
Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 1

TAG: a Tiny AGgregation Service for Ad-Hoc Sensor Networks

Samuel Madden, Michael J. Franklin and Joseph Hellerstein Wei Hong�
madden, franklin, jmh � @cs.berkeley.edu whong@intel-research.net

UC Berkeley Intel Berkeley Research Lab

Abstract

We present the Tiny AGgregation (TAG) service for ag-
gregation in TinyOS. TAG allows users to express sim-
ple, declarative queries and have them distributed and
executed efficiently in networks of low-power, wireless
sensors. We discuss various generic properties of ag-
gregates, and show how those properties affect the per-
formance of our in-network approach. We include a
performance study demonstrating the advantages of our
approach over traditional centralized, out-of-network
methods, and discuss a variety of optimizations for im-
proving the performance and fault-tolerance of the basic
solution.

1 Introduction

Recent advances in computing technology have led to
the production of a new class of computing device: the
wireless, battery powered, smart sensor. These new sen-
sors are active, full fledged computers, capable not only
of measuring real world phenomena but also filtering,
sharing, and combining those measurements. One ex-
ample of such small sensor devices are the motes under
development at UC Berkeley. Current generation motes
are roughly 2cm x 4cm x 1cm and are equipped with a
radio, a processor, memory, a small battery pack, and a
suite of sensors. The mote operating system, TinyOS,
provides a set of primitives designed to facilitate the de-
ployment of motes in ad-hoc networks. In such net-
works, devices can locate each other and route data
without prior knowledge of or assumptions about the
network topology, thereby allowing the network topol-
ogy to change as devices move, run out of power, or
experience shifting waves of interference.

Due to the relative ease of deployment of mote-based
sensor networks, practitioners in a variety of fields have
begun considering them for a range of monitoring and
data collection tasks. For example: civil engineers are
using motes to monitor building integrity during earth-
quakes [1]; biologists are planning a mote deployment
for habitat monitoring of Storm Petrels on Great Duck
Island [14] off the coast of Maine; administrators of
large computer clusters are interested in using motes to
monitor the temperature and power usage in their data
centers.

Sensor applications depend on the ability to extract
needed data from the network. Often, this data consists
of summaries (or aggregations) rather than raw sensor
readings. Other researchers have noted the importance
of data aggregation in sensor networks [9, 7, 8], but
this previous work has tended to view aggregation as
an application-specific mechanism that would be pro-
grammed into the devices on an as needed basis. In con-
trast, our position is that because aggregation is so cen-
tral to emerging sensor network applications, it must be
provided as a core service by the system software. Fur-
thermore, we believe that such a service can and should
provide generic aggregation functionality, allowing it to
be easily invoked and manipulated by applications to
satisfy a varied and dynamic set of user requirements.

1.1 The TAG Approach

We have developed Tiny AGgregation (TAG), a generic
aggregation service for ad hoc networks of TinyOS
motes. There are two essential attributes of this service.
First, it provides a simple, declarative interface for ag-
gregation, inspired by aggregation operators in database
query languages. Second, it intelligently distributes and
executes aggregation operators in the sensor network in
a time and power-efficient manner, and is sensitive to
the resource constraints and lossy communication prop-
erties of wireless sensor mote networks. TAG processes
aggregates in network by computing over the data as it
flows through the sensors, discarding irrelevant data and
combining relevant readings into more compact records
whenever possible.

TAG operates as follows: users pose aggregation
queries from a powered, storage-rich basestation. Op-
erators that implement the query are distributed into the
network by piggybacking on the existing ad hoc net-
working protocol. Sensors route data back towards the
user through a routing tree rooted at the basestation. As
data flows up this tree, it is aggregated according to an
aggregation function and value-based partitioning spec-
ified in the query. For example, consider the problem of
counting the number of nodes in a network of indeter-
minate size. First, the request to count is injected into
the network. Then, each leaf node in the tree reports a
count of 1 to their parent; interior nodes sum the count
of their children, add 1 to it, and report that value to

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 2

their parent. Counts propagate up the tree in this man-
ner, and flow out at the root.

1.2 Overview of the Paper

The contributions of this paper are four-fold: first, we
propose a simple, SQL-like declarative language for ex-
pressing aggregation queries over streaming sensor data
and identify key properties of aggregation functions that
affect the extent to which they can be efficiently pro-
cessed in-network. Second, we demonstrate how exe-
cuting queries in-network can yield an order of mag-
nitude reduction in communication compared to cen-
tralized approaches. Third, we show that, by adopting
a well-defined, declarative query language as a level
of abstraction between the user and specific network-
ing and routing protocols, a number of optimizations
can be transparently applied to further reduce the data-
demands on the system. Finally, we show that our fo-
cus on a high-level language leads to useful end-to-end
techniques for reducing the effects of network loss on
aggregate results.

The remainder of the paper is structured as follows. In
the next section, we briefly overview the TinyOS hard-
ware and software environment. Then, we discuss the
syntax and semantics of queries in TAG and classify
the types of aggregates supported by the system, focus-
ing on the characteristics of aggregates that impact their
performance and fault tolerance. We then present the
core TAG algorithm and show how our solution sat-
isfies the query requirements while providing perfor-
mance and tolerance to network faults. We discuss sev-
eral optimizations for improving the performance of the
basic approach. Additionally, we include experimental
results demonstrating the effectiveness and robustness
of our algorithms in a simulation environment, as well
as a brief study of a real-world deployment on TinyOS
motes. Finally, we discuss related work and conclude.

2 Motes and Ad-Hoc Networks
In this section, we provide a brief overview of the mote
hardware architecture, the TinyOS system, and an ad
hoc routing algorithm for mote-based sensor networks.

Current generation TinyOS motes are equipped with a
4Mhz Atmel microprocessor with 4 kB of RAM and
128 kB of code space, a 917 MHz RFM radio running
at 50 kb/s, and 512kB of EEPROM. An expansion slot
accommodates a variety of sensor boards by exposing
a number of analog input lines as well as popular chip-
to-chip serial busses. Current sensor options include:
light, temperature, magnetic field, acceleration (and vi-
bration), sound, and power.

The single-channel radio is half duplex, meaning motes
cannot send and receive at the same time. Currently,
the default TinyOS implementation uses a CSMA-like
media access protocol with a random backoff scheme.

Message delivery is unreliable by default, though appli-
cations can build up an acknowledgment layer. Often, a
message acknowledgment can be obtained for free (see
below in Section 2.1).

Power is supplied via a free-hanging AA battery pack
or a coin-cell attached through the expansion slot. The
effective lifetime of the sensor is determined by this
power supply. In turn, the power consumption of each
sensor node tends to be dominated by the cost of trans-
mitting and receiving messages. In terms of power con-
sumption, transmitting a single bit of data is equivalent
to 800 instructions. This energy tradeoff between com-
munication and computation implies that many applica-
tions will benefit by processing the data inside the net-
work rather than simply transmitting the sensor read-
ings. A AA battery pack will allow a sensor to send
5.52 million messages (if it does no other computation
and only powers its radio up to transmit) which is equiv-
alent to one message per second every day for about
two months – not particularly long if the goal is to de-
ploy long lived, zero-maintenance ad-hoc sensor net-
works. Hence, power-conserving algorithms are partic-
ularly important. As we will discuss in Section 4.1 , our
design is amenable to very low power modes in which
the radio is kept powered down for long periods of time.

To understand how data is routed in our ad-hoc ag-
gregation network, two properties of radio communica-
tion need to be emphasized. First, radio is a broadcast
medium, such that any sensor within hearing distance
hears any message, irrespective of whether or not that
sensor is the intended recipient. Second, radio links are
typically symmetric: if sensor � can hear sensor

�
, we

assume
�

can hear � . 1

Messages in the current generation of TinyOS are a
fixed size – by default, 30 bytes. Each sensor has a
unique sensor ID that distinguishes it from others. All
messages specify their recipient (or specify broadcast,
meaning all available recipients), allowing sensors to
ignore messages not intended for them, although non-
broadcast messages are received by all sensors within
range – unintended recipients simply drop messages not
addressed to them.

2.1 Ad-Hoc Routing Algorithm
Given this overview of the mote environment, we now
discuss how sensors route data. One common tech-
nique, which we describe here, is to build a routing tree.
Note that a number of alternative techniques exist for
this purpose; the reader is referred to [20, 9, 8, 10, 2]
for work on routing in sensor networks. In general, we
require our routing algorithm to provide two capabili-
ties: first, it must be able to deliver query requests to

1Note that this may not be a valid assumption in some cases.
However, most ad-hoc routing algorithms in the networking litera-
ture also make this assumption [20, 9] .

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 3

all nodes in a network. Second, it must be able to pro-
vide one or more routes from every node to the root of
the network where aggregation data is being collected.
These routes must guarantee that one or fewer copies
of every message arrive (no duplicates are generated).
Work from UCLA on greedy aggregation [8] is relevant
here: it discusses how topology affects the quality of
in-network aggregates, and presents several alternatives
for topology construction.

In the tree-based routing scheme, one sensor is ap-
pointed to be the root, usually because it is the point
where the user interfaces to the network. The root
broadcasts a message asking sensors to organize into
a routing tree; in that message it specifies its own id
and its level, or distance from the root (in this case,
zero.) Any sensor without an assigned level that hears
this message assigns its own level to be the level in the
message plus one. It also chooses the sender of the mes-
sage as its parent, through which it will route messages
to the root.

Each of these sensors then rebroadcasts the routing
message, inserting their own ids and levels. The rout-
ing message floods down the tree in this fashion, with
each node rebroadcasting the message until all nodes
have been assigned a level and a parent. These routing
messages are periodically broadcast from the root, so
that the process of topology discovery goes on contin-
uously. This constant topology maintenance makes it
relatively easy to adapt to network changes caused by
mobility of certain nodes, or to the addition or deletion
of sensors. To maintain stability in the network, parents
are retained unless a child does not hear from them for
some long period of time, at which point it selects a new
parent using this same process. We will look in more
detail at the robustness of this approach with respect to
loss and its effect on aggregate values in Section 7.

When a sensor wishes to send a message to the root, it
broadcasts a message addressed to its parent, which in
turn forwards the message on to its parent, and so on,
eventually reaching the root. In the Section 4, we show
how, as data is routed towards the root, it can be com-
bined with data from other sensors to efficiently com-
bine routing and aggregation. Now, however, we turn to
the syntax and semantics of aggregate queries in TAG.

3 Query Model and Environment
3.1 Query Model

Given our goal of allowing users to pose declarative
queries over sensor networks, we needed a language
for expressing such queries. Rather than inventing our
own, we chose to adopt a SQL-style query syntax. We
support SQL-style queries (without joins) over a single
table called sensors, whose schema is known at the
base station. As is the case in Cougar [15], this table can

be thought of as an append-only relational table with
one attribute per input of the motes (e.g., temperature,
light.) In TAG, we focus on the problem of aggregate
sensor readings, though facilities for collecting individ-
ual sensor readings also exist. Queries in TAG have the
form:

SELECT ��������� (�	��
��), attrs FROM sensors

WHERE � selPreds
GROUP BY � attrs
HAVING � havingPreds
EPOCH DURATION �

With the exception of the EPOCH DURATION clause,
the semantics of this statement are similar to SQL ag-
gregate queries. The SELECT clause specifies an arbi-
trary arithmetic expression over one or more aggrega-
tion attributes. We expect that the common case here is
that ������� will simply be the name of a single attribute.
Attrs (optionally) selects the attributes by which the
sensor readings are partitioned ; these are the same at-
trs that appear in the GROUP BY clause. The syn-
tax of the ������� clause is discussed below. The WHERE
clause filters out individual sensor readings before they
are aggregated. Such predicates can typically be exe-
cuted locally at the sensor before readings are commu-
nicated, as in [15, 12]. The GROUP BY clause specifies
an attribute based partitioning of the sensors. Logically,
each sensor reading belongs to exactly one group in a
query, and the evaluation of the query is a table of group
identifiers and aggregate values. The HAVING clause
filters that table by suppressing groups that do not sat-
isfy the havingPreds predicates.

The primary semantic difference between TAG queries
and SQL queries is that the output of a TAG query
is a stream of values, rather than a single aggregate
value (or batched result). In monitoring applications,
such continuous results are often more useful than a
single, isolated aggregate, as they allow users to un-
derstand how the network is behaving over time and
observe transient effects (such as message losses) that
make individual results, taken in isolation, hard to inter-
pret. In these stream semantics, each record consists of
one � group id,aggregate value � pair per group. Each
group is time-stamped and the readings used to compute
aggregate record all belong to the same time interval,
or epoch. The duration of each epoch is the argument
of the EPOCH DURATION clause, which specifies the
amount of time (in seconds) sensors wait before acquir-
ing and transmitting each successive sample. This value
may be as large as the user desires; it must be at least
as long as the time it takes for a sensor to process and
transmit a single radio message and do some local pro-
cessing – between 10 and 20 ms for current generation
sensors. In section 4.1, we will discuss situations in
which a longer lower bound on epoch duration is re-
quired.

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 4

As an example, consider a user who wishes to monitor
the occupancy of the conference rooms on a particular
floor of a building, which she chooses to do by using
microphone sensors attached to motes, and looking for
rooms where the average volume is over some threshold
(assuming that rooms can have multiple sensors). Her
query could be expressed as:

SELECT AVG(volume),room FROM sensors

WHERE floor = 6

GROUP BY room

HAVING AVG(volume) > thresh

EPOCH DURATION 30s

This query partitions sensors on the 6th floor according
to the room in which they are located (which may be
a hard-coded constant in each sensor, or may be deter-
mined via some localization component available to the
sensors), and then reports all rooms where the average
volume is over a specified threshold. Updates are deliv-
ered every 30 seconds, although the user may deregister
her query at any time.

3.2 Structure of Aggregates

The problem of computing aggregate queries in large
clusters of nodes has been addressed in the context of
shared-nothing parallel query processing environments
[16]. Like sensor networks, those environments require
the coordination of a large number of nodes to process
aggregations. Thus, while the severe bandwidth limita-
tions, lossy communications, and variable topology of
sensor networks means that the specific implementation
techniques used in the two environments must differ, it
is still useful to leverage the techniques for aggregate
decomposition used in database systems [3, 23].

The approach used in such systems (and followed in
TAG) is to implement ����� � via three functions: a merg-
ing function � , an initializer � , and an evaluator, � .
In general, � has the following structure:�������
	�����������������
where � � � and ��� � are multi-valued partial state
records, computed over one or more sensor values, rep-
resenting the intermediate state over those values that
will be required to compute an aggregate. ��� � is
the partial-state record resulting from the application of
function � to � � � and ��� � . For example, if � is
the merging function for AVERAGE, each partial state
record will consist of a pair of values: SUM and COUNT,
and � is specified as follows, given two state records
����� �"!#� � and ���%$&�"!'$ � :	����(*)+�-,�).���/��(10"�2,.03���4�5��(6)*78(109�2,�)*78,.03�
The initializer � is needed to specify how to instantiate a
state record for a single sensor value; for the an AVER-
AGE over a sensor value of � , the initializer �": �%; returns
the tuple � ���=< � . Finally, the evaluator � takes a par-
tial state record and computes the actual value of the

aggregate. For AVERAGE, the evaluator �>: �?�3�"! �@;
simply returns �BAC! .

These three functions can easily be derived for the ba-
sic SQL aggregates; in general, any operation that can
be expressed as commutative applications of a binary
function is expressible.

3.3 Taxonomy of Aggregates

Given our basic syntax and structure of aggregates, an
obvious question remains: what aggregate functions
can be expressed in TAG? The original SQL specifica-
tion offers just five options: COUNT, MIN, MAX, SUM,
and AVERAGE. Although these basic functions are suit-
able for a wide range of database applications, we did
not wish to constrain TAG to only these choices. For
this reason, we present a general classification of ag-
gregate functions and show how the dimensions of that
classification affect the performance of TAG throughout
the paper. We will assume that when aggregation func-
tions are registered with TAG, they are classified along
the dimensions described below.2

We classify aggregates according to four properties that
are particularly important to sensor networks. Table 1
shows how specific aggregation functions can be clas-
sified according to these properties, and indicates the
sections of the paper where the various dimensions of
the classification are emphasized.

The first dimension is duplicate sensitivity. Duplicate
insensitive aggregates are unaffected by duplicate read-
ings from a single sensor while duplicate sensitive ag-
gregates will change when a duplicate reading is re-
ported. Duplicate sensitivity implies restrictions on net-
work properties and on certain optimizations, as de-
scribed in Section 7.4.

Second, exemplary aggregates return one or more repre-
sentative values from the set of all values; summary ag-
gregates compute some property over all values. This
distinction is important because exemplary aggregates
behave unpredictably in the face of loss, and, for the
same reason, are not amenable to sampling. Conversely,
for summary aggregates, the aggregate applied to a sub-
set can be treated as a robust approximation of the true
aggregate value, assuming that either the subset is cho-
sen randomly, or that the correlations in the subset can
be accounted for in the approximation logic.

Third, monotonic aggregates have the property that
when two partial state records, D1� and DE$, are combined
via � , the resulting state record D&F will have the prop-
erty that either G%D � �HD $ � �>:IDJFK;@LNM�O#PQ: �>:ID � ;"� �>:ID $;+; or
G%DR� �HDJ$&� �>:ID F ;�SNM�T>UQ: �>:IDR�V;"� �>:IDE$E;+; . This is important
when determining how far predicates (such as HAV-

2We omit a detailed discussion of how new aggregate functions
are registered with sensors. For now, assume aggregates are pre-
compiled into sensors.

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 5

MAX, MIN COUNT, SUM AVERAGE MEDIAN COUNT DISTINCT 3 HISTOGRAM 4 Section
Duplicate Sensitive No Yes Yes Yes No Yes Section 7.4
Exemplary (E), Summary (S) E S S E S S Section 6.2
Monotonic Yes Yes No No Yes No Section 4.2
Partial State Distributive Distributive Algebraic Holistic Unique Content-Sensitive Section 5.1

Table 1: Classes of aggregates

ING) can be pushed into the network.

The fourth dimension relates to the amount of state re-
quired for each partial state record. For example, a par-
tial AVERAGE record consists of a pair of values, while
a partial COUNT record constitutes only a single value.
Though TAG correctly computes any aggregate that
conforms to the specification of � in Section 3.1 above,
its performance is inversely related to the amount of in-
termediate state required per aggregate. The first three
categories of this dimension were initially presented in
the original work on data-cubes [6].

� In Distributive aggregates, the partial state is sim-
ply the aggregate for the partition of data over which
they are computed. Hence the size of the partial state
records is the same as the size of the final aggregate.

� In Algebraic aggregates, the partial state records are
not themselves aggregates for the partitions, but are of
constant size.

� In Holistic aggregates, the partial state records are
proportional in size to the set of data in the parti-
tion. In essence, for holistic aggregates no useful par-
tial aggregation can be done, and all the data must be
brought together to be aggregated by the evaluator.

� Unique aggregates are similar to holistic aggregates,
except that the amount of state that must be propa-
gated is proportional to the number of distinct values
in the partition.

� In Content-Sensitive aggregates, the partial state
records are proportional in size to some (perhaps sta-
tistical) property of the data values in the partition.
Many approximate aggregates proposed recently in
the database literature are content-sensitive.

In summary, we have classified aggregates according
to their state requirements, their tolerance of loss, and
duplicate sensitivity, and their monotonicity. We will
refer back to this classification throughout the text, as
these properties will determine the applicability of com-
munication optimizations we present later. Understand-
ing how aggregates fit into these categories is a cross-
cutting issue that is critical (and generically useful) in
many aspects of sensor data collection.

3The HISTOGRAM aggregate sorts sensor readings into fixed-
width buckets and returns the size of each bucket; it is content-
sensitive because the number of buckets varies depending on how
widely spaced sensor readings are.

4COUNT DISTINCT returns the number of distinct values re-
ported across all sensors.

3.4 Attribute Catalog

Queries in TAG contain named attributes. Some mech-
anism is needed to allow external users to determine the
set of attributes they may query, and to allow sensors
to advertise the attributes they can provide. In TAG,
we include on each sensor a small catalog of attributes.
This catalog can be searched for attributes of a specific
name, or iterated through. To limit the burden of re-
porting catalog information from motes, we assume the
central query processor caches or stores the attributes of
all motes it may access.

When a TAG sensor receives a query, it converts named
fields into local catalog identifiers. Sensors lacking at-
tributes specified in the query simply tag missing at-
tributes as NULL in their result records. As in relational
databases, partial state records resulting from the eval-
uation of a query have the same layout across all sen-
sors. Thus, tuples in TAG need not be self-describing;
attribute names are not carried with results, leading to
a significant reduction in the amount of data that must
be propagated with each tuple. At the same time, it is
not necessary for all sensors to have identical catalogs,
which allows heterogeneous sensing capabilities and in-
cremental deployment of motes.

Attributes in TAG may be direct representations of sen-
sor values, such as light or temperature, or may be in-
trospective, such as remaining energy or network neigh-
borhood information. More generally, they can rep-
resent time-varying statistics over local sensor values,
such as an exponentially decaying average of the last �

light readings, or more complicated attributes such as
a room number from a localization component. Indi-
vidual software components in TinyOS choose which
attributes they will make available, and provide an ac-
cessor function for acquiring the next attribute reading.

4 In-Network Aggregates

Given the simple routing protocol from Section 2.1 and
our SQL-like query model, we now discuss the imple-
mentation of the core TAG algorithm for in-network ag-
gregation.

A naive implementation of sensor network aggregation
would be to use a centralized, server-based approach
where all sensor readings are sent to the base station,
which then computes the aggregates. In TAG, however,
we compute aggregates in-network whenever possible,
because, if properly implemented, this approach can be
lower in number of message transmissions, latency, and

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 6

power consumption than the server-based approach. We
will measure the advantage of in-network aggregation
in Section 5 below; first, we present the basic algorithm
in detail. We first consider the operation of the basic
approach in the absence of grouping; we show how to
extend it with grouping in Section 4.2.

4.1 Tiny Aggregation

TAG consists of two phases: a distribution phase, in
which aggregate queries are pushed down into the net-
work, and a collection phase, where the aggregate val-
ues are continually routed up from children to par-
ents. Recall that our query semantics partition time into
epochs of duration � , and that we must produce a single
aggregate value (when not grouping) that combines the
readings of all sensors in the network during that epoch.

Given our goal of using as few messages as possible,
the collection phase must insure that parents in the rout-
ing tree wait until they have heard from their children
before propagating an aggregate value for the current
epoch. We will accomplish this by having parents sub-
divide the epoch such that children are required to de-
liver their partial state records during a parent-specified
time interval. This interval is selected such that there
is enough time for the parent to combine partial state
records and propagate its own record to its parent.

When a sensor � receives a request to aggregate, � , ei-
ther from another sensor or from the user, it awakens,
synchronizes its clock according to timing information
in the message, and prepares to participate in aggrega-
tion. In the tree based routing scheme, � chooses the
sender of the message as its parent. In addition to the in-
formation in the query, � includes the interval when the
sender is expecting to hear partial state records from � .
� then forwards the query request � down the network,
setting this delivery interval for children to be slightly
before the time its parent expects to see � ’s partial state
record. In the tree-based approach, this forwarding con-
sists of a broadcast of � , to include any nodes that did
not hear the previous round, and include them as chil-
dren (if it has any.) These nodes continue to forward the
request in this manner, until the query has been propa-
gated throughout the network.

During the epoch after query propagation, each sensor
listens for messages from its children during the inter-
val it specified when forwarding the query. It then com-
putes a partial state record consisting of the combina-
tion of any child values it heard with its own local sen-
sor readings. Finally, during the transmission interval
requested by its parent, the sensor transmits this par-
tial state record up the network. Figure 1 illustrates the
process. Notice that parents listen for longer than the
transmission interval they specified, to overcome limita-
tions in the quality of clock synchronization algorithms
between parents and children. In this way, aggregates

Level 1

Level 2

Level 3

Level 4

Level 5

Time

Tree
Depth

Sensing and Processing,
Radio Idle
Delivery Interval
(Transmitting)

Listening/Receiving

Radio and Processor Idle

End of
Epoch

Start of
Epoch

Root

Figure 1: Partial state records flowing up the tree dur-
ing an epoch.

flow back up the tree interval-by-interval. Eventually,
a complete aggregate arrives at the root. During each
subsequent epoch, a new aggregate is produced. Notice
that, for a significant portion of every epoch, sensors are
completely idle and can enter a low power state.

This scheme begs the question of how parents choose
the duration of the interval in which they will receive
values. It needs to be long enough such that all of
a node’s children can report, but not so long that the
epoch ends before nodes deep in the tree can schedule
their communication. Furthermore, longer intervals re-
quire radios to be powered up for more time, which con-
sumes precious energy. In general, the proper choice
of duration for these intervals is somewhat environment
specific, as it depends on the density of radio cells and
bushiness of the network topology. For the purposes of
the simulations and experiments in this paper, we as-
sume the network has a maximum depth

�
, and set the

duration of each interval to be (EPOCH DURATION)/
�
,

with nodes at level � transmitting during the ����� inter-
val. We rely on the TinyOS MAC layer [20] to avoid
collisions between sensors transmitting during the same
interval. Note that this provides a lower-bound on the
EPOCH DURATION and constrains the maximum sam-
ple rate of the network, since the epoch must be long
enough for partial state records from the bottom of the
tree to propagate to the root.

To increase the sample rate, one could consider pipelin-
ing the communications schedule shown in Figure 1.
With pipelining, the output of the network would be de-
layed by one or more epochs, as some nodes would wait
until the next epoch to report the aggregates they col-
lected during the current epoch. In exchange for such
delays, the effective sample rate of the system is in-
creased (for the same reason that pipelining a long pro-
cessor stage increases the clock rate of a CPU.) We do
not consider such schemes in detail here; we discussed
a fully-pipelined approach to aggregation in a workshop
submission [13].

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 7

In Section 5.1 we show how TAG can provide an order
of magnitude decrease in communications costs over a
centralized approach. Before presenting performance
results, however, we show how to extend the approach
to support grouping.

4.2 Grouping

Grouping in TAG is functionally equivalent to the
GROUP BY clause in SQL: each sensor reading is
placed into exactly one group, and groups are parti-
tioned according to an expression over one or more at-
tributes. The basic grouping technique is to push the ex-
pression down with the query, ask sensors to choose the
group they belong to, and then, as answers flow back,
update aggregate values in the appropriate groups.

Partial state records are aggregated just as in the ap-
proach described above, except that those records are
now tagged with a group id. When a sensor is a leaf,
it applies the grouping expression to compute a group
id. It then tags its partial state record with the group
and forwards it on to its parent. When a sensor re-
ceives an aggregate from a child, it checks the group
id. If the child is in the same group as the sensor, it
combines the two values using the combining function
� . If it is in a different group, it stores the value of the
child’s group along with its own value for forwarding in
the next epoch. If another child message arrives with a
value in either group, the sensor updates the appropriate
aggregate. During the next epoch, the sensor will send
out the value of all the groups it collected information
about during the previous interval, combining informa-
tion about multiple groups into a single message as long
as the message size permits. Figure 2 shows an exam-
ple of computing a query grouped by temperature that
selects average light readings.

Recall that queries can also contain a HAVING clause,
which constrains the set of groups in the final query re-
sult. We sometimes pass this predicate into the network
along with the grouping expression. The predicate is
only sent into the network if it can potentially be used
to reduce the number of messages that must be sent: for,

Group AVG

Group AVG

Group AVG

Temp: 20
Light: 10

Temp: 20
Light: 50

Temp: 10
Light: 15

Temp: 30
Light: 25

Temp: 10
Light: 15

Temp: 10
Light: 5

1

2

3

4

5

6

1

2

3

4

5

6

Aggregate
AVG(light)

Groups
1 : 0 < temp 10
2 : 10 < temp 20
3 : 20 < temp 30 1 10

1
3

10
25

Group AVG
1
2
3

10
50
25

1
2
3

10
30
25

(6,5,2)
(3,1)
(4)

(6,5)
(4)

(6,5)

SELECT AVG(light),temp/10
FROM sensors
GROUP BY temp/10

Figure 2: A sensor network (left) with an in-network,
grouped aggregate applied to it (right). Parenthesized
numbers represent sensors that contribute to the average

example, if the predicate is of the form MAX(attr) �
x, then information about groups with MAX(attr) L
x need not be transmitted up the tree, and so the predi-
cate is sent down into the network. When a node detects
that a group does not satisfy a HAVING clause, it can
notify other nodes in the network of this information to
suppress transmission and storage of values from that
group. Note that HAVING clauses can be pushed down
only for monotonic aggregates; non-monotonic aggre-
gates are not amenable to this technique. However, not
all HAVING predicates on monotonic aggregates can be
pushed down; for example, MAX(attr) � x, cannot
be applied in the network because a node cannot know
that, just because its local value of � � ��� is less than � ,
the MAX over the entire group is less than � .

Because the number of groups can exceed available
storage on any one (non-leaf) sensor, a way to evict
groups is needed. Once an eviction victim is selected, it
is forwarded to the sensor’s parent, which may choose
to hold on to the group or continue to forward it up
the tree. Notice that a single sensor may evict several
groups in a single epoch (or the same group multiple
times, if a bad victim is selected). This is because, once
group storage is full, if only one group is evicted at a
time, a new eviction decision must be made every time
a value representing an unknown or previously evicted
group arrives. Because groups can be evicted, the base
station at the top of the network may be called upon to
combine partial groups to form an accurate aggregate
value. Evicting partially computed groups is known as
partial preaggregation, as described in [11].

Thus, we have shown how to partition sensor readings
into a number of groups and properly compute aggre-
gates over those groups, even when the amount of group
information exceeds available storage in any one sensor.
We will discuss experiments with grouping and group
eviction policies in Section 5.2. First, we summarize
some of the additional benefits of TAG.

4.3 Additional Advantages of TAG

The principal advantage of TAG is its ability to dramati-
cally decrease the amount of communication required to
compute an aggregate versus a centralized aggregation
approach. However, TAG has a number of additional
benefits.

One of these is its ability to tolerate loss. In sensor en-
vironments, it is very likely that some aggregation re-
quests or partial state records will be garbled, or that
sensors will move or run out of power. These losses will
invariably result in some sensors becoming lost, either
without a parent or not incorporated into the aggrega-
tion network during the initial flooding phase. If we in-
clude information about queries in partial state records,
lost nodes can reconnect by listening to other sensor’s
state records – not necessarily intended for them – as

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 8

they flow up the tree. We revisit the issue of loss in
Section 7.

A second advantage of the TAG approach is that, in
most cases, each sensor is required to transmit only
a single message per epoch, regardless of its depth in
the routing tree. In the centralized (non TAG) case, as
data converges towards the root, nodes at the top of the
tree are required to transmit significantly more data than
nodes at the leaves; their batteries are drained faster and
the lifetime of the network is limited. Furthermore, be-
cause the top of the routing tree must forward messages
for every node in the network, the maximum sample
rate of the system is inversely proportional to the total
number of nodes. To see this, consider a radio channel
with a capacity of � messages per second. If � sensors
are participating in a centralized aggregate, to obtain a
sample rate of

�
samples per second, ���

�
messages

must flow through the root during each epoch. ���
�

must be no larger than � , so the sample rate
�

can be at
most ��A � messages per sensor per epoch, regardless of
the network density. When using TAG, the maximum
transmission rate is limited instead by the occupancy of
the largest radio-cell; in general, we expect that each
cell will contain far fewer than � motes.

Yet another advantage of TAG is that, by explicitly di-
viding time into epochs, a convenient mechanism for
idling the processor is obtained. The long idle times in
Figure 1 show how this is possible; during these inter-
vals, the radio and processor can be put into deep sleep
modes that use very little power. Of course, some boot-
strapping phase is needed where motes can learn about
queries currently in the system, acquire a parent, and
synchronize clocks; a simple strategy involves requiring
that every node wake up infrequently but periodically to
advertise this information and that sensors that have not
received advertisements from their neighbors listen for
several times this period between sleep intervals. Re-
search on energy aware MAC protocols [22] presents a
similar scheme in detail. That work also discusses is-
sues such as required time synchronization resolution
and the maximum sleep duration to avoid the adverse
effects of clock skew on individual devices.

Taken as a whole, these properties provide users with a
stream of aggregate values that changes as sensor read-
ings and the underlying network change. These read-
ings are provided in an energy and radio-bandwidth ef-
ficient manner.

5 Simulation-Based Evaluation

In this section, we present a simulation environment for
TAG and evaluate its behavior using this simulator. We
also have an initial, real-world deployment; we discuss
its performance at the end of the paper, in Section 8.

To study the algorithms presented in this paper, we

simulated TAG in Java. The simulator models sensor
behavior at a coarse level: time is divided into units
of epochs, messages are encapsulated into Java objects
that are passed directly into sensors without any model
of the time to send or decode. Sensors are allowed to
compute or transmit arbitrarily within a single epoch,
and each sensor executes serially. Messages sent by all
sensors during one epoch are delivered in random order
during the next epoch to model a parallel execution.

Our simulation includes an interchangeable communi-
cation model that defines connectivity based on geo-
graphic distance. Figure 3 shows screenshots of a vi-
sualization component of our simulation; each square
represents a single sensor, and shading (in these images)
represents the number of radio hops the sensor is from
the root (center); darker is closer. We measure the size
of networks in terms of diameter, or width of the sensor
grid (in terms of number of nodes). Thus, a diameter 50
network contains 2500 sensors.

We have run experiments with three communications
models; 1) a simple model, where sensors have perfect
(lossless) communication with their immediate neigh-
bors, which are regularly placed (Figure 3(a)), 2) a ran-
dom placement model (Figure 3(b)), and 3) a realistic
model that attempts to capture the actual behavior of
the radio on TinyOS motes (Figure 3(c).) In the latter
model, notice that the number of hops from a particu-
lar node to the root is no longer directly proportional to
the distance between the node and the root, although
the two values are still related. This model uses re-
sults from real world experiments [4] to approximate
the actual loss characteristics of the TinyOS radio. Loss
rates are high in in the realistic model: a pair of adja-
cent sensors loses more than 20% of the traffic between
them. Sensors separated by larger distances lose still
more traffic. Note that the simulator does not model ra-
dio contention – we assume that the data delivery rate
of the sensors is low enough that the MAC layer can
effectively eliminate contention.

The simulator also models the costs of topology mainte-
nance: if a sensor does not transmit a reading for several
epochs (which will be the case in some of our optimiza-
tions below), that sensor must periodically send a heart-
beat to advertise that it is still alive, so that its parents
and children know to keep routing data through it. The
interval between heartbeats can be chosen arbitrarily;
choosing a longer interval means fewer messages must
be sent, but requires sensors to wait longer before de-
ciding that a parent or child has disconnected, making
the network less adaptable to rapid change.

This simulation allows us to measure the the number
of bytes, messages, and partial state records sent over
the radio by each mote. Since we do not simulate the
mote CPU, it does not give us an accurate measurement

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 9

(a) Simple (b) Random (c) Realistic

Figure 3: The TAG Simulator, with Three Different
Communications Models, Diameter = 20.

of the number of instructions executed in each mote. It
does, however, allow us to obtain an approximate mea-
sure of the amount of state required for various algo-
rithms, based on the size of the data structures allocated
by each mote.

Unless otherwise specified, our experiments are over
the simple radio topology in which there is no loss. We
also assume sensor values do not change over the course
of a single simulation run.

5.1 Performance of TAG

In the first set of experiments, we compare the per-
formance of the TAG in-network approach to central-
ized approaches on queries for the different classes of
aggregates discussed in Section 3.3. Centralized ag-
gregates have the same communications cost irrespec-
tive of the aggregate function, since all data must be
routed to the root. For this experiment, we compared
this cost to the number of bytes required for distributive
aggregates (MAX and COUNT), an algebraic aggregate
(AVERAGE), a holistic aggregate (MEDIAN), a content-
sensitive aggregate (HISTOGRAM), and a unique ag-
gregate (COUNT DISTINCT); the results are shown in
Figure 4.

Values for in this experiment represent the steady-state
cost to extract an additional aggregate from the network
once the query has been propagated; the cost to flood a
request down the tree in not considered.

MAX and COUNT have the same cost in-network, about
5000 bytes per epoch, since they both send just a sin-
gle integer per partial state record; similarly AVERAGE
requires just two integers, and thus always has double
the cost of the distributive aggregates. MEDIAN costs
the same as a centralized aggregate, about 90000 bytes
per epoch, which is significantly more expensive than
other aggregates, especially for larger networks, as par-
ents have to forward all of their children’s values to the
root. COUNT DISTINCT is only slightly less expen-
sive (73000 bytes), as there are few duplicate sensor
values; a less uniform sensor-value distribution would
reduce the cost of this aggregate. For the HISTOGRAM
aggregate, we set the size of the fixed-width buckets to
be 10; sensor values ranged over the interval [0..1000].
At about 9000 messages per epoch, HISTOGRAM pro-

C
O

U
N

T

M
IN

H
IS

T
O

G
R

A
M

A
V

E
R

A
G

E

C
O

U
N

T
 D

IS
T

IN
C

T

M
E

D
IA

N

C
en

tr
al

iz
ed

 (
no

t T
A

G
)

Aggregation Function

0

20000

40000

60000

80000

B
yt

es
 T

ra
ns

m
itt

ed
 /

E
po

ch
, A

ll
Se

ns
or

s

TAG (In Network)
Any Centralized Aggregate

In-network vs. Centralized Aggregation
Network Diameter = 50, No Loss

Figure 4: In-network Vs. Centralized Aggregates

vides an efficient means for extracting a density sum-
mary of readings from the network.

Note that the benefit of TAG will be more or less pro-
nounced depending on the topology. In a flat, single-
hop environment, where all sensors are directly con-
nected to the root, TAG is no better than the centralized
approach. For a topology where � sensors are arranged
in a line, centralized aggregates will require �

$ A�� par-
tial state records to be transmitted, whereas TAG will
require only � records.

Thus, we have shown that, for our simulation topol-
ogy, in-network aggregation can reduce communication
costs by an order of magnitude over centralized ap-
proaches, and that, even in the worst case (such as with
MEDIAN), it always provides performance equal to the
centralized approach.

5.2 Grouping Experiments

We also ran several experiments to measure the perfor-
mance of grouping in TAG, focusing on the behavior of
various eviction techniques in the case that the number
of groups exceeds the storage available on a single sen-
sor. We tried a number of simple eviction policies, such
as evicting the group with the fewest members, evicting
a random group, and evicting the group with the most
members. We found that the choice of policy made lit-
tle difference for any of the sensor-value distributions
we tested. This is largely due to the tree topology: near
the leaves of the tree, most sensors will see only a few
groups, and the eviction policy will matter very little.
At the top levels of the tree, the eviction policy becomes
important, but the cost of forwarding messages from the
leaves of the tree tends to dominate the savings obtained
at the top. In the most extreme case, the difference be-
tween the best and worst case eviction policy accounted

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 10

for less than 10% of the total messages. We also ob-
served that, when evicting, the best policy was to evict
multiple groups at a time, up to the number of group
records that will fit into a single radio message. Due
to space limitations, we omit detail discussion of these
experiments.

6 Optimizations

In this section, we present several techniques to improve
the performance and accuracy of the basic approach de-
scribed above. Some of these techniques are function
dependent; that is, they can only be used for certain
classes of aggregates. Also note that, in general, these
techniques can be applied in a user-transparent fashion,
since they are not explicitly a part of the query syntax
and do not affect the semantics of the results.

6.1 Taking Advantage of A Shared Channel

In our discussion of aggregation algorithms up to this
point, we have largely ignored the fact that sensors com-
municate over a shared radio channel. The fact that ev-
ery message is effectively broadcast to all other sensors
within range enables a number of optimizations that can
significantly reduce the number of messages transmit-
ted and increase the accuracy of aggregates in the face
of transmission failures.

In Section 4.3, we saw an example of how a shared
channel can be used to increase message efficiency
when a sensor misses an initial request to begin ag-
gregation: it can initiate aggregation even after missing
the start request by snooping on the network traffic of
nearby sensors. When it sees another sensor reporting
an aggregate, it can assume it too should be aggregat-
ing. By allowing sensors to examine messages not di-
rectly addressed to them, sensors are automatically in-
tegrated into the aggregation. Note that snooping does
not require sensors to listen all the time; by listening at
predefined intervals (which can be short once a sensor
has time-synchronized with its neighbors), sensors can
keep their duty cycles quite low.

Snooping can also be used to reduce the number of mes-
sages sent for certain classes of aggregates. Consider
computing a MAX over a group of sensors; if a sensor
hears a peer reporting a maximum value greater than its
local maximum, it can elect to not send its own value
and be assured of not affecting the value of the final ag-
gregate.

6.2 Hypothesis Testing

The snooping example above showed that we only need
to hear from a particular sensor if that sensor’s value
will affect the end value of the aggregate. For some
aggregates, this fact can be exploited to significantly
reduce the number of nodes that need to report. This
technique can be generalized to an approach we call hy-

pothesis testing. For certain classes of aggregates, if a
node is presented with a guess as to the proper value of
an aggregate, it can decide locally whether contributing
its reading and the readings of its children will affect
the value of the aggregate.

For MAX, MIN and other monotonic, exemplary aggre-
gates, this technique is directly applicable. There are
a number of ways it can be applied – the snooping ap-
proach, where sensors suppress their local aggregates
if they hear other aggregates that invalidate than their
own, is one. Alternatively, the root of the network (or
any subtree of the network) seeking an exemplary sen-
sor value, such as a MIN, might compute the minimum
sensor value � over the highest levels of the subtree,
and then abort the aggregate and issue a new request
asking for values less than � over the whole tree. In
this approach, leaf nodes need not send a message if
their value is greater than the minimum observed over
the top

�
levels; intermediate nodes, however, must still

forward partial state records, so even if their value is
suppressed, they may still have to transmit.

Assuming for a moment that sensor values are indepen-
dent and uniformly distributed, then a particular leaf
node must transmit with probability <JA ���

(where
�

is
the branching factor, so <JA � �

is the number of sensors
in the top

�
levels), which is quite low for even small

values of
�

. For bushy routing trees, this technique of-
fers a significant reduction in message transmissions –
a completely balanced routing tree would cut the num-
ber of messages required to <JA � . Of course, the per-
formance benefit may not be as substantial for other,
non-uniform, sensor value distributions; for instance, a
distribution in which all sensor readings are clustered
around the minimum will not allow many messages to
be saved by hypothesis testing. Similarly, less balanced
topologies (e.g. a line of sensors) will not benefit from
this approach.

For summary aggregates, such as AVERAGE or VARI-
ANCE, hypothesis testing via a guess from the root can
be applied, although the message savings are not as
dramatic as with monotonic aggregates. Note that the
snooping approach cannot be used: it only applies to
monotonic, exemplary aggregates where values can be
suppressed locally without any information from a cen-
tral coordinator. To obtain any benefit with summary
aggregates and hypothesis testing, the user must define
a fixed-size error bound that he or she is willing to tol-
erate over the value of the aggregate; this error is sent
into the network along with the hypothesis value.

Consider the case of an AVERAGE: any sensor that is
within the error bound of the hypothesis value need not
answer – its parent will then assume its value is the
same as the approximate answer and count it accord-
ingly (for AVERAGE parents must know how many chil-

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 11

0

500

1000

1500

2000

2500

10 15 20 25 30 35 40 45 50

M
es

sa
ge

s
/ E

po
ch

 /
S

en
so

r

Network Diameter

Steady State Messages/Epoch
 Max Query With Hypothesis Testing

No Hypothesis
Hypothesis : 50
Hypothesis : 90

Hypothesis via Snooping

Figure 5: Benefit of Hypothesis Testing for MAX

dren they have.) It can be shown that the total computed
average will not be off from the actual average by more
than the error bound, and leaf sensors with values close
to the average will not be required to report. Obviously,
the value of this scheme depends on the distribution of
sensor values. If values are uniformly distributed, the
fraction of leaves that need not report approximates the
size of the error bound divided by the size of the sensor
value distribution interval. If values are normally dis-
tributed, a much larger fraction of leaves do not report.

We conducted a simple experiment to measure the ben-
efit of hypothesis testing and snooping for a MAX ag-
gregate. The results are shown in Figure 5. In this
experiment, sensor values were uniformly distributed
over the range [0..100], and a hypothesis was made
at the root. Notice that the performance savings are
nearly two-fold for a hypothesis of 90. We compared
the hypothesis testing approach with the snooping ap-
proach (which will be effective even in a non-uniform
distribution); surprisingly, snooping beat the other ap-
proaches by offering a nearly three-fold performance
increase over the no-hypothesis case. This is because
in the densely packed simple sensor distribution, most
sensors have three or more neighbors to snoop on, sug-
gesting that only about one in four sensors will have to
transmit. With topology maintenance and forwarding
of child values by parents, the savings by snooping is
reduced to a factor of three.

7 Improving Tolerance to Loss

Up to this point in our experiments we used a reliable
environment where no messages were dropped and no
sensors were lost. In this section, we address the prob-
lem of loss and its effect on the algorithms presented
thus far. Unfortunately, loss is a a fact of life in the sen-
sor domain; the techniques described in the section seek
to mitigate that loss.

7.1 Effects of A Single Loss

We first study the effect that a single sensor going of-
fline has on the value of the aggregate; this is an impor-
tant measurement because it gives some intuition about

the magnitude of error that a single loss can generate.
Note that, because we are doing hierarchical aggrega-
tion, a single sensor going offline causes the entire sub-
tree rooted at the sensor to be (at least temporarily) dis-
connected. In this first experiment we used the sim-
ple topology, with sensor readings chosen from the uni-
form distribution over [1..1000]. After running the sim-
ulation for several epochs, we selected, uniformly and
at a random, a sensor to disable. In this environment,
children of the disabled node were temporarily discon-
nected but eventually their values were reintegrated into
the aggregate once they rediscovered their parents. Note
that the amount of time taken for lost nodes to rein-
tegrate is directly proportional to the depth of the lost
sensor, so we did not measure it experimentally. In-
stead, we measured the maximum temporary deviation
from the true value of the aggregate that the loss caused
in the perceived aggregate value at the root during any
epoch. This maximum was computed by performing
100 runs at each data point and selecting the largest er-
ror reported in any run. We also report the average of
the maximum error across all 100 runs.

Figure 6 shows the results of this experiment. Note that
the maximum loss (Figure 6(a)) is highly variable and
that some aggregates are considerably more sensitive to
loss than others. COUNT, for instance, has a very large
error in the worst case: if a node that connects the root
to a large portion of the network is lost, the temporary
error will be very high. The variability in maximum er-
ror is because a well connected subtree is not always
selected as the victim. Indeed, assuming some unifor-
mity of placement (e.g. the sensors are not arranged
in a line), as the network size increases, the chances of
selecting such a node go down, since a larger propor-
tion of the sensors are towards the leaves of the tree. In
the average case(Figure 6(b)), the error associated with
a COUNT is not as high: most losses do not result in a
large number of disconnections. Note that MIN is insen-
sitive to loss in this uniform distribution, since several
nodes are at or near the true minimum. The error for
MEDIAN and AVERAGE is less than COUNT and more
than MIN: both are sensitive to the variations in the
number of sensors, but not as dramatically as COUNT.

7.2 Effect of the Realistic Communication Model

In the second experiment, we examine how well TAG
performs in the realistic simulation environment (dis-
cussed in Section 5 above). In such an environment,
without some technique to counteract loss, a large num-
ber of partial state records will invariably be dropped
and not reach the root of the tree. We ran an experi-
ment to measure the effect of this loss in the realistic
environment. The simulation ran until the first aggre-
gate arrived at the root, and then the average number of
sensors involved in the aggregate over the next several

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 12

0

5

10

15

20

25

30

35

40

45

10 15 20 25 30 35 40 45 50

P
er

ce
nt

 E
rr

or

Network Diameter

Maximum Error vs. Aggregation Function

AVERAGE
COUNT

MINIMUM
MEDIAN

(a) Maximum Error

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 15 20 25 30 35 40 45 50

Network Diameter

Average Error vs. Aggregation Function

AVERAGE
COUNT

MINIMUM
MEDIAN

(b) Average Error
Figure 6: Effect of a Single Loss on Various Aggregate
Functions. Computed over a total of 100 runs at each
point. Error bars indicate standard error of the mean,
95% confidence intervals.

epochs was measured. The “No Cache” line of Figure
7 shows the performance of this approach; at diameter
10, about 40% of the partial state records are reflected in
the aggregate at the root; by diameter 50, this percent-
age has fallen to less than 10%. Performance falls off
as the number of hops between the average sensor and
the root increases, since the probability of loss is com-
pounded by each additional hop. Thus, the basic TAG
approach presented so far, running on current prototype
hardware (with its very high loss rates), is not highly
tolerant to loss, especially for large networks. Note that
any centralized approach would suffer from the same
loss problems.

7.3 Child Cache

To improve the quality of aggregates, we propose a
simple caching scheme: parents remember the partial
state records their children reported for some number of
rounds, and use those previous values when new values
are unavailable due to lost child messages. As long as
the duration of this memory is shorter than the interval
at which children select new parents, this technique will
increase the number of nodes included in the aggregate
without over-counting any nodes. Of course, caching
tends to temporally smear the aggregate values that are
computed, and so may not always be applicable. Gener-
ally, however, we believe that using old values in place
of missing will be desirable.

We conducted some experiments to show the improve-
ment this technique offers over the basic approach; we
allocate a fixed size buffer at each node and measure the
average number of sensors involved in the aggregation
as in Section 7.2 above. The results are shown in Figure
7 – notice that even five epochs of cached state offer a
significant increase in the number of nodes counted in
any aggregate, and that 15 rounds increases the num-
ber of sensors involved in the diameter 50 network to
70% (versus less than 10% without a cache). There are
two drawbacks to caching; First, it uses memory that
could be used for group storage. Second, it sets a mini-
mum bound on the time sensors must wait before deter-

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 N

et
w

or
k

In
vo

lv
ed

Network Diameter

Percentage of Network Involved, Child Caching

No Cache
5 Epochs Cache

9 Epochs Cache
15 Epochs Cache

Figure 7: Percentage of Network Participating in Ag-
gregate For Varying Amounts of Child Cache

mining their parent has gone offline; given the benefit it
provides in terms of accuracy, however, we believe it to
be useful despite these disadvantages. The substantial
benefit of this technique suggests that allocating RAM
to application level caching may be more beneficial than
allocating it to lower-level schemes for reliable message
delivery, as such schemes cannot take advantage of the
semantics of the data being transmitted.

7.4 Using Available Redundancy

Because there may be situations where the RAM or la-
tency costs of the child cache are not desirable, it is
worthwhile to look at alternative approaches for im-
proving loss tolerance. In this section, we show how the
network topology can be leveraged to increase the qual-
ity of aggregates. Consider a sensor with two possible
choices of parent parents: instead of sending its aggre-
gate value to just one parent, it can send it to both par-
ents. It is easy for a node to discover that it has multiple
parents, since it can simply build a list of nodes it has
heard that are one step closer to the root. Of course, for
duplicate-sensitive aggregates (see Section 3.3), send-
ing results to multiple parents has the undesirable effect
of causing the node to be counted multiple times. The
solution to this is to send part of the aggregate to one
parent and the rest to the other. Consider a COUNT; a
sensor with ���N< children and two parents can send a
COUNT of �=A�� to both parents instead of a count of � to
a single parent. Note that, in general, if the aggregate
can be linearly decomposed in this fashion, it is possi-
ble to broadcast just a single message that is received
and processed by both parents, so this scheme incurs no
message overheads, as long as both parents are at the
same level and request data to be delivered during the
same sub-interval of the epoch.

A simple statistical analysis reveals the advantage of
doing this: assume that a message is transmitted with
probability � , and that losses are independent, so that if
a message � from sensor D is lost in transition to par-
ent

� � , it is no more likely to be lost in transit to
� $.

First, consider the case where D sends � to a single par-
ent; the expected value of the transmitted count is � � �

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 13

(0 with probability :/< � �%; and � with probability �),
and the variance is � $ � � � :/< � �%; , since these are
standard Bernoulli trials with a probability of success �
multiplied by a constant � . For the case where D sends
�=A�� to both parents, linearity of expectation tells us the
expected value is the sum of the expected value through
each parent, or � � � � �=A�� � � � � . Similarly, we can
sum the variances through each parent to get:

var =
��� ����� � � 0 �
	�� ���� 	 �

=
� 0 � ����	�� ���� 	 �

Thus, the variance of the multiple parent COUNT is
much less than with just a single parent, although its
expected value is the same. This is because it is much
less likely (assuming independence) for the message to
both parents to be lost, and a single loss will less dra-
matically affect the computed value.

We ran an experiment to measure the benefit of this
approach in the realistic topology for COUNT with a
network diameter of 50. We measured the number of
sensors involved in the aggregation over a 50 epoch
period. When sending to multiple parents, the mean
COUNT was 974 (� �������), while when sending to
only one parent, the mean COUNT was 94 (� ��� <).
Surprisingly, sending to multiple parents substantially
increases the mean aggregate value; most likely this is
due to the fact that losses are not truly independent as
we assumed above.

This technique applies equally well to any distributive
or algebraic aggregate. For holistic aggregates, like
MEDIAN, this technique cannot be applied, since par-
tial state records cannot be easily decomposed.

8 Real-World Experiments

Based on the encouraging simulation results presented
above, we have built an implementation of TAG for
TinyOS Mica motes. The implementation does not
currently include many of the optimizations discussed
in this paper, but contains the core TAG aggrega-
tion algorithm and catalog support for querying arbi-
trary attributes with simple predicates. In this section,
we briefly summarize results from experiments with
this implementation, to demonstrate that the simulation
numbers given above are consistent with actual behav-
ior and to show that substantial real-world message re-
ductions over a centralized approach are possible.

These experiments involved sixteen sensors arranged in
a depth four tree, computing a COUNT aggregate over
150, 4 second epochs (a 10 minute run.) No child
caching or snooping techniques were used. Figure 8
shows the COUNT observed at the root for a centralized
approach, where all messages are forwarded to the root,
versus the in-network TAG approach. Notice that the
quality of the aggregate is substantially better for TAG;
this is due to reduced radio contention. To measure the
extent of contention and compare the message costs of

 0

 5

 10

 15

 20

 0 20 40 60 80 100 120 140

C
O

U
N

T

Epoch

Count Per Epoch, 16 Nodes (Epoch Duration = 4 Seconds)

TAG
Centralized

Figure 8: Comparison of Centralized and TAG based
Aggregation Approaches in Lossy, Real-World Environ-
ment Computing a COUNT over a 16 node network.

the two schemes, we instrumented motes to report the
number of messages sent and received. The central-
ized approach required 4685 messages, whereas TAG
required just 2330, representing a 50% communica-
tions reduction. This is less than the order-of-magnitude
shown in Figure 4 for COUNT because our real-world
network topology had a higher average fanout than the
simulated environment, so messages in the centralized
case had to be retransmitted fewer times to reach the
root. Per hop loss rates were about 5% in the in-network
approach. In the centralized approach, increased net-
work contention drove these loss rates to 15%. The cu-
mulative nature of loss meant that messages from nodes
at the bottom of the routing tree successfully delivered
only about 45% of messages to the root in the central-
ized case (accounting for its poor performance.)

This completes our discussion of algorithms for TAG.
We now summarize the extensive related work in the
networking and database communities.

9 Related Work

The database community has proposed a number of dis-
tributed and push-down based approaches for aggre-
gates in database systems [16, 21], but these universally
assume a well-connected, low-loss topology that is un-
available in sensor networks. The partial preaggrega-
tion techniques [11] used to enable group eviction were
proposed as a technique to deal with very large numbers
of groups to improve the efficiency of hash joins and
other bucket-based database operators. The partial-state
requirements aggregates presented in Section 3.3 were
originally partially developed as a part of the research
on data-cubes [6]. [18] discusses online aggregation
in the context of nested-queries; it proposes optimiza-
tions to reduce the flow of tuples between outer and in-
ner queries that bear some similarities to our technique
for pushing HAVING clauses into the network. With
respect to query language, our epoch based approach
is related to languages and models from the Tempo-
ral Database literature; see [17] for a survey of rele-
vant work. The Cougar project at Cornell [15] discusses

Draft submitted for publication. Copyright 2002 Samuel Madden, et al. 14

queries over sensor networks, as does our own work on
Fjords [12], although the former only considers mov-
ing selections (not aggregates) onto sensors and neither
presents specific algorithms for use in sensor networks.

Literature on active networks [19] identified the idea
that the network could simultaneously route and trans-
form data, rather than simply serving as an end-to-end
data conduit. Within the sensor network community,
work on networks that perform data analysis has been
largely confined to the USC/ISI and UCLA commu-
nities. Their work on directed diffusion [9] discusses
techniques for moving specific pieces of information
from one place in a network to another, and proposes
aggregation-like operations that nodes may perform as
data flows through them. Work on low-level-naming[7]
proposes a scheme for imposing names onto related
groups of sensors in a network, in much the way that our
scheme partitions sensor networks into groups. Work
on greedy aggregation [8] discusses networking pro-
tocols for routing data to improve the extent to which
data can be combined as it flows up a sensor network
– it provides low level techniques for building routing
trees that could be useful in computing database style
aggregates. These papers recognize that aggregation
dramatically reduces the amount of data routed through
the network but present application specific solutions
that, unlike the declarative query approach approach of
TAG, do not offer an application independent interface,
naming system, or aggregation mechanism. Finally, we
initially noted the advantages of a database style ap-
proach to aggregation in a workshop publication [13].
This work did not include simulation or real-world ex-
periments, and was missing the taxonomy which lends
TAG much of its generality.

Networking protocols for routing data in wireless net-
works are very popular within the literature [10, 2, 5],
however, none of them address higher level issues of
data processing, merely techniques for data routing.
Our tree-based routing approach is clearly inferior to
these approaches for peer to peer routing, but works
well for the aggregation scenarios we are focusing on.

10 Conclusions

In summary, we have shown how declarative aggre-
gate queries can be distributed and efficiently executed
over sensor networks. Our in-network approach can
provide an order of magnitude reduction in bandwidth
consumption over approaches where data is aggregated
and processed centrally. The declarative query inter-
face allows end-users to take advantage of this benefit
for a wide range of aggregate operations without hav-
ing to modify low-level code or confront the difficul-
ties of topology construction, data routing, loss toler-
ance, or distributed computing. Furthermore, this inter-
face, combined with tight integration with the network

enables transparent optimizations that further decrease
message costs and improve tolerance to failure and loss.

As sensor networks become more widely deployed,
especially in remote, difficult to administer locations,
bandwidth and power sensitive methods to extract data
from those networks will become increasingly impor-
tant. In such scenarios, we see TAG as the central data
delivery service of TinyOS: the simplicity of declara-
tive queries, combined with the ability of TAG to effi-
ciently optimize and execute such queries makes it an
ideal choice for a wide range of sensor network data
processing situations.

Acknowledgments

Robert Szewczyk, David Culler, and Ramesh Govindan
contributed to the design of the networking protocols
discussed in this paper. Per Åke Larson suggested the
use of partial preaggregation for group eviction.
References
[1] Smart buildings admit their faults. Web Page, November 2001. Lab

Notes: Research from the College of Engineering, UC Berkeley.
http://coe.berkeley.edu/labnotes/1101.smartbuildings.html.

[2] W. Adjue-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley. The
design and implementation of an intentional naming system. In ACM
SOSP, December 1999.

[3] F. Bancilhon, T. Briggs, S. Khoshafian, and P. Valduriez. FAD, a pow-
erful and simple database language. In VLDB, 1987.

[4] D. Ganesan. Network dynamics in rene motes. PowerPoint Presenta-
tion, January 2002.

[5] T. Goff, N. Abu-Ghazaleh, D. Phatak, and R. Kahvecioglu. Preemptive
routing in ad hoc networks. In ACM MobiCom, July 2001.

[6] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing group-by, cross-tab, and
sub-total. February 1996.

[7] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin,
and D. Ganesan. Building efficient wireless sensor networks with low-
level naming. In SOSP, October 2001.

[8] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact
of network density on data aggregation in wireless sensor networks.
Submitted for Publication, ICDCS-22, November 2001.

[9] C. Intanagonwiwat, R. Govindan, , and D. Estrin. Directed diffusion:
A scalable and robust communication paradigm for sensor networks.
In MobiCOM, Boston, MA, August 2000.

[10] J. Kulik, W. Rabiner, and H. Balakrishnan. Adaptive protocols for
information dissemination in wireless sensor networks. In MobiCOM,
Seattle, WA, 1999.

[11] P.-Å. Larson. Data reduction by partial preaggregation. In ICDE,
2002. (to appear).

[12] S. Madden and M. J. Franklin. Fjording the stream: An architechture
for queries over streaming sensor data. In ICDE, 2002. (to appear).

[13] S. Madden, R. Szewczyk, M. Franklin, and D. Culler. Supporting
aggregate queries over ad-hoc wireless sensor networks. Submitted,
Workshop on Mobile Computing and Systems Applications, 2002.

[14] A. Mainwaring, 2002. Personal Communication.
[15] P.Bonnet, J.Gehrke, and P.Seshadri. Towards sensor database systems.

In Conference on Mobile Data Management, January 2001.
[16] A. Shatdal and J. Naughton. Adaptive parallel aggregation algorithms.

In ACM SIGMOD, 1995.
[17] R. T. Snodgrass, editor. The TSQL2 Temporal Query Language.

Kluwer Academic Publisher, 1995.
[18] K.-L. Tan, C. H. Goh, and B. C. Ooi. Online feedback for nested

aggregate queries with multi-threading. In VLDB, 1999.
[19] D. Tennenhouse. Active networks. In OSDI, October 1996.
[20] A. Woo and D. Culler. A transmission control scheme for media access

in sensor networks. In ACM Mobicom, July 2001.

[21] W. P. Yan and P. Å. Larson. Eager aggregation and lazy aggregation.
In VLDB, 1995.

[22] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC proto-
col for wireless sensor networks. In IEEE Infocom, 2002.

[23] A. Yu and J. Chen. The POSTGRES95 User Manual. UC Berkeley,
1995.

