
A statistical process control approach for data

collection in sensor networks

#Ilka A. Reis
1,2

, Gilberto Câmara
1
, Renato Assunção

2
,Antônio Miguel V. Monteiro

1

1
National Institute for Space Research (INPE)

Av. dos Astronautas, 1768 – São José dos Campos – Brazil, {ilka,gilberto,miguel}@dpi.inpe.br
2
 Departamento de Estatística, Universidade Federal de Minas Gerais (UFMG)

Av. Antônio Carlos, 6627 – Belo Horizonte – Brazil, assuncao@est.ufmg.br

Abstract

The main goal of a data collection protocol for sensor networks is to

keep the network’s database updated while saving the nodes’ energy

as much as possible. To achieve this goal without continuous

reporting, the data suppression is a key strategy. In this paper, we

propose to use a technique for statistical process control in a temporal

suppression scheme. We have inserted one of these techniques (the

Shiryayev-Roberts scheme) in a data collection protocol named TS-

SPC (Temporal Suppression via Statistical Process Control). TS-SPC

detects changes in the mean of the monitored variables and

communicates just these changes to the base station. Experiments with

real and simulated data have shown the TS-SPC protocol has

suppression rates comparable and even greater than the rates of

temporal suppression schemes proposed in the literature.

Furthermore, it keeps the prediction errors at acceptable levels, if we

consider the complexity of the data collection using a sensor network.

1. INTRODUCTION

Sensor networks are a powerful instrument for data collection,

especially for applications like habitat and environmental monitoring.

These applications often require continuous updates of the database at

the network’s root. However, sending continuous reports would

quickly run out the limited energy of the nodes. A solution for

continuous updating without continuous reporting is to use data

suppression [1].

To define a data suppression scheme, nodes and base station have to

agree on an expected behavior for the nodes’ readings. Thus, nodes

only send reports to the base station when their values do not fit to the

expected behavior, which is used to predict the suppressed data.

A temporal suppression scheme uses the correlation among the

readings of a same node to build the expected behavior for the nodes’

readings [2]. A spatio-temporal suppression scheme also considers the

correlation among the observations of neighboring nodes [1].

Model-driven data collection [3] defines the mean of a node’s

observations as their expected behavior and models this mean using

temporal or spatio-temporal correlations.

In this paper, we consider the sequence of data collected by a node as

observations of a temporal process and the mean of this process as its

expected behavior. However, instead of modeling this mean, we

propose to monitor its changes along the time and only send data to the

base station when the value of this mean has a relevant change. To

monitor the process mean, we employ the Shiryayev-Roberts scheme,

a technique for statistical process control (SPC).

We have inserted a variation of the Shiryayev-Roberts scheme [4] as

part of the TS-SPC (Temporal Suppression via Statistical Process

Control) protocol for data collection in sensor networks.

The main goal of this paper is to define the temporal suppression

scheme of the TS-SPC protocol and compare its performance with the

existing alternatives to temporal suppression. Since the data

transmission is the most important energy consumer, we use the

suppression rates as a proxy for the energy consumption. The

prediction error measures the quality of data sent to the base station.

The remainder of this paper is organized as follows. Section 2

describes the change-point problem and the Shiryayev-Roberts

scheme. In section 3, we present the TS-SPC protocol. Section 4

describes the related work. In Section 5, we present the results of

experiments with simulated and real data. Finally, section 6 draws

some concluding remarks.

2. THE CHANGE-POINT PROBLEM AND

THE SHIRYAYEV-ROBERTS SCHEMES

The problem of detecting changes in the parameters of a temporal

process is known as the change-point problem [5] and is often found in

areas such as industrial statistics and epidemiology.

Setting the mean as the parameter of interest, we summarize the

change-point problem as follows. Let [Xn] = X1, X2, … be a sequence

of random variables. Before time of change v, the mean of [Xn] is µ0.

After the change-point v, [Xn] has mean
0µ() = µ + , - < < σ∆ ∆⋅ ∞ ∆ ∞,

where σ is the standard deviation of Xi, i=1,2,3…,n.

The time of change, v, is unknown but we suppose for the moment

that µ0 is known. The goal of a change-point detection scheme is to

raise an alarm as soon as possible if a change has occurred, constrained

to a predefined frequency of false alarms. Thus, we have a stopping

time N on the sequence of observations [Xn]. After the stopping time, a

new sequence of variables is observed. The expected value for N

when there is no change (v=∞), E∞[N], is called the average run length

(ARL). Its value represents the number of observations in the

sequence before a false alarm and is often referred as ARL0.

The largest ARL to detection (ARL1) express the expected delay and it

is calculated as 1 sup [- |] vv E N v N v≤ <∞ > . There is a trade-off between

the number of observations before a false alarm (ARL0) and the

expected delay to detection (ARL1): higher the false alarms control

(high ARL0), smaller the speed to detect a change (high ARL1). An

optimal change-point detection procedure minimizes the value of

ARL1 while keeps the ARL0 at an acceptable level.

Based on the sequence [Xn] and for any 1 � k < n, we want to test

0(H : =) v ∞ against 1 (H : =k, =)v δ∆ . The value δ is the target change.

Among the several proposals to deal with the change-point problem

[5], Pollak and Siegmund [4] has proposed a variation of the

Shiryayev-Roberts (SR) scheme to deal with the unknown µ0. We call

this proposal as SR-invariant. Considering an original sequence of

Gaussian variables with unit variance, the SR-invariant has the

following test statistic for a two-sided alternative (|∆| = δ)

() ()
1

2

1

() cosh exp 1 / 2
n

n n k

k

R kS n S k k nδ δ δ
−

=

 = − −    ∑ , (1)

where
1 1

 and
n k

n i k i

i i

S X S X
= =

= =∑ ∑ .

To complete the specification of an SR scheme, it is necessary to

define a stopping time NB so that { }inf : 1, ()B nN n n R Bδ= > ≥ . The

value for the threshold B depends on the value of δ and on the

minimum value for ARL0, which is determined by the user. So, we

can write Bδ.

The size and the frequency of the change to be detected influence the

expected delay to detection (ARL1) [4, 6]. Small changes are harder to

be detected than large changes. For instance, to detect a small change

(∆=0.5) and a large change (∆=2.0) in a very dynamic time series

(changes in the mean occur to each 10 observations, in average), the

expected delays of the SR(δ=0.5) scheme are 62.3 and 5.4 time

periods, respectively. The scheme SR(δ=2.0) takes, in average, 291.5

and 3.4 time periods, respectively.

This simple numerical example is helpful to illustrate another

characteristic of the SR schemes: to detect large changes, SR schemes

with small δ values are as fast as SR schemes with large δ values (from

the example, ARL1 = 5.4 and 3.4 time periods, respectively).

However, to detect small changes, schemes with large δ values are not

so fast as schemes with small δ values (ARL1 = 291.5 and 62.3 time

periods, respectively).

Lower the changes frequency, lower the expected delay to detection.

For instance, in a process with an interval between changes (v) equal to

10 time periods, a SR(δ=1.0) scheme detects a real change ∆=1.0 with

an expected delay of 6.85 time periods after the change. If the process

is less dynamic (e.g. v=100), the same scheme detects the same change

with an expected delay of 4.67 time periods after the change. The

influence of the changes frequency on the expected delay decreases as

the size of the change rises. To a real change of ∆=2.0, for instance, an

SR scheme with δ=2.0 has the expected delay to detection of 2.20 and

1.90 time periods for process with v=10 and v=100, respectively.

The SR scheme has optimal properties and its performance is

comparable to the performance of popular methods as CUSUM [4, 6,

7]. Moreover, the SR scheme has no assumption about the

independence of the variables in the sequence [Xn].

In the next section, we describe our proposal to use the SR-invariant

procedure in the TS-SPC data collection protocol.

3. THE TS-SPC PROTOCOL

We consider a relevant change in a node’s value occurs if the mean of

monitored variable changes. Otherwise, the difference between two

sequential values is due only to the random variability of the measures.

We propose to use the SR-invariant scheme to detect changes in the

mean of the nodes’ readings. Once a change is detected, the node

sends its most recent value to the base station.

Let t’ the last time a node has sent its value to the base station. At each

time t, the node collects the data and computes Rn(δ), where n = t – t’.

To compute Rn(δ), the node needs the n most recent readings since the

last transmission, X(t’+1), X(t’+2) , … , X(t’+n-1) , X(t’+n). To optimize the

calculations, the node stores the sums Si, i = 1,2,…,n, instead of the

values Xi. At the next time n+1, the node computes Sn+1 just adding

the recent reading, Xn+1, to Sn .

TS-SPC protocol uses the statistic Rn(δ) as follows. Suppose we define

a relevant change as ∆ = 2 and set a proper value for Bδ. Let SR.rel be

a function so that

{ (δ=2)if

otherwise

1, (δ=2)

0,
nR B≥

=SR.rel

 (2)

At each time t, the node evaluates the function SR.rel. If SR.rel= 1, it

sends data to base station. When the base station receives a message

from the node with a new value, it updates its database using this

value. Otherwise, the base station uses the last stored value.

A. Dealing with outliers

Even if the mean of a time series is constant, discrepant values can

occur sometimes. These values are outliers and appear as the “peaks”

or “spikes” of the time series plot.

The presence of outliers does not signify the mean has changed. This

is clear if we can compare the time series values before and after the

outlier, examining the time series plot, for instance.

However, an on-line change-point detection scheme can interpret an

outlier as a change in the mean, since the scheme only knows the

values before the outlier, not after it. Furthermore, a sequence of

increasing (or decreasing) values can mimic a change in the mean,

since the sequence can reach a “peak” and decreases (or increases)

towards the mean value again.

The only way to distinguish a change-point from an outlier is to know

what happens after the change-point candidate. Then, the solution is to

use a post-monitoring window. Once the scheme detects a change, this

value is declared as a change-point candidate and some sensor

readings are monitored after this point. These readings compose the

post-monitoring window. We use these monitoring readings to

compare the time series before and after the change-point candidate

and decide if it is a change-point or not.

Once the node evaluates the function SR.rel in (2) and its output is 1,

it calls the post-monitoring algorithm. For the next A time periods (the

size of monitoring window), the node only collects the data. At the end

of the monitoring interval, it calculates the average of the collected

values and compares the result with the average of the (n-1) values

collected before the change-point candidate, serie.avg. If the change-

point candidate is an outlier, the average values before and after it

should be similar. Otherwise, the average values will be different,

pointing to a change-point. This comparison is standardized by the

standard deviation estimate (sigma.est). If this standardized

difference is greater than a limit value (e.g. 1 or 2), the algorithm

declares the change-point candidate as a change-point (chg=1). The

post-monitoring algorithm returns the result (chg), the values read

during the monitoring interval (serie.real), the time count updated

and the average of the data collected during the monitoring window

(serie.real.avg).

 To classify the change-point candidate as a change-point, we define

the function non.outlier as follows

{ if

otherwise

1,

0,
=

chg = 1
non.outlier , (3)

where chg is one of the outputs of the post-monitoring algorithm.

As we discuss in the section 5, the post-monitoring window has an

important role to decrease the prediction error, especially when the

sequence of sensor readings is very “spiky”.

B. The SR-invariant scheme in the TS-SPC protocol

The TS-SPC has two phases: the learning phase and the operation

phase. In the learning phase, TS-SPC estimates the variance of the

monitored variable, which is essential to the next phase, the TS-SPC

operation.

1) Learning phase

To use the SR-invariant procedure, it is necessary to know the standard

deviation of the observations (σ). Before beginning its operation, the

node collects values during a short time window and uses them to

estimate σ. That is the learning phase.

This approach assumes the mean is constant inside this time window,

i.e., there is no change-point. This assumption can be realistic if, during

the learning window, we use a sampling rate greater than the sampling

rate set to the nodes operation. For instance, if the regular sampling

rate is one reading per minute, the learning window can use three

readings per minute during few minutes (ten or fifteen).

If a change-point occurs during the learning window, the variance will

be overestimated. This would increase the suppression rates, but it can

increase the difference between the real value and the value the base

station stores. Discrepant values can also affect the estimative of the

standard deviation. Then, the learning algorithm filters these outliers

before calculating the estimative for σ.

Until completing N.L observations, the node collects and stores values

every t.s time units, the user set sampling rate. The outliers limits are

calculated according to the rules for building boxplots [8]. First, we

calculate P25 and P75, the 25th and the 75th percentiles of the

observations, respectively. To calculate the percentiles, the algorithm

has to sort the data, which can be done during the values storage. The

difference IQ=(P75-P25) is called interquartile range. The upper and

lower limits are defined as outlier.upper = P75 + 1.5 IQ and

outlier.lower = P25 - 1.5 IQ. Values outside these limits are

considered to be outliers.

After eliminate the possible outliers, the algorithm calculates the

variance of the observations (sigma2.est).

If the characteristics of the monitored variable are well-know, the user

can set upper and lower thresholds to the variance estimative. If this

estimative is not inside the thresholds, the node starts a new learning

phase.

2) The operation phase

After the learning phase, the node has all the parameters it needs to

start the operation phase: the user-set values (B, δ and limit) and the

estimative for σ (sigma.est). Fig. 1 presents the pseudo-code for TS-

SPC operation phase. We use the notation [i] to represent the i-th

element of a queue.

After initializing the time counts, global and local, the node collects the

first value and sends it to the base station (lines1-4). This is the first

data transmission. Then, the node standardizes the collected value,

stores it into the queue serie.Sn and updates the global time count

(lines 5-7).

The algorithm proceeds while the node’s battery has a non-critical

level of energy (energy.OK=1). The node reads the sensed value,

standardizes it and updates the local count n (lines 9-11).

The algorithm proceeds while the node’s battery has a non-critical

level of energy (energy.OK=1). The node reads the sensed value,

standardizes it and updates the local count n (lines 9-11).

TS-SPC operation.phase()

Input B, delta.tg, A, limit, sigma.est

Output values sent to base station

1) t = 1 ; # the global time count

2) n = 1 ; # the local time count

3) read value.t ;

4) send value.t ;

5) value.t = value.t / sigma.est ;

6) serie.Sn = value.t ;

7) t = t + 1;

8) while (energy.OK = 1) do

9) read value.t ;

10) value.t = value.t / sigma.est ;

11) n = n + 1 ;

12) calculate

 serie.avg = serie.Sn/(n-1) ;

 S.n = serie.Sn[n-1] + value.t ;

13) enqueue S.n into serie.Sn ;

14) calculate

 R.n = Rn.delta(serie.Sn,delta.tg) ;

15) if (SR.rel = 1)

16) if (A≠0)

17) post-monitoring(serie.avg, limit,

 sigma.est, A, t) ;

18) t = tk ;

19) if (non.outlier = 1)

20) send serie.real.avg * sigma.est;

21) serie.Sn = serie.real.avg ;

22) n = 1 ;

23) else

24) for j=1 to A do

25) S.n = S.n + serie.real[j] ;

26) enqueue S.n into serie.Sn ;

27) n = n + A ;

28) else #if A=0

29) calculate

 value.t=serie.Sn[n]–serie.Sn[n-1];

30) send value.t * sigma.est; #End of if (line 15)

31) t = t + 1 ; #End of while

32) calculate

33) value.t = serie.Sn[n] – serie.Sn[n-1];

34) value.t = value.t * sigma.est ;

35) send (value.t , end.flag). #End of node’s operation

Fig. 1. Pseudo code for the TS-SPC operation phase algorithm

Using the last sum queued into serie.Sn (Sn-1) and the last read value

(value.t), the algorithm calculates the average of the last (n-1) read

values and the value of Sn (line 12). Then, it updates the queue

serie.Sn. Using this strategy, the node needs to store only n+1

values (S1, S2, …, Sn and the average) and quicken the calculations,

doing only two calculations to update them.

At next step (lines 14-15), the algorithm calculates the value for Rn(δ)

using (1) and evaluates this value in the function SR.rel in (2). If the

SR.rel output is equal to 1, the value.t is a change-point candidate.

Then, if the size of the monitoring window (A) is different from zero

(line 16), the algorithm calls the post-monitoring algorithm. After the

end of the monitoring window, the global time count is updated to take

account the A time periods of the window (line 18).

If the non.outlier function in (3) has declared the change-point

candidate as a change-point, the node “unstandardizes” the mean of

the values read inside the monitoring window (serie.real.avg) and

sends it to base station (lines 19-20). Then, it starts a new sums queue

with the mean value sent to base station and reset the local count n to

one (lines 21-22). If the change-point candidate is not declared as a

change-point (line 23), the algorithm calculates the A sums using the

values in serie.real and updates the sums queue serie.Sn and its

size count n (lines 24-27).

If a monitoring window is set to zero (line 28), the algorithm must

transmit the last collected value. Since the algorithm stores the sums Si

and not the values themselves, it has to calculate the last read value

based on the difference of the last two stored sums (line 29). After

“unstandardizing” this value, the algorithm sends it to the base station

(line 30).

The global count is updated (line 31) and the cycle restarts (lines 8-31).

When the nodes’ battery is running out (energy.OK=0), the algorithm

must transmit the last collected value. Then, it calculates the last read

value based on the difference of the last two stored sums,

“unstandardizes” this value and sends it to the base station together a

flag indicating the end of the nodes’ operation (lines 32-35).

C. Costs

1) Data and parameters storage: at each time period t, the node has to

store n = t – t’ sums, where t’ the last time a node has sent its value to

the base station. If a post-monitoring window is open, the node also

has to store the A values read inside that window. During the learning

phase, the node has to store NLS values. The TS-SPC protocol needs to

store six parameters: A, δ, B, sigma.est, limit and NLS.

2) Calculations: the TS-SPC protocol operation involves mainly

simple calculations, as additions and multiplications. The most

sophisticated calculations are two exponentiations of the Rn(δ)

expression and the square root of the standard deviation expression,

which is used only in the learning phase.

3) Sent messages: the message the node sends to the base station

contains only one value. Supposing each value in a message costs 1

energy unit, the cost of a TS-SPC message is 1 energy unit.

4. RELATED WORK

Recently, some protocols for data collection in sensor networks have

proposed to use statistical models to predict the nodes’ data at the base

station reducing the amount of communication inside the network

(model-driven approach to data collection [3]).

The main idea in [3] and correlated works is to keep synchronized

two probabilistic models: one at base station and other at the nodes.

The model parameters are estimated in a learning phase. Based on

these identical models, nodes and base station make the same

predictions on the data to be collected. Then, the node collects the

actual data and compares them to its prediction. If the difference

between the real and predicted values is greater than a user-defined

error bound, the node sends its data to the base station. Otherwise, the

node suppresses the data.

A similar idea appears in [2]. The PAQ protocol makes predictions

based on a time series model, the third-order autoregressive model,

AR(3). Given a time period t, the predicted value in t is written as a

linear combination of the last three observations before t. When the

real and the predicted values differ by an amount greater than pre-

defined error bounds, PAQ uses an algorithm to monitor outliers and

re-learn the four model parameters, sending their new values (or the

outliers) to base station. A variation of PAQ, called in [1] as

exponential regression (EXP), uses the observation in the time period

(t-1) in a simple linear regression to predict the observation in t. Thus,

EXP has to estimate two model parameters. We return to PAQ and

EXP in sections V and VIII.

We classify our TS-SPC proposal as a model-driven approach for

temporal suppression [1]. As the protocols we have described, we use

the mean of the monitored variable to predict its value. However,

differently from them, we do not model this mean. The TS-SPC

protocol just monitors the mean changes along the time.

The messages of the TS-SPC protocol are cheaper than the messages

of the earlier described protocols. The TS-SPC messages contains only

one value, whereas EXP and PAQ messages, for instance, can contain

two or four values, respectively, if they send the new values for their

models parameters.

It is worth to note that our TS-SPC proposal is not constrained to

applications whose interest is to monitor the mean of the nodes

measurements. We use a method for mean change detection as a

strategy to decide whether the node must suppress its data, adopting

the mean as an estimate of the node’s value, likewise the other model-

driven approaches for temporal suppression.

To the best of our knowledge, our proposal for data collection protocol

in sensor networks is the first one using an SPC technique as a basis

for a data suppression scheme.

In this paper, we have focused on temporal suppression. We defer the

discussion on spatio-temporal suppression strategy to a full version.

5. EXPERIMENTS

We have run experiments using real data, which have been collected at

the weather station of the University of Washington (USA) 1. We have

chosen four variables with different behaviors: smooth changes but

often (solar irradiance); smooth changes but not so often (air

temperature), “spiky” with abrupt changes (wind speed); “spiky” with

very abrupt changes (relative humidity). The temporal resolution is

one measurement per minute and the time series have nearly 4000

observations (about 3 days). In the solar irradiance time series, we

have not considered the night periods (readings equal to zero), since

the nodes should turn off this kind of sensor to save energy. To each

chosen time series, we have evaluated the performance of the

following suppression schemes: value-based (VB) [1], exponential

regression (EXP), PAQ and TS-SPC. VB scheme is the most simple

temporal suppression scheme. It calculates the absolute difference

between two sequential values xt and xt-1, divides the resulting value for

xt-1 and compares the final result to an error threshold εVB. The values

for the parameter of the value-based scheme have been εVB=(0.03,

0.05, 0.10). For the TS-SPC scheme, the parameters for the SR-

1 http://www-k12.atmos.washington.edu/k12/grayskies/nw_weather.html

invariant scheme and the post-monitoring window have been

δ=(0.5,1.0,2.0,3.0) and A=(0,5,10,15), respectively. We have set

ARL0=500, the post-monitoring limit=1.5 and calculated the values

for Bδ according to the Table 1 in [9].

For EXP and PAQ parameters, we have initially set NLS=60, A=15,

a=8, the model re-learn threshold εδ=(1.8, 3.0) and the outlier threshold

ευ=6.0, which are the values cited in [2] as good choices. During the

schemes evaluation, we have observed other choices for the values of

A, εδ and ευ could improve the performance of the EXP and PAQ

schemes. Whenever this occurred, we have adopted the parameters

choice that results in the best performance and indicate this choice in

the results presentation.

We have calculated the average message cost of PAQ and EXP

schemes as the weighted average of the costs to send an outlier and the

model parameters. The weights are the number of outlier messages

and parameters messages. The models of PAQ and EXP have four

and two parameters, respectively. Thus, the costs to send a message

with these parameters are four energy units for PAQ and two energy

units for EXP. The cost to send an outlier is one energy unit, which is

also the costs of the TS-SPC and valued-based schemes.

We have evaluated the performance of TS-SPC protocol using two

measures: the suppression rate and the median absolute relative error

(MARE). The suppression rate is calculated as the proportion of

suppressed data

TS

(number of sent messages)
Suppression rate = 1-

(N)AA n×−

, (4)

where nA is the number of times the post-monitoring window A have

been used. During the post-monitoring window, there are no

transmissions. Then, we have to discount these time periods (A x nA)

of the time series size (NTS).

The median absolute relative error (MARE) measures the prediction

error and is calculated as

()(0,)(1,2,...,) ˆ
ˆ

t tTS

t t

t

t N x xMARE median I
x

x x
∞= × −

 −
=  

 

 (5)

where I(0,∞)(.) is the indicator function. In the MARE expression, the

indicator function works to exclude the zeros. A zero value occurs

when the node sends its value to the base station. In the TS-SPC

schemes, this occurs only if A=0. To avoid accounting for the number

of sent messages into both performance measures, we have excluded

the values equal to zero.

There is a trade-off between the suppression rate and MARE. In

general, we expect schemes with low suppression rates have low

MARE values, since they update the base station database more often.

However, this is not a rule, as we will see later.

The points in the figures 2 to 5 present the summaries of the

performance measures for the best parameters choices of each scheme.

Points nearer to the upper-left corner represent the schemes with the

best performances.

The TS-SPC schemes have had performances comparable and even

superior to the other temporal suppression schemes, especially when

the time series are “spiky” and have abrupt changes (Fig. 4 and 5).

Although the other schemes have got suppression rates greater than the

TS-SPC rates (EXP and PAQ in Fig. 4; VB in Fig. 5), the size of their

errors has degraded their global performance. Furthermore, for the

EXP and PAQ schemes, the average message costs have been 2.0 and

3.93 energy units, respectively (wind speed time series).

Unfortunately, neither [1] nor [2] has enough details on its evaluation

experiments to allow us for comparing our results with its results.

Fig. 2. Performance of the suppression schemes in the solar irradiance time

series (upper-right corner). We have excluded the TS-SPC schemes with

MARE values greater than 0.04 to improve the visualization.

Fig. 3. Performance of the suppression schemes in the air temperature time

series (bottom-left corner).

Fig. 4. Performance of the suppression schemes in the wind speed time series

(bottom-right corner).

When the changes in the time series have smooth but often changes

(e.g., solar irradiance), we expect smaller suppression rates, since the

schemes force the nodes to send data to the base station more often.

However, even in this adverse condition, the TS-SPC schemes have

got the highest suppression rates while have kept the error in

acceptable levels (Fig. 2, TS-SPC schemes [δ=0.5,A=0] and

[δ=1.0,A=0]).

The δ parameter helps the TS-SPC scheme to adapt to the size and the

frequency of the changes. When changes were smooth and often, the

TS-SPC schemes with the best performances have had small δ values

(Fig. 3). If the smooth changes are not so often, the schemes with the

greatest δ (2.0 and 3.0) values have the best performances (Fig. 4).

The greatest δ values also leads to the best performances of the TS-

SPC schemes when the time series is “spiky” and changes are abrupt

(Fig. 4). The difference is the value for the monitoring window (A).

The monitoring window does not provide any improvements on the

TS-SPC performance if the time series has smooth changes (Fig. 3).

However, this outlier control is important for “spiky” time series,

especially if the changes are not very abrupt (Fig. 4).

When the time series has two kinds of changes, small and abrupt (e.g.

relative humidity), TS-SPC schemes with small values of δ (0.5 and

1.0) have had the best performances (Fig. 5). As we have discussed in

the later section, SR schemes with small target changes (δ) can detect

small real changes as fast as large real changes. The versatility of these

SR schemes explains their better performance. Furthermore, the

absence of a monitoring window (A=0) has also contributed to

improve the performances, since the often changes cannot afford to

additional delays.

Fig. 5. Performance of the suppression schemes in the relative humidity time

series (bottom-left corner).

We have run experiments with simulated data to study the effect of the

changes size, the autocorrelation and variance of the time series on the

performance of the TS-SPC suppression scheme. We consider the TS-

SPC schemes have got an excellent performance in the simulated

experiments. Even working in an adverse scenario (time series with

low autocorrelation and small changes in the mean), TS-SPC schemes

have got suppression rates larger than 91% and prediction errors

smaller than 5.5%. In their best performances, TS-SPC schemes have

got suppression rates close to 99% (time series have had high

autocorrelation). For briefness, we defer the complete discussion

about these results to a full version of this paper.

C. A note on modeling the mean

The model-driven approach is an efficient solution to data collection in

sensor networks if the monitored variable has a well-known behavior

so that reliable models can be defined [1]. Thus, in these scenarios, the

lack of structure of the TS-SPC model for the mean could degrade its

performance if we compare it to the performance of a scheme with a

structured model for the mean. To evaluate this hypothesis, we have

simulated time series according to the AR(3) model, which is the

model PAQ uses. Even in a scenario clearly favorable to PAQ, the TS-

SPC schemes have got performances comparable to the PAQ

performances, in addition to a smaller average message cost.

6. CONCLUDING REMARKS

To define a TS-SPC suppression scheme, the user has to choose the

values for three parameters: the frequency of false alarms (ARL0), the

size of the relevant change in the mean (δ) and the size of the window

for outliers control (A). The value for ARL
0
 depends on the user

tolerance to false alarms. Although a low frequency of false alarms is

welcome, it is worth to remember a high value for ARL0 increases the

expected delay to detection (ARL
1
).

As we have discussed earlier, small values of δ are also efficient to

detect larger changes. Thus, setting a small δ should be useful to

capture the small changes just as the large ones. The side effect could

be a greater number of false alarms. However, using a monitoring

window could help to decrease these events.

The main role of the monitoring window (A>0) is to filter possible

outliers and decrease the number of false alarms. Then, using a

monitoring window always improves the suppression rate, although it

can have the side effect of increasing the prediction error in some

situations. However, the increasing of the prediction errors is not too

dramatic, except for time series having a quite predictable behavior (no

outliers) as the sequence of solar irradiance measurements.

Our future work includes a spatio-temporal version of the TS-SPC

scheme, which explores the spatial homogeneity of the data in some

areas of the sensors field and localizes the most part of the

communication among the nodes [10].

REFERENCES

[1] A. Silberstein, R. Braynard, G. Filpus, G. Puggioni, A.

Gelfand, K. Munagala, and J. Yang, "DataDriven Processing

in Sensor Networks," 3rd Biennial Conference on Innovative

Data Systems Research 2007.

[2] D. Tulone and S. Madden, "PAQ: Time Series Forecasting For

Approximate Query Answering In Sensor Networks," Lecture

Notes in Computer Science, pp. 21--37, 2006.

[3] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,

and W. Hong, "Model-Driven Data Acquisition in Sensor

Network," 30th Very Large DataBases Conference, 2004.

[4] M. Pollak and D. Siegmund, "Sequential detection of a change

in a normal mean when the initial value is unknown," The

Annals of Statistics, vol. 19, pp. 394--416, 1991.

[5] M. Frisén, "Statistical Surveillance. Optimality and Methods,"

International Statistical Review vol. 71, pp. 403–434, 2003.

[6] M. Pollak and D. Siegmund, "A diffusion process and its

applications to detecting a change in the drift of Brownian

motion," Biometrika, vol. 72, pp. 267--280, 1985.

[7] R. S. Kennet and M. Pollak, "Data-analytic aspects of the

Shiryayev-Roberts control chart: surveillance of a non-

homogeneous Poisson process," Journal of Applied Statistics,

vol. 23, pp. 125--137, 1996.

[8] J. W. Tukey, Exploratory Data Analysis: Addison-Wesley,

Reading, MA, 1977.

[9] M. Pollak, "Average run lengths of an optimal method of

detecting a change in distribution," Annals of Statistics, vol. 15,

pp. 749--779, 1987.

[10] I. A. Reis, G. Câmara, R. M. Assunção, and A. M. V.

Monteiro, "Data-Aware Clustering for Geosensor Networks

Data Collection," XIII Brazilian Remote Sensing Symposium,

2007.

