous need for accurate and
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up-to-date resource data. What is more, where it concerns large-area processes, any

in-depth understanding of the changes has to be based on an accurate monitoring

of land surface attributes over at least a few decades. At such regional scales,

monitoring poses a number of methodological challenges. The lack of quantitative,
spatially explicit and statistically representative data on ecosystem change has left

the door open to simplistic representations, e.g. the advance of deserts (Lamprey

1975). While it is possible to find local examples of such extreme changes, empirical

studies in grassland, savannas and open forest ecosystems generally revealed the

predominance of inter-annual climatic variability, ecosystem resilience and complex

land-cover change trajectories over secular (irregularly spaced at long intervals in

time) land-cover conversions.

Digital change detection encompasses the quantification of temporal phe-
nomena from multi-date imagery that is most commonly acquired by satellite-based

multi-spectral sensors. The scientific literature, however, reveals that digital change

detection is a difficult task to perform. An interpreter analysing aerial photography

will almost always produce more accurate results with a higher degree of precision

(Edwards 1990). Nevertheless, visual change detection is difficult to replicate

because different interpreters produce different results. Furthermore, visual detec-

tion incurs substantial data acquisition costs. Apart from offering consistent and

repeatable procedures, digital methods can also more efficiently incorporate
features from the non-optical parts of the electromagnetic spectrum.

This paper reviews the state of the art of digital change detection in the optical/

infrared domain with emphasis on ecosystems. It is a thorough revision of an eight-

year-old previous effort (Coppin and Bauer 1996) that was largely confined to bi-

temporal change detection methodologies (comparing the same area at two points

in time). The present review has been expanded now to encompass also the emer-

ging field of change detection based on temporal trajectory analysis (comparing the

same area over longer time intervals with multiple imagery, e.g. over the length of a

growing season).

2. Ecosystem change and multi-temporal imagery

2.1. Change

Ecosystems are continuously changing, where change is defined as ‘an alteration in

the surface components of the vegetation cover’ (Milne 1988) or as ‘a spectral/spatial

movement of a vegetation entity over time’ (Lund 1983). The rate of change can either

be dramatic and/or abrupt, as exemplified by fire; or subtle and/or gradual, such as
biomass accumulation. Change can therefore be seen as a categorical variable (class) or

in a continuum. Authors generally distinguish between land-cover conversion, i.e. the

complete replacement of one cover type by another, and land-cover modification, i.e.

more subtle changes that affect the character of the land cover without changing its

overall classification. Land-cover modifications are generally more prevalent than

land-cover conversions. Some ecosystem modifications are human-induced, for

example tree removal for agricultural expansion. Others have natural origins resulting

from, for example, flooding and disease epidemics.
Various classifications of change in ecosystems have been proposed. A problem

with many of these categorical schemes is that the change classes are often not

mutually exclusive. Colwell et al. (1980) therefore suggested a more hierarchical

framework, whereby the classification is mutually exclusive and totally exhaustive.

However, it still falls short by not providing a link between change event and causal
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agent. Hobbs (1990) focused more on ecological aspects and differentiated between

seasonal vegetation responses, inter-annual variability and directional change. The

last may be caused by intrinsic vegetation processes (e.g. succession), land-use

conversion, other human-induced changes (e.g. pollution stress) and alterations in

global climate patterns (e.g. global warming). Khorram et al. (1999) concentrated

on the spatial environment in which the change occurs: ‘Some changes may affect

entire areas uniformly and instantaneously, while others may take the form of slow

advances or retreats of boundaries between classes, and still other changes may

have very complex spatial textures.’ In the spatial context, they proposed four types

of change whereby spatial entities either (1) become a different category, (2)

expand, shrink or alter shape, (3) shift position, or (4) fragment or coalesce.

The ability of any system to detect and monitor change in ecosystems depends

not only on its capability to deal adequately with the initial static situation, but also

on its capacity to account for variability at one scale, e.g. seasonal, while inter-

preting changes at another, e.g. directional (Hobbs 1990). Moreover, the ability to

detect is a function of the ‘from’ and ‘to’ classes, the spatial extent and the context

of the change (Khorram et al. 1999).

Not all detectable changes, however, are equally important. It is also probable

that some changes of interest will not be acquired very well, or at all, by any given

system. Of particular interest to the ecosystem scientist and/or manager are first and

foremost vegetation disturbances caused by short-term natural phenomena such as

insect infestation, fire and flooding, and changes resulting from human activities,

e.g. resource exploitation and land-use conversion. While the natural phenomena

are likely to be temporary and may in some cases even be self-correcting, evidence

of anthropogenic activities generally remains much longer. Equally important are

the ecosystem changes that ensue from alterations in larger-scale processes, such as

global warming etc. In this case, changes in trends are analysed, rather than actual

change events. The proper understanding of the nature of the change and the

principles that enable its detection and categorization usually encompass more

sophistication than the simple detection of the change event itself.

In summary, the main challenges facing ecosystem change monitoring from

space come from the requirements to: (i) detect modifications in addition to con-

versions (e.g. quantify forest cover degradation due to selective logging or fires); (ii)

monitor rapid and abrupt changes in addition to the progressive and incremental

changes (e.g. assess the impact of a flood, drought or fire, versus a progressive

expansion of agriculture); (iii) separate inter-annual variability from secular trends,

given the shortness of the available time series—20 to 30 years (e.g. assess dry land

degradation); (iv) understand and correct for the scale dependence of statistical

estimates of change derived from remote sensing data at different spatial reso-

lutions; and (v) match the temporal sampling rates of observations of processes to

the intrinsic scales of these processes (e.g. monitor rapidly evolving processes such

as floods or biomass burning).

2.2. Imagery acquisition

Change detection for ecosystem monitoring generally assumes overall pheno-

logical conditions to be comparable, be it on a two-point timescale (bi-temporal

change detection; e.g. change detection between two peak-green summer images), or

on a continuous timescale (temporal trajectory analysis; e.g. change detection

between growing seasons with similar climatic conditions). However, in the latter
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case, it is also possible that these conditions themselves are the objects that are

being monitored, e.g. in natural variability monitoring.

2.2.1. Bi-temporal change detection

The appropriate selection of imagery acquisition dates is as crucial to a bi-

temporal change detection method as is the choice of the sensor(s), change cate-

gories and change detection algorithms. The problem has two dimensions: the

calendar acquisition dates and the change interval length (temporal resolution).
Anniversary dates or anniversary windows (annual cycles or multiples thereof)

are often used because they minimize discrepancies in reflectance caused by seasonal

vegetation fluxes and Sun angle differences. However, even at anniversary dates, or

within anniversary windows, phenological disparities due to local precipitation and

temperature variations may present real problems. Forest ecosystem dynamics in

the temperate regions illustrate this clearly. All else being equal, the reflectance of

tree leaves in the visible part of the electromagnetic radiation (EMR) spectrum is

higher in spring and autumn than in the middle of the growing season. Changes in

the near-infrared (NIR) part of the spectrum are less distinct. The stage of change

at a particular time in spring and autumn depends on the site, tree species and

varying genotypes of the same species. Local seasonal effects are especially

confusing during leaf-out and autumn coloration. Hame (1988) therefore concluded

that for bi-temporal change detection, summer and winter are the best seasons

because of their phenological stability. What is more, selecting the summer, or the

driest period of the year for the locale, will enhance spectral separability, yet

minimize spectral similarity, because of excessive surface wetness prevailing during

other periods of the year (Burns and Joyce 1981). However, the optimal selection of

the season for bi-temporal forest cover change detection data acquisition remains a

topic of contention in the pertinent literature.

For most documented studies, the periodicity of the data acquisition seems to

have been determined according to the availability of satellite sensor data of

acceptable quality. While visually analysing Landsat-1 multi-spectral scanning

system (MSS) data for forest cover regeneration assessment, Aldrich (1975)

concluded that in most cases a minimum time interval of three years was required

to detect non-forest to forest changes. Colwell et al. (1980) judged a two-year

separation between MSS scenes insufficient to map reliably re-vegetating areas in

South Carolina. They advised a periodicity of at least five years. Gregory et al.

(1981) reported that in southern Oklahoma three separate classes of clear cuts have

been identified from processed Landsat MSS data: those created less than six years

before image acquisition, those that dated from six to 15 years before data capture,

and those older than 15 years. Park et al. (1983), again using Landsat MSS data,

suggested a one-year interval to detect forest to non-forest (successional herbs,

urban or agricultural development) changes, a three- to five-year interval to

monitor non-forest to successional shrubs stage, and another five to 10 years to

detect the consecutive establishment of a forest cover. Coppin and Bauer (1995)

tested two-, four- and six-year intervals for canopy change detection and found that

a two-year cycle was optimal to study aspen establishment and storm damage in the

Great Lakes region with Landsat Thematic Mapper (TM) imagery. However, their

four- and six-year cycles gave better results in the case of human-induced and

natural canopy disturbances such as thinning, cutting and dieback.
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2.2.2. Temporal trajectory analysis

To circumvent the problem of the selection of optimal imagery acquisition

dates, some investigators have approached ecosystem monitoring by comparing

seasonal development curves or profiles. These require time series of remotely
sensed indicators of relevant land surface attributes which, in turn, are con-

structed from daily imagery acquisitions provided by such sensors as the

National Oceanic and Atmospheric Administration (NOAA) Advanced Very

High Resolution Radiometer (AVHRR), Système Probatoire de l’Observation

de la Terre (SPOT) VEGETATION, Sea-Viewing Wide Field-of-View Sensor

(SeaWIFS), Moderate-Resolution Imaging Spectrometer (MODIS), Along Track

Scanning Radiometer (ATSR), etc. Change detection based on such profiles

has been proven appropriate for regional studies of largely climate-driven land
surface attribute changes (Lambin and Ehrlich 1997, Kawabata et al. 2001), of

phenology modifications (Myneni et al. 1997), and of inter-annual net primary

production variability (Behrenfeld et al. 2001).

One of the advantages of profile-based techniques lies in the fact that the issue

of influence of phenology on change detection performance is resolved, because

data are collected throughout the growing season. As such, changes inherently

linked to seasonality can be separated from other changes. A serious disadvantage,

however, is that at present only coarse (AVHRR, VEGETATION) to moderate
(MODIS) spatial-resolution sensors provide the high temporal frequency of

observations that is necessary to establish time profiles. This drastically limits the

change categories that can be detected and monitored. Lawrence and Ripple (1999)

have nevertheless been able to monitor the ecosystem disturbances caused by a

volcanic eruption by calculating change curves from a time series of Landsat TM

data acquired at high temporal frequency.

3. Data pre-processing for change detection

The primary challenge in deriving accurate natural ecosystem change

information is representative of the standard remote sensing problem: maximization

of the signal-to-noise ratio. Inherent noise will affect the change detection

capabilities of a system or even create unreal change phenomena. Causes of such

unreal changes can be, among others, differences in atmospheric absorption and

scattering due to variations in water vapour and aerosol concentrations of the

atmosphere at disparate moments in time, temporal variations in the solar zenith

and/or azimuth angles, and sensor calibration inconsistencies for separate images.
Pre-processing of satellite sensor images prior to actual change detection is essential

and has as its unique goals the establishment of a more direct linkage between

the data and biophysical phenomena, the removal of data acquisition errors and

image noise, and the masking of contaminated (e.g. clouds) and/or irrelevant (e.g.

waterbodies when looking at changes in vegetation) scene fragments.

The pre-processing of multi-date sensor imagery, when absolute comparisons

between different dates or periods are to be carried out, is much more demanding

than in the single-date case. It commonly comprises a series of sequential
operations, including (but not necessarily in this order) calibration to radiance or

at-satellite reflectance, atmospheric correction or normalization, image registration,

geometric correction, mosaicking, sub-setting and masking (e.g. for clouds, water,

irrelevant features). Often these procedures are accompanied by a data trans-

formation to vegetation indices that are known to exhibit a strong positive
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relationship between upwelling radiance and the vegetative cover of natural

ecosystems. The principal advantages of vegetation indices over single-band

radiometric responses are their ability to reduce considerably the data volume for

processing and analysis, and their inherent capability to provide information not

available in any single band. However, no single vegetation index can be expected

to summarize totally the information in multidimensional spectral data space.

Wallace and Campbell (1989) aptly stated that adequate indices can be found for

different purposes and that indices derived for one analysis may be inappropriate in

another context.

3.1. Bi-temporal change detection

Of the various aspects of pre-processing for bi-temporal change detection, there

are two outstanding requirements: multi-date image registration and radiometric

rectification. It should be evident that accurate spatial registration of the multi-date

imagery is absolutely essential to digital change detection. In a study on the impact

of mis-registration on change detection simulations of MODIS data run with

spatially degraded Landsat MSS images, Townshend et al. (1992) followed by Dai

and Khorram (1998) clearly demonstrated that to achieve errors of only 10% in

vegetation index values, registration accuracies of 0.2 pixels or less were required.

However, change detection capabilities are intrinsically limited by the spatial

resolution of the digital imagery. Further, residual mis-registration at the below-

pixel level commonly degrades the area assessment of the change events somewhat,

specifically at the change/no-change boundaries. This within-pixel shift is inherent

to any digital change detection technique (Coppin and Bauer 1994).

The second critical requirement for successful change detection is that a

common radiometric response is required for quantitative analysis of one or more

image pairs acquired on different dates. For many change detection applications,

absolute radiometric correction is unnecessary, but variations in solar illumination

conditions, in atmospheric scattering and absorption, and in detector performance

need to be normalized or, in other words, radiometric properties of a subject image

need to be adjusted to those of a reference image. Duggin and Robinove (1990)

strongly insisted on the calibration of raw sensor data to meaningful physical units

prior to any multi-temporal analysis. Only through reliable radiometric calibration

can a researcher be confident that observed spatial or temporal changes are real

differences and not artefacts introduced by differences in the sensor calibration,

atmosphere and/or Sun angle (Robinove 1982).
Collins and Woodcock (1996) examined three levels of radiometric pre-

processing: no pre-processing, an intermediate level (matched or normalized digital

counts) and full radiometric correction (matched satellite/ground reflectances). They

considered some form of radiometric correction essential, but the matched digital

counts, in which several invariant features were used to calibrate a regression

equation to predict time-2 digital numbers from those at time-1 (relative routine),

was found to be as accurate as and easier to apply than the matched reflectances

(absolute routine). Songh et al. (2001) demonstrated that one relative and seven

absolute atmospheric correction algorithms all improved final data analysis when

tested for change detection purposes. The more complicated algorithms did not

necessarily lead to greater accuracy; however, with respect to atmospheric cor-

rection, the authors recommended either a simple dark object subtraction with or
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without a Rayleigh atmospheric correction (absolute routine), or atmospheric

normalization (relative routine).

Atmospheric normalization can be full-scene-based and is then called simple

regression normalization (SR) (Jensen 1983) or pseudo-invariant-feature-based
(PIF). Hall et al. (1991a) have developed such a PIF radiometric normalization

technique that corrects or rectifies images from common scenes through use of sets

of landscape elements whose reflectance is nearly constant over time. The technique

provides a relative calibration and does not require sensor calibration or atmos-

pheric turbidity data, although correction to absolute surface reflectance can be

accomplished if sensor calibration coefficients, an atmospheric correction algorithm

(model) and atmospheric turbidity data are available. The technique resulted in

data accurate to within 1% absolute reflectance in the visible and NIR bands.
Similar procedures have been used by Caselles and Lopez Garcia (1989), Conel

(1990) and Coppin et al. (2001). Elvidge et al. (1995) developed an automatic

scattergram-controlled regression (ASCR) normalization technique. It uses pixels

from no-change regions identified from scattergrams, instead of from whole images

as in the SR method or from spectral/spatial features as in the PIF procedure. More

sophisticated approaches, which use atmospheric models for correction, but derive

the atmospheric parameters from the satellite imagery, include Ahern et al. (1988),

Chavez (1989) and Hill and Sturm (1991). All of these studies give clear evidence
of the fact that only when all sources of variation but the surface cover can be

adjusted for (absolute calibration) or normalized to a common standard (relative

calibration), will it be possible to detect and identify changes in natural ecosystems

from multi-date imagery.

The debate around the use of filtering as a pre-processing technique for change

detection has not been settled and remains very application-dependent. Riordan

(1981) applied a modification of Nagao’s and Matsuyama’s edge-preserving image-

smoothing algorithm to reduce minor variations in radiance values and to allow the
comparison of relatively homogeneous groups of pixels. He judged the result

ineffective. For tropical deforestation assessment, Singh (1989) tried both image

smoothing and edge enhancements, but did not detect any increase in the final

change detection accuracy with either method. Baraldi and Parmiggiani (1989),

however, suggested the application of edge-preserving image-smoothing filters

previous to image analysis in order to enhance the homogeneity of the spectral

response of a thematic class and at the same time to eliminate noise effects.

Bruzzone and Prieto (2000) reported increased change detection accuracies when
exploiting the spatial–contextual information contained in the neighbourhood of

each pixel to reduce the effects of noise. In addition, the definition of an adaptive

pixel neighbourhood or parcel allowed for a more precise location of the borders of

changed areas. To overcome low frequency/high contrast problems in Landsat TM

imagery covering sand sheet desert environments, Kwarteng and Chavez (1998)

advocated the use of high pass spatial filters with relatively large kernel sizes, with

a 50% add-back option and followed by edge enhancement, before submitting the

data to actual change detection.
Some researchers advocate the use of texture features for change detection.

Most consulted literature sources explicitly state, however, that texture information

must be used only in conjunction with spectral data, and that the two sources are

complementary to each other (e.g. He and Wang 1990). Reed (1988) cautioned

the user community about the integration of texture measures in data analysis

procedures. Classification accuracy is increased only under certain conditions.
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In his research, the addition of textural features, derived from a transformed

vegetation index map of TM data, degraded the classification accuracy in

distinguishing spectrally similar vegetation covers in all but one case. He conceded,

however, that the choice of texture index (angular second moment and contrast)

and window size (767 pixels) might have influenced the outcome significantly.

Smits and Annoni (2000) computed texture distance measures based on the texture

indices’ contrast and homogeneity. They report mis-detection and false alarm rates

of only 15% in urban expansion change detection and demonstrated their method

robust for mis-registration.

3.2. Temporal trajectory analysis

As time-profile-based change detection methods work with data acquired on a

large number of observation dates, adequate pre-processing is of utmost impor-

tance. Just as with bi-temporal approaches, pre-processing includes the geometric

registration of successive images at the sub-pixel level. For example, Roy (2000)

showed that high contrast boundaries on images from wide field-of-view sensors

might be shifted when mis-registered data are composited. This may exaggerate

reverse or obscure change phenomena. As one is dealing with a series of images,

data artefacts that are inherent to the type of imagery used and that render the

comparison of data observations or measurements at different times difficult, must

be removed. Moreover, to remove cloud and other atmospheric effects (i.e. water

vapour content, aerosols), a process of temporal compositing must be executed.

Finally, many present-day high-temporal-frequency sensors have a wide field of

view, which necessitates a correction for directionality (bidirectional reflectance

distribution function (BRDF)) effects. For example, changes in illumination

conditions due to a drift in equator crossing time of the AVHRR sensors result in a

viewing angle difference for off-nadir observations (Gutman 1999). And alterations

in AVHRR sensor responsitivity over time constitute another major source of

image noise (Cihlar et al. 1998, Gutman 1999).

The fact that some controversy arose on whether previous time series analyses

detected real trends in the Earth’s climate system (e.g. Myneni et al. 1997), or

resulted at least in part from a combination of calibration residuals and satellite-

orbit drift (Gutman 1999), illustrates how critical the artefact issue still is. In

addition, natural phenomena can render temporal trajectory analysis much more

difficult: the eruptions of Mount Pinatubo in mid 1991 caused significant noise in

the global AVHRR time series due to the varying presence of aerosols in the

atmosphere.

With respect to temporal compositing, a range of procedures has been suggested

for wide-angle sensors. Several authors have proposed other criteria for temporal

compositing than the widely used maximum vegetation index value. Actually, the

latter criterion preferentially selects off-nadir pixels from the fore scatter region,

this effect varying with land-cover type (Cihlar et al. 1994). Other single-

step compositing criteria (e.g. maximum temperature) (Roy 1997) or two-step

procedures (e.g. maximum vegetation index value followed by minimum scan angle)

(Cihlar et al. 1994) were proven to yield good composite images. These studies also

highlight the impact of the compositing procedure on results derived from time

series analysis for specific applications. Therefore, some authors have applied

compositing criteria designed for a specific aim, such as monitoring burned areas at

the regional scale (Barbosa et al. 1998).
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Other researchers have attempted to resolve problems that contaminate time

series of wide field of view sensors by addressing each issue separately rather than

attempting to solve all the issues through a single compositing procedure.

Concerning residual clouds, various threshold-based methods have been proposed
for cloud screening, e.g. an automated series of five tests applied to each pixel

(Saunders and Kriebel 1988) or thresholding of the AVHRR channel 4 (centred

around 11 mm) brightness temperature (Gutman et al. 1994). Threshold-based

methods suffer, however, from the heterogeneity of the land surface and the

seasonal variability of surface radiance. As an alternative, a Fourier series approxi-

mation to the seasonal trajectory of vegetation index data has been developed and

then modified to closely represent seasonal trends for different land-cover types

(Cihlar et al. 2001). It is used to determine time- and pixel-specific cloud con-
tamination thresholds and then to produce contamination masks. Concerning other

atmospheric effects, atmospheric corrections of AVHRR data using seasonal

averages of atmospheric water vapour and aerosols optical depths were shown to

result in corrections that were similar to the full correction using daily values based

on in situ data, for biophysical studies in the African Sahel using time series of

vegetation index data (Hanan et al. 1995).

The correction for BRDF effects in wide field of view satellite sensors is

probably the area where progress has been more explicit recently. Hu et al. (2000)
have produced surface albedo data corrected for angular effects from a time series

of daily multi-angular AVHRR data. They used a kernel-driven semi-empirical land

surface BRDF model where kernels are derived from approximations to physical

BRDF models. The angle-corrected vegetation index data displayed more consis-

tent surface properties than monthly maximum value composites and were used to

investigate seasonal and inter-annual changes in albedo and vegetation index value.

Schaaf et al. (2002) applied this approach to global MODIS data to generate nadir

BRDF-adjusted reflectances. This product, computed for 16-day periods, is free

from view angle effects, as well as from cloud and aerosol contamination. It is thus
ideal for applications that traditionally depended on compositing methods, and in

particular for monitoring land-cover change and inter-annual variability in land

surface conditions at broad spatial scales.

In another work also aimed at the data from the new generation of satellite

sensors, van Leeuwen et al. (1999) proposed a compositing algorithm for MODIS

vegetation index data based on a view angle standardization approach. Nadir

equivalent reflectance values were produced using the simple Walthall BRDF

model. In a different approach, Csiszar et al. (2001) corrected daily AVHRR data
for angular effects using coincident multiangle polarization and directionality of

the Earth’s reflectance (POLDER) land surface data products. The POLDER

data were used to derive BRDF functions for 6 km2 AVHRR grid boxes, and

the anisotropic factors were then applied to the individual AVHRR grid cell

reflectances.

4. Change detection algorithms

4.1. Bi-temporal algorithms

4.1.1. Background

All digital change detection is affected by spatial, spectral, temporal and

thematic constraints. The type of method implemented can profoundly affect the

qualitative and quantitative estimates of the disturbance (Colwell and Weber

1981). Even in the same environment, different approaches may yield different
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change maps. The selection of the appropriate method therefore takes on consid-

erable significance. Most documented digital change detection methods are based

on per-pixel classifiers and pixel-based change information contained in the spectral–

radiometric domain of the images. They combine both the procedures for

change extraction (change detection algorithm) and those for change separation/

labelling (change classification routine). Change extraction and change separation/

labelling are preliminaries to any change modelling. In other words, predicting

with a statistical or ecological model using independent variables where, when,

and/or why change occurs, requires prior detection, measurement and categoriza-

tion of ecosystem change patterns.

Statistical and/or spatial decision rules that are derived from a heuristic

understanding of the change event often constitute the backbone of the separation/

labelling exercise. These rules, however, are not change-detection-algorithm-specific.

In other words, they can be applied irrespective of the algorithm that generated the

change data. They comprise the complete range of pattern recognition procedures

available to the image analyst, from edge enhancement and simple thresholding

(visual or statistically-based), to supervised and unsupervised classification, to

segmentation and spatial analysis rules.

A wide variety of digital change detection algorithms have been developed over

the last two decades. They basically can be summarized in two broad categories to

which different reviewers have attached definitions that vary in complexity and, to a

certain extent, in coverage. Malila (1980) recognized the categories as change mea-

surement (stratification) methods versus classification approaches. Pilon et al.

(1987) amplified the description of the first category to ‘enhancement approaches

involving mathematical combinations of multi-date imagery which, when displayed

as a composite image, show changes in unique colours’. Singh (1989) changed the

focus slightly by centering the definitions more on a temporal scale: simultaneous

analysis of multi-temporal data versus comparative analysis of independently

produced classifications for different dates. Other scientists (Nelson 1983, Milne

1988) have employed multi-class schemes.

Whatever combination of change detection algorithm and classification routine

is applied, it is obvious that a wide assortment of alternatives exist and that all

have varying degrees of flexibility and availability. As already stated, change

classification routines are not specific to change detection. The overview that

follows is therefore restricted to change detection algorithms only. All change

detection algorithms that have been found documented in the literature can be

grouped into nine distinctly different categories plus one heterogeneous group

encompassing hybrid methods and less frequently implemented or more esoteric

algorithms. The first six are those most frequently used for monitoring vegetative

canopies, while the other algorithms are less common and/or remain in an

experimental stage. However, the order in which the algorithms are presented

does not imply any ranking or qualitative judgement. Moreover, because the

algorithms are not necessarily independent of the data sources for which their

implementation has been documented, examples typical for natural ecosystem

monitoring are given.

4.1.2. Post-classification comparison

Post-classification comparison is sometimes referred to as ‘delta classification’.

It involves independently produced spectral classification results from each end of
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the time interval of interest, followed by a pixel-by-pixel or segment-by-segment

comparison to detect changes in cover type. By adequately coding the classification

results, a complete matrix of change is obtained, and change classes can be defined

by the analyst.

The principal advantage of delta classification lies in the fact that the two

dates of imagery are separately classified, thereby minimizing the problem of

radiometric calibration between dates. By choosing the appropriate classification

scheme, the method can also be made insensitive to a variety of types of transient

changes in selected terrain features that are of no interest (Colwell et al. 1980).

However, the accuracy of the post-classification comparison is totally dependent on

the accuracy of the initial classifications. The final accuracy very closely resembles

that resulting from the multiplication of the accuracies of each individual

classification and may be considered intrinsically low. The difficulty thus lies in

securing completely consistent, analogous and highly accurate target identifications

for each iteration. Mis-classification and mis-registration errors that may be

present in the original images are compounded and results obtained using post-

classification comparison are therefore frequently judged unsatisfactory (Howarth

and Wickware 1981).

A significant example of the use of the post-classification comparison approach is

the work of Hall et al. (1991b) in which Landsat images acquired in 1973 and 1983 were

classified into five forest successional classes (clearings, regeneration, broadleaf, conifer

and mixed). Application of a PIF normalization (see §3.1) enabled classification of

the 1973 image using 1983 ground data for classifier training. Following the two

classifications a matrix of class changes over the 10-year interval was constructed and

the transition rates between classes were calculated.
Xu and Young (1990) preceded their post-classification comparison by a manual

segmentation of the images according to ground features and characteristics of

the scene. They then classified all segments separately for each date via a supervised

maximum likelihood pattern recognition routine. They concluded that this

approach, sometimes referred to as ‘pre-stratified delta classification’, enabled

them to avoid some obvious errors in classification (e.g. pixels classified as built-up

areas on areas known to be moorlands in south-east Scotland).

4.1.3. Composite analysis

By using combined registered datasets, or corresponding subsets of bands,

collected under similar conditions with respect to ecosystem phenology but from

different years, classes where vegetative canopy change is occurring would be

expected to have statistics significantly different from those where no change has

occurred, and could be identified as such. The method can incorporate multistage

decision logic and is sometimes referred to as ‘spectral/temporal change classifi-

cation’, ‘multi-date clustering’ or ‘spectral change pattern analysis’. While this

technique necessitates only a single classification, it is a very complex one, in part

because of the added dimensionality of two dates of data. In numerous cases it

requires many classes and many, often redundant features when no discriminant

analysis has preceded the process. It furthermore demands prior knowledge of the

logical interrelationships of the classes and should be used only when the researcher

is intimately familiar with the study area (Jensen 1983). Burns and Joyce (1981)

found the method to produce only change in forest cover per se without provid-

ing accurate information on the character of the change. Schowengerdt (1983)
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remarked that, since spectral and temporal features have equal status in the com-

bined dataset, they could not be easily separated in the pattern recognition pro-

cess. As a consequence, class labelling may be difficult. Researchers who have used

this technique for natural ecosystem change detection include Colwell et al.

(1980), Hall et al. (1984) and Sader (1988).

4.1.4. Univariate image differencing

From the analysis of the relevant scientific literature, univariate image

differencing is the most widely applied change detection algorithm. It involves

subtracting one date of original or transformed (e.g. vegetation indices, albedo, etc.)

imagery from a second date that has been precisely registered to the first. With

‘perfect’ data, this would result in a dataset in which positive and negative values

represent areas of change and zero values represent no change.

Banner and Lynham (1981) used a multi-temporal vegetation index difference

based on calculated Normalized Difference Vegetation Indices (NDVIs) for MSS

datasets. They then density-sliced the difference vegetation index image. They

found the method impractical for forest cutover delineation owing to the sensitivity

of the NDVI to grass growth and the development of other vegetation in the

clear-cuts, but useful for monitoring vegetative competition within the cutovers.

Analogously, Lyon et al. (1998) implemented NDVI differencing and found it

the better vegetation change detection technique for monitoring deforestation

and loss of vegetation. Nelson (1983) delineated forest canopy changes due to

gypsy moth defoliation in Pennsylvania more accurately with vegetation index

differencing than with any other single band difference or band ratioing (see §4.1.5).

Mukai et al. (1987) computed normalized difference channels for MSS5 and

MSS6 to detect areas infested by pine bark beetle in Japan. They were able to

distinguish three classes of infestation from light, over moderate, to heavy, with

increasing band-5 and decreasing band-7 pixel values. Thresholds for each class

were set separately and interactively using multiples of a ‘residual’ standard

deviation.

Hame (1986) suggested histogram matching and Yasuoka (1988) band-to-band

normalization before differencing TM data so as to yield bands with comparable

means and standard deviations and to reduce scene-dependent effects. In

comparative analyses of the six reflective TM difference channels, Hame (1986)

as well as Fung (1990) found that the TM3 difference channel contained the highest

information content for vegetative cover monitoring.
Coppin and Bauer (1994) suggested a standardization of the differencing

algorithm (difference divided by the sum) to minimize the occurrence of identical

change values depicting different change events.

Serneels et al. (2001) applied double univariate image differencing in a spatial–

contextual approach to separate anthropogenic changes from climate variability in

a savanna environment. The technique computed and combined changes at pixel

and landscape scales. First, univariate image differencing was applied to pairs of

smoothed (1016101 pixels low-pass filter) vegetation index images to delineate

landscape-scale changes. Second, local-scale patterns were detected via pixel-level

image differencing between the two original (unsmoothed) full-resolution images.

Finally, the latter change image was subtracted from the former, resulting in a

change image wherein all pixels that behaved differently over time at both scales

had the highest change values.
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Cohen et al. (1998) expanded bi-temporal image differencing in a multi-

temporal context. They comparatively assessed two approaches: merged versus

simultaneous image differencing. The first was based on an unsupervised

classification, repeated five times, using five sequential date-pairs of different

Landsat images between 1972 and 1993, and requiring the merging of the results

from five separate time intervals into a single change map. The second involved

a single unsupervised classification of the full sequential difference image set.

Both methods gave consistent and comparable results, with simultaneous image

differencing being considerably more cost-effective to implement.

4.1.5. Image ratioing

Though not as quick and simple as image differencing, image ratioing is also

one of the conceptually easier to understand change detection methods. Data are

ratioed on a pixel-by-pixel basis. A pixel that has not changed will yield a ratio

value of one. Areas of change will have values either higher or lower than one.

To represent the range of the ratio function in a linear fashion and to encode

the ratio values in a standard eight or 16 bit code common to many PC-based

image analysis software packages, a two-level (for values smaller than or greater

than zero) normalizing function can be applied to all ratio values not equal to

zero (Jensen 1983). Because of the non-Gaussian bimodal distribution of ratioed

multiple-date images, Riordan (1981) criticized the ratio change detection

algorithm in combination with an empirical threshold definition as being

statistically invalid. The areas delineated on either side of the distribution mode

are not equal. Consequently the standard deviation cannot be used for threshold

definition.

Howarth and Wickware (1981) combined MSS5 and MSS7 ratios in a single

colour composite. They found that, while the band-5 ratio emphasized changes in

water level due to flooding, the band-7 ratio assigned the brightest pixel values to

areas where changes in vegetation cover were dominant. They were not, however,

able to make a quantitative assessment of the changes.

4.1.6. Bi-temporal linear data transformation

Various linear data transformation techniques can be applied to two-date

imagery that has been stacked in 2n-dimensional space (where n is the number

of input bands per image). They concentrate information pertaining to statisti-

cally minor modifications in the state of the natural ecosystem (minor as con-

trasted to the entirety of the image scene) in orthogonal components, producing

uncorrelated differences. The most important linear transformation is the one

based on principal component analysis (PCA), with tasselled cap (Crist and

Cicone 1984) and multivariate alteration detection (MAD) (Nielsen et al. 1998)

being less frequently implemented. While linear transformation techniques often

showed remarkable results, more complicated nonlinear transformations like

the curve-theorem based approach of Yue et al. (2002) could not yet show their

utility.

The exact nature of the principal components derived from multi-temporal

datasets is difficult to ascertain without a thorough examination of the eigen-

structure of the data and a visual inspection of the combined images (eventually via

multidimensional temporal feature space analysis, see §4.1.10). To avoid drawing

Ecosystem monitoring: a review 1577



faulty conclusions, the analysis should not be applied as a change detection method

without a thorough understanding of the study area (Fung and LeDrew 1987).

The link between vegetative canopy change and tasselled cap transforms, on the

other hand, appears to be more solid, an observation supported by Collins and
Woodcock (1994).

Richards (1984) applied a normal PCA procedure to two-date MSS imagery

to monitor brush-fire damage and vegetation regrowth over extensive areas in

Australia. Provided the major portion of the variance in the multi-temporal

sequence was associated with correlated (constant, unchanged) land cover, areas of

localized change were enhanced in some of the lower components, particularly

principal components three and four. Ingebritsen and Lyon (1985) did exactly the

same thing to detect and monitor vegetation changes around a large open-pit
uranium mine in Washington and a wetland area in Nevada. Under the assump-

tions that the two original images both had an intrinsic dimensionality of two (first

two principal components, rest primarily noise), that these dimensions were related

to soil brightness and vegetation greenness, and that the change in land cover and/

or vegetation condition exceeded some threshold value, four meaningful principal

components resulted. They were stable brightness, stable greenness, change in

brightness (somewhat analogous to an albedo difference signature) and change in

greenness (somewhat similar to a NIR/red ratio difference image). The latter
component proved to be well related to change in vegetative cover and insensitive

to variations in slope and aspect.

According to Fung and LeDrew (1987), standardized PCA (as opposed to the

normal PCA procedure) gave more accurate results because its PCs were found to

be better aligned along the object of interest: change. Singh and Harrison (1985)

concurred, citing a substantive improvement in signal-to-noise ratio and image

enhancement by using standardized variables in the PCA. On the subject of

subsetting the image to derive multi-temporal PCs, the authors stated that,
although even lower principal components can detect some land cover changes, the

statistics extracted from data subsets are not recommended for change detection

due to the great variability and uncertainty of the unextracted part of the data.

They furthermore found the multi-temporal PCA too scene-dependent and

suffering from the serious drawback that no prior information was available

regarding the nature of the components before actual processing.

Fung (1990) reported on a comparative analysis of a multi-date standardized

PCA and a multi-date tasselled cap transformation of a multi-temporal Landsat
TM dataset. The PCA rotation was based on the merged 12-band TM image. Three

components were found associated with change: PC3 with changes in soil

brightness, PC5 with changes in NIR reflectance and thus vegetative vigour, and

PC6 with changes in the contrast between the middle infrared bands and the

photosynthetically active radiation (PAR) bands, thus changes in wetness. The

usefulness of these lower-order multi-date PCs to highlight localized change was

confirmed by Lee et al. (1989). They ran a principal factor analysis on the

transformed image and found the lower-order PCs to contain significantly more
unique variance. The tasselled cap transformation was carried out as follows. The

spectral bands of the two dates were assigned the tasselled cap coefficients as

derived by Crist and Cicone (1984) with positive coefficients for the first date and

negative coefficients for the second. The derived vectors were not orthogonal and

consequently were subjected to a Gramm–Schmidt transformation. The process

generated output vectors that were effectively orthogonal to each other. Three
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change tasselled cap images were produced detailing differences in greenness,

brightness and wetness. The greenness change image gave the highest classification

accuracy between all resulting PCA and tasselled cap change-related images.

Fung (1990) clearly advocated the use of the tasselled cap transformation. Under

this algorithm, the inherent data structure could be clearly depicted and the

derived variables were physically based and independent of scene content. Twelve

TM input bands could moreover be reduced to two, maximum three, significant

change bands. While Hame (1988) concluded that the original TM bands

accomplished more than the transformed features (bi-temporal PCs or differences

between paired PCs based on either the covariance matrix or the correlation

matrix) to separate change classes in Finland, Coppin and Bauer (1994) found

the second principal component of vegetation index band pairs to be an excellent

indicator of change in the temperate forest cover in the north-central USA.

Kwarteng and Chavez (1998) used a similar selective PCA approach to successfully

detect and map surface changes dealing with urban development, vegetation

growth, and coastal wetland and sand sheet surface differences. Collins and

Woodcock (1994) have developed a multi-temporal generalization of the tasselled

cap transformation. Application of the technique produced multi-temporal

analogues of the brightness, greenness and wetness—the three primary dimensions

of the tasselled cap transformation—and a component measuring change. Nielsen

et al. (1998) proposed the multivariate alteration detection or MAD, which is

an extension of the traditional canonical correlations analysis and is invariant to

linear scaling of the input data. As such MAD is insensitive to, for example,

differences in sensor gain settings, or to linear radiometric and atmospheric

correction schemes. MAD, in combination with a posterior maximum auto-

correlation factor (MAF) transformation, gave significantly better results than

PCA of simple differenced data in the detection of coherent patterns of spatial

change in urbanization zones in Australia. Moreover, the MAD transformation

provides a way of combining different data types that may be useful in historical

change detection studies.

4.1.7. Change vector analysis

Change vector analysis (CVA) is a multivariate change detection technique that

processes the full dimensionality (spectralztemporal) of the image data and pro-

duces two outputs: change magnitude and change direction. A major advantage is

its capability to analyse change concurrently in all data layers as opposed to

selected bands.

The first automated CVA change detection algorithm that furthermore took

account of spatial scene characteristics was developed at the Environmental

Research Institute of Michigan in the late 1970s. It consolidated a tasselled

cap transformation to greenness–brightness, an image-segmentation to spatially

contiguous pixel groups or ‘blobs’, and a characterization of the movement of

the individual segments in spectral space in terms of magnitude and direction

(Malila 1980).

Colwell et al. (1980) applied the algorithm in Kershaw County, South Carolina,

and found that, to be effective, it required absolutely precise image registration and

normalization (changes in brightness needed to be scaled to be approximately equal

to changes in greenness to avoid elliptical change thresholds) and a considerable
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amount of operator interaction. A forest mask had to be created, and parameters

had to be set to control the formation of blobs and to threshold the change vectors

for change, with respect to their magnitude (defining change from no change) as

well as their direction (labelling the type of change). While the relative utility of the

technique to assess the type of change was not clear, CVA performed well with

respect to automated change detection.

Prior to computing change as a vector or distance in multi-spectral space,

Yokota and Matsumoto (1988) applied a preliminary transformation to all raw

digital numbers (new value~old value minus the average brightness over the six

TM bands) to ‘accentuate’ the disturbances. They then calculated a multi-band

Euclidean distance measure as the spectral differentiation norm. This measure was

computed as the square root of the sum of the squares of the pixel value differences

between the two dates over the six bands.

Lambin and Strahler (1994) applied similar principles of segmentation and vector

movement characterization to multi-temporal vegetation indices, surface temperatures

and spatial texture data. Combined with PCA of the change vectors, the technique

proved to be effective in detecting and categorizing different land-cover changes

operating at different timescales in West Africa. Johnson and Kasischke (1998) amply

illustrated the capability of CVA in general to be an effective technique to capture all

changes and not just a priori defined change events.

4.1.8. Image regression

A mathematical model that describes the fit between two multi-date images

of the same area can be developed through stepwise regression. The algorithm

assumes that a pixel at time-2 is linearly related to the same pixel at time-1 in

all bands of the EMR spectrum acquired by the sensor. This implies that the

spectral properties of a large majority of the pixels have not changed signifi-

cantly during the time interval (Vogelmann 1988). The dimension of the residuals

is an indicator of where change occurred. The regression technique accounts for

differences in mean and variance between pixel values for different dates. Simul-

taneously, the adverse effects from divergences in atmospheric conditions and/or

Sun angles are reduced.
The critical part of the method is the definition of threshold values or limiting

dimensions for the no-change pixel residuals. When Burns and Joyce (1981) applied

the technique to each pair of spectral MSS bands for land-cover change detection

via a third-degree polynomial linear equation, they found the green band (MSS4)

to perform better than the other band pairs; however, still with relatively low

accuracy. Singh (1986), on the other hand, reported the highest change detection

accuracy for tropical forest change detection with the regression method and the

MSS5 band. A couple of years later (Singh 1989), he reviewed that statement and

concluded that the regression method performed only marginally better than

univariate image differencing techniques in detecting tropical forest cover changes.

This conclusion was confirmed in a later study in urban environment (Ridd and Liu

1998).

4.1.9. Multi-temporal spectral mixture analysis

The increased data dimensionality associated with high-spectral resolution

(HSR) data gave rise to spectral mixture analysis (SMA), based on the premise that
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HSR image elements are composed of multiple pure spectral signatures or end-

members. If a linear mixing model is assumed, the overall reflectance of the image

element may be computed from the reflectances of the composing end-members,

weighted by their respective surface proportions. As a consequence, image element

changes over time are directly mirrored in modifications of the end-member pro-

portions, especially where more subtle natural ecosystem changes are concerned.

Because end-members represent the spectra of known natural ecosystem com-

ponents (e.g. canopy, soil, shadow, etc.), they have the advantage of providing

physically based standardized measures of fractional abundance.

Multi-temporal SMA (MSMA) algorithms were implemented with good results

by Adams et al. (1995) and Roberts et al. (1998) to monitor the physical nature of

land cover changes in the Brazilian Amazon with Landsat TM imagery. The first

group used reference end-members (derived from field or laboratory spectra of

known components), while the second implemented an iterative process whereby

reference library spectra were manipulated using image end-members in order to

derive candidate reference end-members for green vegetation, soil, shade and non-

photosynthetic vegetation. The major advantage of MSMA when compared with

other bi-temporal change detection algorithms lies in its capability to recover

natural ecosystem change signals at much finer event scales, e.g. thinning in forest

ecosystems.

4.1.10. Multidimensional temporal feature space analysis

This change detection algorithm uses image overlay as a digital enhancement

technique for on-screen change delineation. It comprises the one-step combination

of a maximum of three individual bands (more steps are possible) which, when

displayed as a composite image via the blue, green and red colour guns of a cathode

ray tube (CRT), portray changes in unique colours. The multidimensional temporal

feature space analysis method seems to be most appropriate in natural environ-

ments where changes are relatively subtle. However, it provides the analyst with

little information regarding the nature of the change (Pilon et al. 1988). Its use is

mostly restricted to the creation of binary change masks to eliminate no-change

areas before further analysis with any of the other algorithms, or to the visual

definition of training areas related to particular change phenomena. Banner and

Lynham (1981) obtained a better forest clear-cut identification and boundary

delineation displaying MSS5 of time-1 via the blue CRT colour gun and MSS5

of time-2 via the red colour gun, than with multi-temporal vegetation index

differencing (see §4.1.4). Areas of change were highlighted in one of the two gun

colours, while areas of no change appeared grey after adjustment of the colour

balance for the composite image. Hall et al. (1984) applied the same technique with

MSS7 data, however assigning the red colour gun to the MSS7 of time-1 and the

green one to the MSS7 of time-2. They were able to connect the variations in red

hues to qualitative variations in aspen tree defoliation in Alberta, Canada. Areas

without defoliation appeared yellow on the composite image. Rencz (1985),

however, remarked that the fast vegetative regeneration in cutover areas precluded

the use of any of the MSS reflective infrared bands for clear-cut monitoring with

this approach. Because of its relative insensitivity to this phenomenon, the use of

red-band overlays was advised.

Werle et al. (1986) created composite multi-temporal images visually to monitor

clear-cut and regeneration areas on Vancouver Island, Canada, assigning blue to
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TM3 for time-1, green to TM3 for time-2, and red to TM4 for time-2 on the CRT.

In a multi-seasonal assessment of regeneration cover in burned forest in Alberta,

Canada, Kneppeck and Ahern (1989) applied another colour combination: blue to

TM4 for summer, green to TM4 for autumn, and red to TM3 for summer. Alwashe

and Bokhari (1993) merged TM bands 2, 4 and 5 of two different acquisition

dates via an intensity–hue–saturation (IHS) transform to represent directly the

bi-temporal variations within one single image product. Vegetation differences

showed up in distinctly different colours.

Wilson and Sader (2002) recently developed an image overlay technique based

on band ratios like NDVI and normalized difference moisture index (NDMI) rather

than spectral bands and applied it to temperate forests in Maine. They intensively

discussed the accuracy using both indices and found NDMI superior to the use

of NDVI. High accuracies in classification were reached especially on the shorter

time intervals (two or three years) and even in application of the same method to

tropical rainforests.

4.1.11. Hybrid and less frequently implemented algorithms

Only a few authors have documented the combined use of different change

detection algorithms (hybrid schemes) in an attempt to minimize commission

errors. Pilon et al. (1988) applied such a hybrid scheme to change detection in

semi-arid north-western Nigeria, performing post-classification comparison in

areas where change was detected by other algorithms. Zhan et al. (2000) applied

five change detection methods in parallel (red–NIR space partitioning, red–NIR

space change vector, modified delta space thresholding, texture and linear fea-

ture) and then integrated the measures of change through a voting method; a

change was confirmed where three out of the five methods did flag a land-cover

conversion.

At about the same time CVA was developed, change detection procedures

called ‘inner product analysis’ and ‘correlation analysis’ (Yasuoka 1988) were

implemented in single instances. For both, the difference between the multi-

spectral vectors of a pixel at two points in time was expressed as the cosine of the

angle between them, but the correlation analysis also took into account the means

of the multi-spectral vectors. While the inner product method was found to be

sensitive to mis-registration, mixed pixels, sensor gain and offset fluctuations,

and changes in absolute radiance, the correlation method substantially reduced

these effects.

In 1985, Rencz proposed a multi-temporal biomass index for forest clear-cut

monitoring, using the ratio of an MSS7 and MSS5 difference at time-2 over an

MSS7 and MSS5 sum at time-1. The results had a very limited usefulness. The error

was concentrated in the omission of forest cutovers in which there remained a

relatively large number of unfelled residual hardwoods.

In theory, no-change areas can be treated as having slowly varying background

grey levels. These variations can be approximated by a background image, for

example, a low-pass filtered variant of the original. A subtraction of such an

approximation from the image potentially could be used to create a new dataset

that accentuates change phenomena. Singh (1986, 1989) used the technique in

tropical deforestation monitoring with only modest results.

Ridd and Liu (1998) explored a chi square transformation encompassing the six

reflective Landsat TM bands to create a single change image. The method is
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applicable only if the scenes are relatively unchanged. A disadvantage is that change

related to specific spectral directions might not be readily identified.

4.1.12. Comparison and evaluation of methods

The literature indicates that ecosystem changes can be monitored via a variety

of detection methods, with most providing positive results. With the exception of

Singh’s 1989 paper, it has taken until the mid 1990s, however, to see comparisons

and evaluations of alternative approaches documented.
Sunar (1998) studied the equivalence of multidimensional temporal feature

space analysis, univariate image differencing, PCA and composite analysis, in order

to detect and delineate land-cover changes in ecosystems under intense development

pressure. He could define no optimal method, as each algorithm had its own merits

with respect to production ease, information content and interpretability. Similarly,

Coppin and Bauer (1994), Ridd and Liu (1998) and Cohen and Fiorella (1998)

could make no conclusive statements regarding the superiority or inferiority of

univariate image differencing versus in the first case selective PCA, in the second

case image regression, and in the third case composite analysis. Hayes and Sader

(2001) found a composite analysis of NDVI bands as resulting in more accurate

change detection results in tropical forest environments when compared to

univariate differencing and PCA approaches.
When comparative conclusions must be made, often univariate image dif-

ferencing is cited as the, or one of the, preferred change detection algorithms. Singh

(1986) found univariate image differencing more effective than bi-temporal PCA

for tropical deforestation monitoring. Muchoney and Haack (1994) tested four

methods on multi-temporal SPOT sensor data: merged PCA, image differencing,

spectral–temporal change classification (composite analysis) and post-classification

comparison, in order to identify changes in hardwood defoliation caused by gypsy

moth advances. Defoliation was most accurately detected by the image differencing

and PCA approaches. Michener and Houhoulis (1997) cross-referenced composite

analysis, PCA and univariate image differencing for monitoring vegetation res-

ponses to extensive flooding in south-west Georgia. Univariate NDVI differencing

most accurately identified vegetation changes in their multi-temporal SPOT HRV

dataset. Comparable conclusions were reached by Macleod and Congalton (1998)

when comparing post-classification comparison to univariate image differencing

and PCA algorithms: image differencing performed significantly better in

monitoring alterations in aquatic vegetation ecosystems encompassing submerged

eelgrass. In a pilot study on North American landscape characterization (NALC)

and land-cover change detection, Yuan and Elvidge (1998) systematically tested and

evaluated 75 change detection methods using both visual and statistical procedures.

Initial results again suggested image differencing resulting in better final accuracy

results when compared to the other algorithms. While Sohl (1999) found specific

quantitative values of change most accurately and efficiently provided by an

enhanced image differencing algorithm, he cited the CVA as excelling at providing

rich qualitative detail about the nature of the change. Mas (1999), on the other

hand, obtained the highest accuracy in land-cover change detection in a coastal

zone of Mexico using post-classification comparison. In single band analysis,

selective PCA even outperformed image differencing due to its capacity to more

efficiently remove inter-image variability left over after radiometric normalization.
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Li and Yeh (1998) indicated a clear final-accuracy-based supremacy of PCA over

post-classification comparison in urban expansion change detection.

Collins and Woodcock (1996) have compared three multi-temporal linear data

transformation algorithms: PCA, tasselled cap and Gramm–Schmidt orthogona-

lization. Tasselled cap and PCA both gave better results than the Gramm–Schmidt

technique. However, the authors recommended the Kauth–Thomas approach

because it identified change in a more consistent and interpretable manner. Rogan

et al. (2002), on the other hand, found lower classification accuracy results for the

Kauth–Thomas approach when compared with multi-temporal spectral mixture

analysis using decision tree classification.

4.2. Temporal trajectory analysis

Temporal trajectory analysis requires the comparison of temporal development

curves, also called time trajectories or time profiles, of different relevant indicators,

and this for successive growing seasons or years. The inherent high temporal

frequency in data acquisition not only expedites the detection of ecosystem

modifications, but also greatly facilitates the characterization of phenological

variations in ecosystem status. When the time trajectory of one or several remotely

sensed indicators for a particular pixel departs from the normal (or average, or

optimal, depending on the objectives of the study), a seasonal or inter-annual

change event or process is detected (Lambin and Strahler 1994). In order to bring

this about, several investigators computed simple anomalies in time profiles of

vegetation indices. For example, Myneni et al. (1997) and Plisnier et al. (2000)

calculated a change parameter as the vegetation index value for a given month

minus the average value for the time series, divided by the standard deviation. The

use of signal processing techniques such as Fourier analysis to examine frequency

distributions of high temporal resolution AVHRR data has also been documented.

The algorithm showed definite capabilities in determining seasonal and sub-

seasonal variability in Brazilian Amazon forest cover (Andres et al. 1994).

Standardized PCA of regional to continental scale time series from wide-angle

sensors also proved a powerful technique to separate changes that were taking place

at different time frequencies, e.g. decadal time-scale changes in productivity, seasonal

changes, sensor-related value drifts, and vegetation index value variations related to

the El Niño Southern Oscillation (ENSO) phenomenon (Eastman and Fulk 1993,

Young and Wang 2001). Finally, the change vector analysis method has been

adapted to temporal trajectory analysis by computing a change vector in a multi-

temporal feature space rather than in a multi-spectral feature space (Lambin and

Strahler 1994). This allows detecting the magnitude of change as well as the nature

of land-cover change, through an analysis of the directions of the change vectors

(Lambin and Ehrlich 1997).

Temporal trajectory analysis methods have been implemented with different

wide field-of-view, high temporal resolution sensors (AVHRR, SeaWIFS,

VEGETATION) and different indicators (vegetation indices, surface temperature,

spatial structure data). With the availability of still relative short time series (10 to a

couple of years), mostly climate-driven fluctuations in surface conditions of natural

ecosystems and natural disaster (drought, flood, fire) impacts have been detected

(Behrenfeld et al. 2001, Lupo et al. 2001). In addition to allowing an unambiguous

detection of many abrupt changes in different ecosystems, temporal trajectory

analysis has proven sensitive to more subtle alterations in primary productivity,
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vegetation phenology, ecosystem dynamics and seasonality, often more so than

classical bi-temporal approaches. Even in a multi-stage context, the latter tech-

niques may suffer from an obvious under-sampling at the time-scale. This phe-

nomenon has proven especially problematic when dealing with abrupt and often
brief ecological events such as fire, flooding, dry spells and vegetation stress.

However, given the typical coarse spatial resolution and the large area coverage of

imagery from wide field-of-view sensors, validation with independent datasets is a

major challenge for ecosystem monitoring.

When cross-referencing temporal trajectory analysis and bi-temporal change

detection methods, Borak et al. (2000) found statistically significant relationships

between AVHRR time-profile-based change metrics and classical change indicators

computed from Landsat and SPOT imagery for several African study sites.

5. New developments

The focus of the above review has been on operational data enhancement and data

analysis procedures for ecosystem change detection with digital imagery, especially

satellite acquired. There are, however, a number of recent and expected advancements

that will increase the accuracy and effectiveness of change detection with digital satellite

sensor data. Further improvements in hard- (sensor and computer) and software

systems, in ecosystem management models, and in change detection algorithms and
models, can all be expected to improve the capability of satellite remote sensing for

ecosystem monitoring. Since the mid 1990s we have witnessed the development and

launch of an unprecedented number of satellite sensing systems. It now appears that by

2005 there will be 15–20 commercial and government satellites acquiring data at spatial

resolutions of 1–30 m. In addition to the technical improvements, the 1992 US Land

Remote Sensing Act now also provides for the distribution of the data at the cost of

reproduction. Access to space-based digital information has thus become much better

and continues to do so.
Although geographic information systems (GIS) are not a new development, it

is only in the last decennium that they have gained widespread acceptance as a

practical tool for ecosystem management. The incorporation of GIS technology in

digital change detection methods enables the delivery of change maps, derived from

any descriptive change model, in a timely fashion at scales that are consistent with

ecosystem management objectives. Today, most image processing systems are

integrated with, or at least compatible with, GIS systems, and classifications of

remotely sensed data are commonly viewed as inputs to GIS. At the same time

increasing attention is being given to using GIS data layers as ancillary inputs to
classification of remote sensing data. Further developments in image analysis and

display systems, and in the integration of graphical user interfaces, database

management systems, statistical analysis (including spatial statistics) and process

modelling subroutines, along with advanced GIS and image analysis functions, are

to be expected.

Artificial intelligence or knowledge-based expert systems offer further oppor-

tunities. They provide a way to integrate other features of vegetative cover cate-

gories besides spectral change information, thereby overcoming some of the
limitations of the traditional statistical classifiers. Such change category recognition

methods make use of existing or prior knowledge of the scene content (e.g. original

ecosystem status, location, size, relationship with other cover types, shape, socio-

economic data, etc.) to guide and assist the classification, which follows spatial

reasoning lines. As such, they parallel the interpretative procedures employed by a
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photo-interpreter much more closely. The methods assume that there are similar

and identifiable characteristics that each cover type possesses. Although artificial

intelligence approaches to natural ecosystem change detection have largely

remained in a conceptual design stage (McRoberts et al. 1991), researchers deve-
loping ecological models have started incorporating inputs from remote sensing and

GIS techniques to analyse spatial patterns and processes (Ustin et al. 1993,

Mladenoff and Host 1994). Also the incorporation of econometric techniques has

been documented (Kaufmann and Seto 2001). Land cover and change determined

from remotely sensed imagery are integral components of such models.

In recent years, the use of machine-learning algorithms, among which artificial

neural networks and decision tree classifiers, has gained considerable attention as

an alternative to conventional approaches such as the maximum likelihood classi-
fication (Benediktsson et al. 1990, Bischof et al. 1992). Increased classification

accuracy is often cited as the primary reason for developing and applying these

techniques. However, machine-learning algorithms can also be computationally

very complex and require a considerable number of training samples. Documented

implementation of machine-learning algorithms in the change detection environ-

ment is rather scarce and of recent dates, including the use of multi-layer per-

ceptrons (Gopal and Woodcock 1996, Dai Long and Khorram 1999), of learning

vector quantization (Chang Cheung-Wai et al. 2001), and of decision tree classifiers
such as, for example, Quinlan’s C5.0 (Chang Cheung-Wai et al. 2001). The first

study also provided evidence that the neural network approach made use of the

same spectral signals and scene characteristics as bi-temporal linear data trans-

formation algorithms, e.g. the Gramm–Schmidt orthogonalization. This suggests

that the nonlinearities in the relationship between the spectral inputs and, in this

case, forest mortality patterns as the change event, accounted for the improved

results using the neural network (with back-propagation training). While per-

ceptron procedures were reported as the most difficult to replicate, tree classifiers
were the easiest to use, and learning vector quantization the best performer where it

concerned change detection accuracy (Chang Cheung-Wai et al. 2001). Although

the implicit use of the time dependency of the datasets represents a major advantage

of machine-learning algorithms in bi-temporal change analysis, it is not clear yet if

the benefits of the higher accuracy outweigh the cost of the additional training data.

Lastly, one can look forward to the development of improved and new change

detection algorithms and models. Bruzzone and Serpico (1997a) conceptualized the

unsupervised SMI or ‘‘selective use of multi-spectral information’’ algorithm to reduce
the effect of bi-temporal registration noise, and a supervised non-parametric iterative

technique based on the compound classification rule for minimum error (Bruzzone and

Serpico 1997b) to improve change detection accuracy. To provide a richer information

base on class membership and its dynamics, Foody and Boyd (1999) suggested running

the post-classification comparison algorithm with fuzzy classifications instead of with

conventional hard ones. The effect was especially significant when the ecosystem

changes were operating at a scale finer than the spatial resolution of the sensor.

Morisette et al. (1999) explored the use of generalized linear models (GLM) for
enhancing standard methods of satellite-based land-cover change detection. GLMs

were shown to be helpful in examining different change metrics and useful by applying

the resulting model throughout the image to get a probability of change estimate as well

as pixel-specific estimates of the variability of change estimate. Smits and Myers (2000)

investigated a method that can be used to characterize and understand the spatial

behaviour of change by decomposing the change intensity image into a tree of entities
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called echelons. They indicated that such a tree could be extremely helpful in

discovering connections between changes. In 2001, Hazel advocated the use of object-

level change detection (OLCD) instead of the traditional pixel-based algorithms, and

Yamamoto and Hanaizumi (2001) proposed three-dimensional segmentation for

temporal change detection.

6. Conclusions

The data-gathering capabilities of space-borne remote sensors have generated

great enthusiasm over the prospect of establishing remote sensing based systems for

the continuous monitoring of ecosystems. Although Aldrich’s prediction in 1975 of

the accuracy of satellite remote sensing for monitoring forest change was not

quickly or easily achieved, today it is well established that remote sensing imagery,

particularly digital data, can be used to monitor and map changes in ecosystems. It

has been demonstrated (e.g. Collins and Woodcock 1994, Coppin and Bauer 1995)

that it is feasible to develop automated forest cover monitoring methodologies.

When the inherent limitations of digital approaches are appropriately dealt with,

pre-processing is adequately incorporated and optimal change detection algorithms

are selected, then Aldrich’s prediction can be met.

The in-depth analysis of a very substantive number of change detection studies

has demonstrated that the choice of change detection algorithm was in almost all

cases pragmatic rather then scientifically based, and that most authors report

success rather than the extent of the shortcomings of their approach(es). In other

words, the selection was driven more by the application itself, than by the main

issues of change monitoring in general (see §2.1). This makes it very difficult to

draw summarizing comparative statements. Table 1 is nevertheless an attempt to

cross-evaluate the bi-temporal change detection algorithms, as categorized under

§4.1, against these change monitoring issues. The qualitative cross-evaluations

represent majority use as reported in the literature, not a judgement by the authors

of this manuscript.

As many change detections are application- or context-specific, they should be

viewed as complementary to each other. A parallel implementation of several

change detection methods followed by an integration of results is thus the most

effective way to detect change in a wide range of environments (Zhang et al. 2002).

It is clear that temporal trajectory analysis offers the greatest opportunities to

meet all challenges described in §2.1, but its major drawback is nowadays inherently

tied to the coarse spatial resolution of the imagery, and the limitations on the

available time series length. Therefore, the implementation of the technique is still

largely limited to the study of dynamic processes and their effect on vegetation on

regional to global scales (e.g. for ENSO; Young and Wang 2001). Here also,

temporal trajectory methods applied at broad spatial scales to identify areas of

rapid change are highly complementary to bi-temporal change detection methods

than can be used to zoom in at finer resolutions over areas where change has been

identified at coarser resolutions. Any effective regional to global scale monitoring

system of ecosystem change should be based on such a multi-scale, nested

approach, with different change detection methods applied at each scale.

Although all of the possible change detection methods have not been applied to

the same data for cross-evaluation, it is evident from this review that:

1. Vegetation indices are more strongly related to changes in the scene than the

responses of single bands.
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Table 1. Qualitative cross-evaluation of bi-temporal change detection algorithms against main ecosystem change monitoring issues (see §2.1).

Issues

Algorithms

Modifications
versus

conversions

Abrupt changes
versus

progressive changes

Annual variability
versus

secular events

Sampling rates
versus

process scales
Scale

dependence
Typical
example

Post-classification
comparison

conversions abrupt changes secular events simply bi-temporal
sampling

forest succession;
Hall et al. 1991b

Composite analysis modifications progressive changes inter-annual
variability

simply bi-temporal
sampling

defoliation; Hall
et al. 1984

Univariate image
differencing

conversions and
modifications

abrupt and
progressive changes

inter-annual
variability and
secular events

bi-temporal
sampling at

different
process-related

intervals

up-scaling
from pixel to

landscape entity

savanna monitoring;
Serneels et al. 2001

Image ratioing conversions abrupt changes secular events simply bi-temporal
sampling

land cover change;
Howarth and

Wickware 1981
Bi-temporal linear data

transformation
conversions and

modifications
abrupt and

progressive changes
inter-annual

variability and
secular events

bi-temporal
sampling at

different
process-related

intervals

up-scaling from
pixel to

landscape entity

forest stand
monitoring;
Coppin and
Bauer 1994

Change vector analysis conversions and
modifications

abrupt and
progressive changes

inter-annual
variability and
secular events

bi-temporal
sampling at

different process-related
intervals

land cover change;
Lambin and
Strahler 1994

Image regression conversions abrupt changes secular trends simply bi-temporal
sampling

tropical deforestation;
Singh 1989

Multi-temporal spectral
mixture analysis

modifications progressive changes inter-annual
variability

simply bi-temporal
sampling

tropical forest
monitoring;

Roberts et al. 1998
Multidimensional temporal

feature space analysis
modifications progressive changes inter-annual

variability
simply bi-temporal

sampling
forest exploitation

monitoring; Wilson and
Sader 2002

1
5

8
8
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2. Precise registration of multi-date imagery is a critical prerequisite of accurate

change detection. However, residual mis-registration at the below-pixel level somewhat

degrades area assessment of change events at the change/no-change boundaries.

3. Some form of image matching or radiometric calibration is recommended to

eliminate exogenous differences, for example due to differing atmospheric conditions,

between image acquisitions. The goal should be that following image rectification,

all images should appear as if they were acquired with the same sensor, while

observing through the atmospheric and illumination conditions of the reference

image.
4. Image differencing and linear transformations appear to perform generally

better than other bi-temporal change detection methods. Differences among the

different change maps and their accuracies are undoubtedly related to the complexity

and variability in the spatial patterns and spectral–radiometric responses of

ecosystems, as well as to the specific attributes of the methods used.

5. Patterns of seasonal and inter-annual variations in land surface attributes,

which can be driven by climatic variability (e.g. ENSO), natural disasters (e.g. fires,

floods), land-use changes (e.g. deforestation) or global climate change (e.g. climate

warming), can be detected using high temporal frequency data from wide field of

view sensors, provided that great care has been taken to remove sensor-related

artefacts in time series and that an appropriate profile-based change detection

method is applied. This research area is still in its infancy compared to the more

classic bi-temporal change detection techniques used with medium to fine spatial

resolution remote sensing data.

6. There is a high complementarity between different change detection methods.

This is certainly true when one seeks to detect a wide range of ecosystem changes at

one given scale. It also applies to the design of multi-scale monitoring systems that

combine methods adapted to detect changes at regional to global scales with

methods better suited for landscape-scale temporal analyses. While the former can

be implemented continuously over large territories, the latter could only be applied

where and when a change has been detected at a broader scale.

7. The capability of using remote sensing imagery for change detection will be

enhanced by improvements in satellite sensor data that will become available over

the next several years, and by the integration of remote sensing and GIS tech-

niques, along with the use of supporting methods such as expert systems and

ecosystem simulation models.

Analysis of the literature provides ample evidence to support the conclusion that

multi-date satellite imagery can be effectively used to detect and monitor changes in

ecosystems. At the same time we agree with the observation of Collins and

Woodcock (1996) that one of the challenges confronting the remote sensing

research community is to develop an improved understanding of the change

detection process on which to build an understanding of how to match applications

and change detection methods.
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