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Abstract 

 

The main goal of a data collection protocol for sensor networks is to 

keep the network’s database updated while saving the nodes’ energy 

as much as possible. To achieve this goal without continuous 

reporting, the data suppression is a key strategy. In this paper, we 

propose to use a technique for statistical process control in a temporal 

suppression scheme. We have inserted one of these techniques (the 

Shiryayev-Roberts scheme) in a data collection protocol named TS-

SPC (Temporal Suppression via Statistical Process Control). TS-SPC 

detects changes in the mean of the monitored variables and 

communicates just these changes to the base station. Experiments with 

real and simulated data have shown the TS-SPC protocol has 

suppression rates comparable and even greater than the rates of 

temporal suppression schemes proposed in the literature. 

Furthermore, it keeps the prediction errors at acceptable levels, if we 

consider the complexity of the data collection using a sensor network.  
 

1. INTRODUCTION 
 

Sensor networks are a powerful instrument for data collection, 

especially for applications like habitat and environmental monitoring. 

These applications often require continuous updates of the database at 

the network’s root. However, sending continuous reports would 

quickly run out the limited energy of the nodes. A solution for 

continuous updating without continuous reporting is to use data 

suppression [1].  

To define a data suppression scheme, nodes and base station have to 

agree on an expected behavior for the nodes’ readings. Thus, nodes 

only send reports to the base station when their values do not fit to the 

expected behavior, which is used to predict the suppressed data.  

A temporal suppression scheme uses the correlation among the 

readings of a same node to build the expected behavior for the nodes’ 

readings [2]. A spatio-temporal suppression scheme also considers the 

correlation among the observations of neighboring nodes [1].  

Model-driven data collection [3] defines the mean of a node’s 

observations as their expected behavior and models this mean using 

temporal or spatio-temporal correlations.  

In this paper, we consider the sequence of data collected by a node as 

observations of a temporal process and the mean of this process as its 

expected behavior. However, instead of modeling this mean, we 

propose to monitor its changes along the time and only send data to the 

base station when the value of this mean has a relevant change. To 

monitor the process mean, we employ the Shiryayev-Roberts scheme, 

a technique for statistical process control (SPC).  

We have inserted a variation of the Shiryayev-Roberts scheme [4] as 

part of the TS-SPC (Temporal Suppression via Statistical Process 

Control) protocol for data collection in sensor networks.  

The main goal of this paper is to define the temporal suppression 

scheme of the TS-SPC protocol and compare its performance with the 

existing alternatives to temporal suppression. Since the data 

transmission is the most important energy consumer, we use the 

suppression rates as a proxy for the energy consumption. The 

prediction error measures the quality of data sent to the base station.   

The remainder of this paper is organized as follows. Section 2 

describes the change-point problem and the Shiryayev-Roberts 

scheme. In section 3, we present the TS-SPC protocol. Section 4 

describes the related work. In Section 5, we present the results of 

experiments with simulated and real data. Finally, section 6 draws 

some concluding remarks. 
 

2. THE CHANGE-POINT PROBLEM AND                                   

THE SHIRYAYEV-ROBERTS SCHEMES 
 

The problem of detecting changes in the parameters of a temporal 

process is known as the change-point problem [5] and is often found in 

areas such as industrial statistics and epidemiology.  

Setting the mean as the parameter of interest, we summarize the 

change-point problem as follows. Let [Xn] = X1, X2, … be a sequence 

of random variables. Before time of change v, the mean of [Xn] is µ0. 

After the change-point v, [Xn] has mean 
0µ( ) = µ  + , -  <  < σ∆ ∆⋅ ∞ ∆ ∞, 

where σ is the standard deviation of Xi, i=1,2,3…,n.  

The time of change, v, is unknown but we suppose for the moment 

that µ0 is known. The goal of a change-point detection scheme is to 

raise an alarm as soon as possible if a change has occurred, constrained 

to a predefined frequency of false alarms. Thus, we have a stopping 

time N on the sequence of observations [Xn]. After the stopping time, a 

new sequence of variables is observed. The expected value for N 

when there is no change (v=∞), E∞[N], is called the average run length 

(ARL). Its value represents the number of observations in the 

sequence before a false alarm and is often referred as ARL0.  

The largest ARL to detection (ARL1) express the expected delay and it 

is calculated as  1    sup [ - | ]  vv E N v N v≤ <∞ > . There is a trade-off between 

the number of observations before a false alarm (ARL0) and the 

expected delay to detection (ARL1):  higher the false alarms control 

(high ARL0), smaller the speed to detect a change (high ARL1). An 

optimal change-point detection procedure minimizes the value of 

ARL1 while keeps the ARL0 at an acceptable level. 



Based on the sequence [Xn] and for any 1 � k < n, we want to test
 

0(H : = ) v ∞ against 1 (H : =k, = )v δ∆ . The value δ is the target change.  

Among the several proposals to deal with the change-point problem  

[5], Pollak and Siegmund [4] has proposed a variation of the 

Shiryayev-Roberts (SR) scheme to deal with the unknown  µ0. We call 

this proposal as SR-invariant. Considering an original sequence of 

Gaussian variables with unit variance, the SR-invariant has the 

following test statistic for a two-sided alternative (|∆| = δ)  
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To complete the specification of an SR scheme, it is necessary to 

define a stopping time NB so that { }inf :  1,  ( )B nN n n R Bδ= > ≥ . The 

value for the threshold B depends on the value of δ and on the 

minimum value for ARL0, which is determined by the user. So, we 

can write Bδ.   

The size and the frequency of the change to be detected influence the 

expected delay to detection (ARL1) [4, 6]. Small changes are harder to 

be detected than large changes. For instance, to detect a small change 

(∆=0.5) and a large change (∆=2.0) in a very dynamic time series 

(changes in the mean occur to each 10 observations, in average), the 

expected delays of the SR(δ=0.5) scheme are 62.3 and 5.4 time 

periods, respectively. The scheme SR(δ=2.0) takes, in average, 291.5 

and 3.4 time periods, respectively.  

This simple numerical example is helpful to illustrate another 

characteristic of the SR schemes: to detect large changes, SR schemes 

with small δ values are as fast as SR schemes with large δ values (from 

the example, ARL1 = 5.4 and 3.4 time periods, respectively). 

However, to detect small changes, schemes with large δ values are not 

so fast as schemes with small δ values (ARL1 = 291.5 and 62.3 time 

periods, respectively).    

Lower the changes frequency, lower the expected delay to detection. 

For instance, in a process with an interval between changes (v) equal to 

10 time periods, a SR(δ=1.0) scheme detects a real change ∆=1.0  with 

an expected delay of 6.85 time periods after the change. If the process 

is less dynamic (e.g. v=100), the same scheme detects the same change 

with an expected delay of 4.67 time periods after the change. The 

influence of the changes frequency on the expected delay decreases as 

the size of the change rises. To a real change of ∆=2.0, for instance, an 

SR scheme with δ=2.0 has the expected delay to detection of 2.20 and 

1.90 time periods for process with v=10 and v=100, respectively.  

The SR scheme has optimal properties and its performance is 

comparable to the performance of popular methods as CUSUM [4, 6, 

7]. Moreover, the SR scheme has no assumption about the 

independence of the variables in the sequence [Xn]. 

In the next section, we describe our proposal to use the SR-invariant 

procedure in the TS-SPC data collection protocol. 

 

3. THE TS-SPC PROTOCOL   

 

We consider a relevant change in a node’s value occurs if the mean of 

monitored variable changes. Otherwise, the difference between two 

sequential values is due only to the random variability of the measures. 

We propose to use the SR-invariant scheme to detect changes in the 

mean of the nodes’ readings. Once a change is detected, the node 

sends its most recent value to the base station. 

Let t’ the last time a node has sent its value to the base station. At each 

time t, the node collects the data and computes Rn(δ), where n = t – t’.  

To compute Rn(δ), the node needs the n most recent readings since the 

last transmission,  X(t’+1), X(t’+2) , … , X(t’+n-1) , X(t’+n).   To optimize the 

calculations, the node stores the sums Si, i = 1,2,…,n, instead of the 

values Xi. At the next time n+1, the node computes Sn+1 just adding 

the recent reading, Xn+1, to Sn .  

TS-SPC protocol uses the statistic Rn(δ) as follows. Suppose we define 

a relevant change as ∆ = 2 and set a proper value for Bδ. Let SR.rel be 

a function so that 

{ (δ=2)if

otherwise

1,     (δ=2)
 

0,  
nR B≥

=SR.rel

 (2) 

At each time t, the node evaluates the function SR.rel. If  SR.rel= 1, it 

sends data to base station. When the base station receives a message 

from the node with a new value, it updates its database using this 

value. Otherwise, the base station uses the last stored value.     

A. Dealing with outliers  

Even if the mean of a time series is constant, discrepant values can 

occur sometimes. These values are outliers and appear as the “peaks” 

or “spikes” of the time series plot. 

The presence of outliers does not signify the mean has changed. This 

is clear if we can compare the time series values before and after the 

outlier, examining the time series plot, for instance. 

However, an on-line change-point detection scheme can interpret an 

outlier as a change in the mean, since the scheme only knows the 

values before the outlier, not after it. Furthermore, a sequence of 

increasing (or decreasing) values can mimic a change in the mean, 

since the sequence can reach a “peak” and decreases (or increases) 

towards the mean value again.  

The only way to distinguish a change-point from an outlier is to know 

what happens after the change-point candidate. Then, the solution is to 

use a post-monitoring window. Once the scheme detects a change, this 

value is declared as a change-point candidate and some sensor 

readings are monitored after this point. These readings compose the 

post-monitoring window. We use these monitoring readings to 

compare the time series before and after the change-point candidate 

and decide if it is a change-point or not.  

Once the node evaluates the function SR.rel in (2) and its output is 1, 

it calls the post-monitoring algorithm. For the next A time periods (the 

size of monitoring window), the node only collects the data. At the end 

of the monitoring interval, it calculates the average of the collected 

values and compares the result with the average of the (n-1) values 

collected before the change-point candidate, serie.avg. If the change-

point candidate is an outlier, the average values before and after it 

should be similar. Otherwise, the average values will be different, 

pointing to a change-point. This comparison is standardized by the 

standard deviation estimate (sigma.est). If this standardized 

difference is greater than a limit value (e.g. 1 or 2), the algorithm 

declares the change-point candidate as a change-point (chg=1). The 

post-monitoring algorithm returns the result (chg), the values read 

during the monitoring interval (serie.real), the time count updated 

and the average of the data collected during the monitoring window 

(serie.real.avg). 

 To classify the change-point candidate as a change-point, we define 



the function non.outlier  as follows  

{ if

otherwise

1,     
 

0,  
=

chg = 1
non.outlier , (3) 

where chg is one of the outputs of the post-monitoring algorithm.  

As we discuss in the section 5, the post-monitoring window has an 

important role to decrease the prediction error, especially when the 

sequence of sensor readings is very “spiky”.   

B. The SR-invariant scheme in the TS-SPC protocol 

The TS-SPC has two phases: the learning phase and the operation 

phase. In the learning phase, TS-SPC estimates the variance of the 

monitored variable, which is essential to the next phase, the TS-SPC 

operation.  

1) Learning phase  

To use the SR-invariant procedure, it is necessary to know the standard 

deviation of the observations (σ). Before beginning its operation, the 

node collects values during a short time window and uses them to 

estimate σ. That is the learning phase.    

This approach assumes the mean is constant inside this time window, 

i.e., there is no change-point. This assumption can be realistic if, during 

the learning window, we use a sampling rate greater than the sampling 

rate set to the nodes operation. For instance, if the regular sampling 

rate is one reading per minute, the learning window can use three 

readings per minute during few minutes (ten or fifteen).  

If a change-point occurs during the learning window, the variance will 

be overestimated. This would increase the suppression rates, but it can 

increase the difference between the real value and the value the base 

station stores. Discrepant values can also affect the estimative of the 

standard deviation. Then, the learning algorithm filters these outliers 

before calculating the estimative for σ.   

Until completing N.L observations, the node collects and stores values 

every t.s time units, the user set sampling rate. The outliers limits are 

calculated according to the rules for building boxplots [8]. First, we 

calculate P25 and P75, the 25th and the 75th percentiles of the 

observations, respectively. To calculate the percentiles, the algorithm 

has to sort the data, which can be done during the values storage. The 

difference IQ=(P75-P25) is called interquartile range. The upper and 

lower limits are defined as outlier.upper = P75 + 1.5 IQ and 

outlier.lower = P25  - 1.5 IQ. Values outside these limits are 

considered to be outliers.  

After eliminate the possible outliers, the algorithm calculates the 

variance of the observations (sigma2.est). 

If the characteristics of the monitored variable are well-know, the user 

can set upper and lower thresholds to the variance estimative. If this 

estimative is not inside the thresholds, the node starts a new learning 

phase.  

2) The operation phase 

After the learning phase, the node has all the parameters it needs to 

start the operation phase: the user-set values (B, δ and limit) and the 

estimative for σ (sigma.est). Fig. 1 presents the pseudo-code for TS-

SPC operation phase. We use the notation [i] to represent the i-th 

element of a queue. 

After initializing the time counts, global and local, the node collects the 

first value and sends it to the base station (lines1-4). This is the first 

data transmission. Then, the node standardizes the collected value, 

stores it into the queue serie.Sn  and updates the global time count 

(lines 5-7).  

The algorithm proceeds while the node’s battery has a non-critical 

level of energy (energy.OK=1). The node reads the sensed value, 

standardizes it and updates the local count n (lines 9-11).   

The algorithm proceeds while the node’s battery has a non-critical 

level of energy (energy.OK=1). The node reads the sensed value, 

standardizes it and updates the local count n (lines 9-11).   

 
TS-SPC operation.phase() 

Input     B, delta.tg, A, limit, sigma.est 

Output    values sent to base station 

 

1)  t = 1 ;         # the global time count 

2)  n = 1 ;         # the local time count 

3)  read value.t ;  

4)  send value.t ; 

5)  value.t = value.t / sigma.est ; 

6)  serie.Sn = value.t ; 

7)  t = t + 1; 

8)  while (energy.OK = 1) do  

9)    read value.t ; 

10)   value.t = value.t / sigma.est ; 

11)   n = n + 1 ; 

12)   calculate 

        serie.avg = serie.Sn/(n-1) ;  

        S.n = serie.Sn[n-1] + value.t ; 

13)   enqueue S.n into serie.Sn ; 

14)   calculate 

        R.n = Rn.delta(serie.Sn,delta.tg) ; 

15)   if (SR.rel = 1) 

16)    if (A≠0) 

17)      post-monitoring(serie.avg, limit,  

                         sigma.est, A, t) ; 

18)      t = tk ; 

19)      if (non.outlier = 1) 

20)        send serie.real.avg * sigma.est; 

21)        serie.Sn = serie.real.avg ; 

22)        n = 1 ; 

23)      else 

24)        for j=1 to A do 

25)            S.n = S.n + serie.real[j] ; 

26)            enqueue S.n into serie.Sn ; 

27)        n = n + A ; 

28)    else           #if A=0 

29)      calculate 

           value.t=serie.Sn[n]–serie.Sn[n-1]; 

30)      send  value.t * sigma.est;  #End of if (line 15)     

31)   t = t + 1 ;     #End of while  

32) calculate 

33)   value.t = serie.Sn[n] – serie.Sn[n-1]; 

34)   value.t = value.t * sigma.est  ; 

35) send  ( value.t , end.flag ). #End of node’s operation 

     

Fig. 1. Pseudo code for the TS-SPC  operation phase algorithm 

 

Using the last sum queued into serie.Sn (Sn-1) and the last read value 

(value.t), the algorithm calculates the average of the last (n-1) read 

values and the value of Sn (line 12).  Then, it updates the queue 

serie.Sn. Using this strategy, the node needs to store only n+1 

values (S1, S2, …, Sn and the average)  and quicken the calculations, 

doing only two calculations to update them. 

At next step (lines 14-15), the algorithm calculates the value for Rn(δ) 



using (1) and evaluates this value in the function SR.rel in (2). If the 

SR.rel output is equal to 1, the value.t is a change-point candidate. 

Then, if the size of the monitoring window (A) is different from zero 

(line 16), the algorithm calls the post-monitoring algorithm. After the 

end of the monitoring window, the global time count is updated to take 

account the A time periods of the window (line 18).  

If the non.outlier function in (3) has declared the change-point 

candidate as a change-point, the node “unstandardizes” the mean of 

the values read inside the monitoring window (serie.real.avg) and 

sends it to base station (lines 19-20). Then, it starts a new sums queue 

with the mean value sent to base station and reset the local count n to 

one (lines 21-22). If the change-point candidate is not declared as a 

change-point (line 23), the algorithm calculates the A sums using the 

values in serie.real and updates the sums queue serie.Sn and its 

size count n (lines 24-27).  

If a monitoring window is set to zero (line 28), the algorithm must 

transmit the last collected value. Since the algorithm stores the sums Si 

and not the values themselves, it has to calculate the last read value 

based on the difference of the last two stored sums (line 29). After 

“unstandardizing” this value, the algorithm sends it to the base station 

(line 30).     

The global count is updated (line 31) and the cycle restarts (lines 8-31). 

When the nodes’ battery is running out (energy.OK=0), the algorithm 

must transmit the last collected value. Then, it calculates the last read 

value based on the difference of the last two stored sums, 

“unstandardizes” this value and sends it to the base station together a 

flag indicating the end of the nodes’ operation (lines 32-35). 

C. Costs  

1) Data and parameters storage: at each time period t, the node has to 

store n = t – t’ sums, where t’ the last time a node has sent its value to 

the base station. If a post-monitoring window is open, the node also 

has to store the A values read inside that window.  During the learning 

phase, the node has to store NLS values. The TS-SPC protocol needs to 

store six parameters:  A, δ, B, sigma.est, limit and NLS.   

2) Calculations: the TS-SPC protocol operation involves mainly 

simple calculations, as additions and multiplications. The most 

sophisticated calculations are two exponentiations of the Rn(δ) 

expression and the square root of the standard deviation expression, 

which is used only in the learning phase. 

3) Sent messages: the message the node sends to the base station 

contains only one value. Supposing each value in a message costs 1 

energy unit, the cost of a TS-SPC message is 1 energy unit. 

 

4. RELATED WORK 

 

Recently, some protocols for data collection in sensor networks have 

proposed to use statistical models to predict the nodes’ data at the base 

station reducing the amount of communication inside the network 

(model-driven approach to data collection [3]).  

The main idea in [3] and correlated works  is to keep synchronized 

two probabilistic models: one at base station and other at the nodes. 

The model parameters are estimated in a learning phase. Based on 

these identical models, nodes and base station make the same 

predictions on the data to be collected. Then, the node collects the 

actual data and compares them to its prediction. If the difference 

between the real and predicted values is greater than a user-defined 

error bound, the node sends its data to the base station. Otherwise, the 

node suppresses the data. 

A similar idea appears in [2]. The PAQ protocol makes predictions 

based on a time series model, the third-order autoregressive model, 

AR(3). Given a time period t, the predicted value in t is written as a 

linear combination of the last three observations before t. When the 

real and the predicted values differ by an amount greater than pre-

defined error bounds, PAQ uses an algorithm to monitor outliers and 

re-learn the four model parameters, sending their new values (or the 

outliers) to base station. A variation of  PAQ, called in [1] as 

exponential regression (EXP), uses the observation in the time  period 

(t-1) in a simple linear regression to predict the observation in t. Thus, 

EXP has to estimate two model parameters. We return to PAQ and 

EXP in sections V and VIII.       

We classify our TS-SPC proposal as a model-driven approach for 

temporal suppression [1]. As the protocols we have described, we use 

the mean of the monitored variable to predict its value. However, 

differently from them, we do not model this mean. The TS-SPC 

protocol just monitors the mean changes along the time.  

The messages of the TS-SPC protocol are cheaper than the messages 

of the earlier described protocols. The TS-SPC messages contains only 

one value, whereas EXP and PAQ messages, for instance, can contain 

two or four values, respectively, if they send the new values for their 

models parameters.  

It is worth to note that our TS-SPC proposal is not constrained to 

applications whose interest is to monitor the mean of the nodes 

measurements. We use a method for mean change detection as a 

strategy to decide whether the node must suppress its data, adopting 

the mean as an estimate of the node’s value, likewise the other model-

driven approaches for temporal suppression. 

To the best of our knowledge, our proposal for data collection protocol 

in sensor networks is the first one using an SPC technique as a basis 

for a data suppression scheme. 

In this paper, we have focused on temporal suppression. We defer the 

discussion on spatio-temporal suppression strategy to a full version. 

 

5. EXPERIMENTS 

 

We have run experiments using real data, which have been collected at 

the weather station of the University of Washington (USA) 1. We have 

chosen four variables with different behaviors: smooth changes but 

often (solar irradiance); smooth changes but not so often (air 

temperature), “spiky” with abrupt changes (wind speed); “spiky” with 

very abrupt changes (relative humidity). The temporal resolution is 

one measurement per minute and the time series have nearly 4000 

observations (about 3 days). In the solar irradiance time series, we 

have not considered the night periods (readings equal to zero), since 

the nodes should turn off this kind of sensor to save energy. To each 

chosen time series, we have evaluated the performance of the 

following suppression schemes: value-based (VB) [1], exponential 

regression (EXP), PAQ and TS-SPC. VB scheme is the most simple 

temporal suppression scheme. It calculates the absolute difference 

between two sequential values xt and xt-1, divides the resulting value for  

xt-1 and compares the final result to an error threshold εVB. The values 

for the parameter of the value-based scheme have been εVB=(0.03, 

0.05, 0.10).  For the TS-SPC scheme, the parameters for the SR-

                                                           
1 http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html 



invariant scheme and the post-monitoring window have been 

δ=(0.5,1.0,2.0,3.0) and A=(0,5,10,15), respectively. We have set 

ARL0=500, the post-monitoring limit=1.5 and calculated the values 

for Bδ according to the Table 1 in [9].   

For EXP and PAQ parameters, we have initially set NLS=60, A=15, 

a=8, the model re-learn threshold εδ=(1.8, 3.0) and the outlier threshold 

ευ=6.0, which are the values cited in [2] as good choices. During the 

schemes evaluation, we have observed other choices for the values of 

A, εδ and ευ could improve the performance of the EXP and PAQ 

schemes. Whenever this occurred, we have adopted the parameters 

choice that results in the best performance and indicate this choice in 

the results presentation.  

We have calculated the average message cost of PAQ and EXP 

schemes as the weighted average of the costs to send an outlier and the 

model parameters. The weights are the number of outlier messages 

and parameters messages. The models of PAQ and EXP have four 

and two parameters, respectively. Thus, the costs to send a message 

with these parameters are four energy units for PAQ and two energy 

units for EXP. The cost to send an outlier is one energy unit, which is 

also the costs of the TS-SPC and valued-based schemes.  

We have evaluated the performance of TS-SPC protocol using two 

measures: the suppression rate and the median absolute relative error 

(MARE). The suppression rate is calculated as the proportion of 

suppressed data  

TS

(number of sent messages)
Suppression rate = 1-

(N )AA n×−

, (4) 

where nA is the number of times the post-monitoring window A have 

been used. During the post-monitoring window, there are no 

transmissions. Then, we have to discount these time periods (A x nA) 

of the time series size (NTS).   

The median absolute relative error (MARE) measures the prediction 

error and is calculated as  

( )(0, )( 1,2,..., ) ˆ
ˆ

t tTS

t t

t

t N x xMARE median I
x

x x
∞= × −

 −
=  

 

  (5) 

where I(0,∞)(.) is the indicator function. In the MARE expression, the 

indicator function works to exclude the zeros. A zero value occurs 

when the node sends its value to the base station. In the TS-SPC 

schemes, this occurs only if A=0. To avoid accounting for the number 

of sent messages into both performance measures, we have excluded 

the values equal to zero.  

There is a trade-off between the suppression rate and MARE. In 

general, we expect schemes with low suppression rates have low 

MARE values, since they update the base station database more often. 

However, this is not a rule, as we will see later.  

The points in the figures 2 to 5 present the summaries of the 

performance measures for the best parameters choices of each scheme. 

Points nearer to the upper-left corner represent the schemes with the 

best performances. 

The TS-SPC schemes have had performances comparable and even 

superior to the other temporal suppression schemes, especially when 

the time series are “spiky” and have abrupt changes (Fig. 4 and 5). 

Although the other schemes have got suppression rates greater than the 

TS-SPC rates (EXP and PAQ in Fig. 4; VB in Fig. 5), the size of their 

errors has degraded their global performance. Furthermore, for the 

EXP and PAQ schemes, the average message costs have been 2.0 and 

3.93 energy units, respectively (wind speed time series). 

Unfortunately, neither [1] nor [2] has enough details on its evaluation 

experiments to allow us for comparing our results with its results.  
 

 
Fig. 2. Performance of the suppression schemes in the solar irradiance time 

series (upper-right corner). We have excluded the TS-SPC schemes with 

MARE values greater than 0.04 to improve the visualization.  

 
Fig. 3. Performance of the suppression schemes in the air temperature time 

series (bottom-left corner). 

 

 
Fig. 4. Performance of the suppression schemes in the wind speed time series 

(bottom-right corner). 

 

When the changes in the time series have smooth but often changes 

(e.g., solar irradiance), we expect smaller suppression rates, since the 

schemes force the nodes to send data to the base station more often. 

However, even in this adverse condition, the TS-SPC schemes have 

got the highest suppression rates while have kept the error in 

acceptable levels (Fig. 2, TS-SPC schemes [δ=0.5,A=0] and 

[δ=1.0,A=0]). 

The δ parameter helps the TS-SPC scheme to adapt to the size and the 

frequency of the changes. When changes were smooth and often, the 



TS-SPC schemes with the best performances have had small δ values 

(Fig. 3). If the smooth changes are not so often, the schemes with the 

greatest δ (2.0 and 3.0) values have the best performances (Fig. 4). 

The greatest δ values also leads to the best performances of the TS-

SPC schemes when the time series is “spiky” and changes are abrupt 

(Fig. 4). The difference is the value for the monitoring window (A). 

The monitoring window does not provide any improvements on the 

TS-SPC performance if the time series has smooth changes (Fig. 3). 

However, this outlier control is important for “spiky” time series, 

especially if the changes are not very abrupt (Fig. 4). 

When the time series has two kinds of changes, small and abrupt (e.g. 

relative humidity), TS-SPC schemes with small values of δ (0.5 and 

1.0) have had the best performances (Fig. 5). As we have discussed in 

the later section, SR schemes with small target changes (δ) can detect 

small real changes as fast as large real changes. The versatility of these 

SR schemes explains their better performance. Furthermore, the 

absence of a monitoring window (A=0) has also contributed to 

improve the performances, since the often changes cannot afford to 

additional delays. 

 
Fig. 5. Performance of the suppression schemes in the relative humidity time 

series (bottom-left corner). 

 

We have run experiments with simulated data to study the effect of the 

changes size, the autocorrelation and variance of the time series on the 

performance of the TS-SPC suppression scheme. We consider the TS-

SPC schemes have got an excellent performance in the simulated 

experiments. Even working in an adverse scenario (time series with 

low autocorrelation and small changes in the mean), TS-SPC schemes 

have got suppression rates larger than 91% and prediction errors 

smaller than 5.5%. In their best performances, TS-SPC schemes have 

got suppression rates close to 99% (time series have had high 

autocorrelation).  For briefness, we defer the complete discussion 

about these results to a full version of this paper. 

C.  A note on modeling the mean   

The model-driven approach is an efficient solution to data collection in 

sensor networks if the monitored variable has a well-known behavior 

so that reliable models can be defined [1]. Thus, in these scenarios, the 

lack of structure of the TS-SPC model for the mean could degrade its 

performance if we compare it to the performance of a scheme with a 

structured model for the mean.  To evaluate this hypothesis, we have 

simulated time series according to the AR(3) model, which is the 

model PAQ uses. Even in a scenario clearly favorable to PAQ, the TS-

SPC schemes have got performances comparable to the PAQ 

performances, in addition to a smaller average message cost.  

6. CONCLUDING  REMARKS 
 

To define a TS-SPC suppression scheme, the user has to choose the 

values for three parameters: the frequency of false alarms (ARL0), the 

size of the relevant change in the mean (δ) and the size of the window 

for outliers control (A).  The value for ARL
0
 depends on the user 

tolerance to false alarms. Although a low frequency of false alarms is 

welcome, it is worth to remember a high value for ARL0 increases the 

expected delay to detection (ARL
1
). 

As we have discussed earlier, small values of δ are also efficient to 

detect larger changes. Thus, setting a small δ should be useful to 

capture the small changes just as the large ones. The side effect could 

be a greater number of false alarms. However, using a monitoring 

window could help to decrease these events. 

The main role of the monitoring window (A>0) is to filter possible 

outliers and decrease the number of false alarms. Then, using a 

monitoring window always improves the suppression rate, although it 

can have the side effect of increasing the prediction error in some 

situations. However, the increasing of the prediction errors is not too 

dramatic, except for time series having a quite predictable behavior (no 

outliers) as the sequence of solar irradiance measurements. 

Our future work includes a spatio-temporal version of the TS-SPC 

scheme, which explores the spatial homogeneity of the data in some 

areas of the sensors field and localizes the most part of the 

communication among  the nodes [10].  
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