
An Algebra for OpenGIS
®
 Coverages based on

Topological Predicates

Gilberto Camara, Danilo Palomo, Sérgio Souza Costa

Image Processing Division (DPI) – National Institute for Space Research (INPE)
Av dos Astronautas, 1758 – 12227-001 – São José dos Campos – SP – Brazil

{gilberto, danilo, sergio@dpi.inpe.br}

Abstract. Map algebra is a collection of functions for handling spatial datasets

where each data contains a set of geometries of the same type which bound to a

geographical reference. The current theory for Map Algebra uses ad hoc opera-

tors proposed by Dana Tomlin. His proposal has had great practical success,

and most GIS implementations provide its operations. However, there is a lack

of theoretical foundations for the operations proposed in Tomlin’s map algebra.

This is a limitation for the proposal of international standards for map algebra.

Specifically, the Open Geospatial Consortium’s proposal for handling a map

(the coverage data type) lacks a set of functions to manipulate its content. To

address this problem, our work proposes a specification for an algebra for Open

GIS® coverages which uses a dimension-extended version of Egenhofer and

Herring’s 9-intersection predicates to express spatial operations. The proposed

coverage algebra includes all Tomlin’s functions, as well as operations that are

not part of Tomlin’s algebra, but are useful in practice. Our proposal could be

the basis for setting up standard for operations on Open GIS coverages. The use

of standards for operations in coverages would be a significant advance for in-

creased interoperability of spatial data.

1 Introduction

In recent years, there has been a significant effort to standardize the technology of

geographical information systems (GIS). This effort is motivated by the large diffu-

sion of GIS worldwide, the need to share geographical data, and for long-term main-

tenance of geographical archives. Sharing geographical data requires that different in-

stitutions, using diverse technologies, have access to the same data sets. Long-term

archive maintenance needs that data outlives both its original media support and the

software used to build it. Thus, sharing and maintenance of geographical data need

standardization. The Open Geospatial Consortium (OGC) is developing standards for

modelling, accessing, storing, and sharing geographical data. The extent of the effort

involved in OGC’s mandate is significant. Therefore, despite the progress already

achieved, there are still areas where OGC’s task is not complete. One of the missing

parts of OGC’s specification is a set of functions for manipulation of coverages, a

subject commonly referred to as ‘map algebra’. The current version of OGC’s specifi-

cation for coverages [1] mentions unary and binary operations, and does not consider

spatial operations. Since there is a literature on map operations ([2] [3] [4]), it is im-

portant to consider how these operations can be used for handling OGC’s coverages.

This work will discuss how to extend OGC’s coverage data type to create an algebra

for coverages.

The main contribution to map algebra comes from the work of Tomlin [4]. Tomlin

proposed a set of operations that has proven useful in practice. Extensions to Tomlin’s

map algebra include the GeoAlgebra of Takeyama and Couclelis [5] and MapScript, a

language that includes dynamical models [6]. Extensions of map algebra for spatio-

temporal data handling are discussed by Mennis et al. [7] and Frank [8]. All these

works use Tomlin’s algebra as a basis for their work. The main problem with

Tomlin’s algebra and its extensions is their ad hoc basis. There is no foundation for

assessing the completeness of his algebra. Thus, there could be other types of opera-

tions that are missing in his algebra.

Therefore, one of the open challenges in spatial information science is to develop a

theoretical foundation for a comprehensive set of operations on coverages. We need

to find out if Tomlin’s map algebra is part of a more general set. We state these ques-

tions as: “What is the theoretical foundation for spatial operations on coverages?”,

“Could this theoretical foundation provide support for a comprehensive spatial alge-

bra for coverages?” To respond to these questions, we take the topological predicates

of Egenhofer and Herring [9] as a basis for defining an algebra for coverages. Using

these predicates, we develop a coverage algebra that includes Tomlin’s map algebra

as a subset.

In what follows, we briefly review the literature about coverages, map algebra and

spatial predicates in chapter 2. In section 3, we present an algebraic specification of

an algebra for coverages. In section 4, we present some examples of its use, including

some problems that are not expressible in Tomlin’s work. This paper is the third on

our research on providing foundations for map algebra. In [10], we point out how to

generalize Tomlin’s map algebra by incorporating topological spatial predicates. That

paper did not consider the OpenGIS® coverage type and lacked a rigorous algebraic

specification. In [11], we discuss the use of functional programming for GIS applica-

tion development, and provide an example of a map algebra implementation in the

Haskell language. In the current paper, we use the findings of [10] and [11] to provide

a specification for an algebra for OpenGIS® coverages, using a general-purpose

specification language. We also provide examples of its use.

2 Literature Review

2.1 The OpenGIS
®
 Coverage

OGC’s definition of coverage provides a support for the concepts of ‘fields’ and

‘maps’[1]. A coverage in a spatial representation that covers a geographical area and

divides it in spatial partitions that may be either regular or irregular and assigns a

value to each partition. The computer representation of a coverage consists of a cov-

erage function over a discrete domain, called the DiscreteC_Function. Its domain is a

collection of geometries and its range is a set of vectors of attributes. The OGC speci-

fication describes the DiscreteC_Function as having four operations, shown in Figure

1 below:

• Num: finds the number of geometries in the coverage.

• Values: finds the possible values of the coverage function.

• Domain: finds the geometries in the domain of the coverage function.

• Evaluate: given a geometry, return a vector that represent the values of the cover-

age function for the associated location.

Fig. 1. The Open GIS discrete coverage function – source: [1]

An example is coverage whose domain is the geometries that describe the states of

a country, and the range is each state’s population in 2004. A second example would

be a coverage whose domain is a set of regular cells and the range is a set of values

representing the maximum and minimum yearly temperatures the region covered by

the set of cells. OGC considers a set of coverage subtypes, where each subtype uses a

different spatial data structure to build its domain. The subtypes include polygons,

images, TINs, surfaces, and point sets. OGC describes how to evaluate the discrete

coverage function for different coverage subtypes [1].

2.2 Topological operators for spatial relations

The OGC specification describes a set of topological predicates for spatial relations

between geometries of simple features[12]. These predicates use a dimension-

extended version of the 9-intersection model proposed by Egenhofer and Herring [9].

The 9-intersection model considers a geometrical object (A) as composed by a set of

boundary points (∂A), a set of interior points (Aº), and a set of exterior points (A
-
).

For area-area relations, OGC proposes the set {‘disjoint’, ‘equal’, ‘touches’, ‘within’,

‘overlap’, ‘contains’, ‘intersects’} (see Figure 2). For a rigorous definition for area-

area relations to raster representations, see [13] and [14]. For line-area relations, the

model proposes the set {‘disjoint’, ‘touch’, ‘within’, ‘cross’, ‘intersects’}. For point-

area relations, the model proposes the set {‘disjoint’, ‘touch’, ‘within’, ‘cross’}. Other

topological relations are described in [9]. In what follows, we define spatial opera-

tions in coverage algebra should using OGC’s topological predicates.

Fig. 2. Topological predicates for area-area relations based on the 9-intersection matrix.

Adapted from [9].

2.3 Map Algebra

Tomlin’s map algebra [4] includes first-order and higher-order functions for maps.

First order functions take values as arguments (these are the functions associated to

the map values). Higher order functions are functions that have other functions as ar-

guments. Higher order functions are the basis for map algebra operations [15]. These

functions apply a first-order function to all elements of map. Tomlin [4] proposes

three higher-order functions:

• Local function: produce a new map, whose value in each location p depends

only of the values in p in the input maps, as in “classify as unsuitable for farming

all areas with slope greater than 15%”. A local operation is a mapping between

the ranges of the input and output fields (Figure 3.a).

• Focal function: produce a new map, whose value in each location p depends

only of the values of a neighbourhood around p in the input map, as in the ex-

pression “for each county, calculate the average population of its neighbours”.

(Fig. 3. b).

• Zonal function: produce a new map, whose value in each location p depends on

the values of a region in an input map. This region is defined by a restriction on a

third map, called the reference map. Example is “given a map of cities and a digi-

tal terrain model, calculate the mean altitude for each city” (Figure 3.c).

a. Local functions b. Focal functions c. Zonal functions

Fig. 3. Tomlin’s functions for map algebra (source: Tomlin [4]).

We can express Tomlin’s spatial operations using Egenhofer and Herring’s [9]

topological predicates. The focal operation uses the condition of adjacency, which

matches the spatial predicate ‘touch’. The zonal operation uses the condition of con-

tainment, which matches the spatial predicate ‘within’. Since ‘touch’ and ‘within’ are

part of a more general set of predicates, Tomlin’s operations use only a subset of all

possible topological relations between areas. Tomlin’s algebra uses spatial predicates

in a limited way. It applies the ‘touch’ relation (focal function) only over the same

input map. It also only applies the ‘within’ relation (a zonal operation) over a refer-

ence map. If we remove the limits of Tomlin’s algebra, we can have a coverage alge-

bra based on the full set of topological predicates, whose operations don’t restrict the

way in which the predicates are used.

3 A Generalized Algebra for Coverages

This section presents the design of an algebra for coverages. The proposed algebra ex-

tends the coverage data type defined by the Open GIS


 consortium [1] and has non-

spatial and spatial higher-order functions. The nonspatial operations are Tomlin’s lo-

cal operations. The spatial operations perform operations on coverages using

topological predicates.

We define the coverage operations using an algebraic specification of data types.

In our definitions, we use CASL, the Common Algebraic Specification Language

[16]. CASL is a general-purpose language for both requirements and design specifica-

tions. A basic specification in CASL consists of a set of declarations of symbols, and

a set of axioms and constraints, which restrict the interpretations of the declared sym-

bols. For a detailed syntax for CASL specifications, see [16]. We provide examples

from the CASL user manual [16] to allow the reader to better follow our proposal.

The first example has a unique sort and a predicate:

spec STRICT_PARTIAL_ORDER =

sort Elem

pred __ < __: Elem × Elem

axioms

forall x,y,z: Elem

· x < x %(reflexive)%

· x=y if x < y /\ y < x %(antisymmetric)%

 · x < z if x < y /\ y < z %(transitive)%

The STRICT_PARTIAL_ORDER specification uses a sort Elem and a binary infix

predicate symbol ‘<’. Argument sorts are separated by the sign ‘×’. CASL uses ‘__ ‘

(pairs of underscores) as place-holders for arguments. The predicate ‘<’ is associated

to three axioms: reflectivity, antisymmetry and transitiveness. CASL provides the

keyword type to shorten declarations of sorts and constructors, as in the example:

spec CONTAINER [sort Elem] =

type Container::= empty | insert (Elem: Container)

pred __inside __: Elem × Container

axioms

 ∀ e, e’: Elem; C: Container

• ¬(e inside empty)

• e inside (insert (e’, C)) ⇔ (e = e’ ∨ e inside C)

end

3.1 The Coverage Data Type

This section presents an algebraic specification for an extended version of Open GIS

coverage. A coverage is a c_function:: G→ V over a finite collection of geometries G

and a set of attribute values V. Without loss of generality, we will discuss the case of

coverages where each geometry has only one value. The generalization to a coverage

that returns a vector of values is simple, but would need a slightly more complicated

notation. We will assume that Geometry and Value sorts are those used by OGC. The

reader should refer to [1] for details. We begin by defining a set of auxiliary specifica-

tions: list (a list of elements), single and multiargument functions, comparison predi-

cates and topological predicates. For brevity’s sake, we provide a limited list of sin-

gle and multiargument functions and of selection predicates. We can extend these lists

of functions if needed.

spec SINGLEFUNCTION =

 sort Value

 ops
log: Value → Value

exp: Value → Value

sin: Value → Value

sqrt: Value → Value

 end

spec MULTIFUNCTION =

 sort Value

ops
sum: Value × Value → Value

product: Value × Value → Value

maximum: Value × Value → Value

mean: Value × Value → Value

minimum: Value × Value → Value

 end

spec LIST [sort Elem]

type List::= empty | cons (Elem; List)

ops

 length: List → Integer

end

spec COMPPRED =

 sort Value

 pred
__== __: Value × Value

__<__ : Value × Value

__ >__ : Value × Value

__ != __ : Value × Value

end

spec TOPOPRED =

sort Geometry

 pred
__within__: Geometry × Geometry

__overlap__: Geometry × Geometry

__disjoint__: Geometry × Geometry

__equal __: Geometry × Geometry

__touch__: Geometry × Geometry

__contains__: Geometry × Geometry

__cross__: Geometry × Geometry

__intersects__: Geometry × Geometry

 end

Using these definitions, we provide an abstract specification the Coverage data

type. It uses the operations defined by OGC (see Figure 1 above) and includes three

constructors, a new predicate and a new operation.

spec COVERAGE [sort Geometry, sort Value, sort List] =

type Coverage::= empty |

 new (List [(Geometry, Value)])

 subset (Coverage, List [Geometry])

ops

insert: Coverage × (Geometry, Value) → Coverage

evaluate: Coverage × Geometry → Value

domain: Coverage → List [Geometry]

num: Coverage → Integer

values: Coverage → List [Value]

pred

__contains __: Coverage × Geometry

axioms

 ∀g, g’: Geometry; v: Value; C: Container

• contains (C, g) ⇔ g ∈ domain (C)

• evaluate (C, g) == error ⇔ contains (C, g) == false

• evaluate (insert (C, (g, v)), g) = v

• v = evaluate (C, g) ⇔ v ∈ values (C)

• num (C) = length (domain (C))

• values (C) = List [evaluate (C, g), ∀ g ∈ domain (C)]

• subset (C, List[g]) ⇔ (C1 = empty ())∧ insert (C1,(g, v)), ∀ g ∈ List [g] ∧

v = evaluate (C, g)

end

The first constructor (empty) builds an empty Coverage. The second constructor

(new) builds a new Coverage by providing a list of (Geometry, Value) pairs. The

third constructor (subset) builds a new Coverage by extracting a subset of the original

locations. The predicate contains verifies if a certain instance of Geometry is in the

Coverage. Insert includes a new (geometry, value) pair in the coverage. Evaluate

takes a coverage and a geometry and produces an output value (“give me the value of

the coverage at location g”). Domain returns the geometries of the coverage’s do-

main. Num returns the number of geometries on the coverage’s domain. Values re-

turns the list of values of the coverage’s range. The axioms point to the various re-

strictions on the Coverage specification. The last axiom shows that creating a

Coverage from a subset of locations of an existing one is the same as building an

empty Coverage and then inserting a list of (Geometry, Value) pairs.

3.2 Coverage operations

Operations on coverages are operations that produce a new coverage, and include

nonspatial and spatial ones. For nonspatial operations, the value of a location in the

output map depends on the values of the same location in one or more input maps.

They include logical expressions such as “classify as high-risk all areas without vege-

tation with slope greater than 15%” and “find the average of deforestation in the last

two years”. We consider three types of nonspatial operations: single (single argument

operations), multiple (multiple argument operations) and select (nonspatial selection

using a comparison predicate).

Spatial operations are higher-order functions that use a topological predicate and

generalize Tomlin’s focal and zonal operations. They include expressions such as

“calculate the local mean of the map values” and “given a map of cities and a digital

terrain model, calculate the mean altitude for each city”. These operations take two

coverages (the reference coverage and the input coverage) and produce a new cover-

age, which has the same geometries as the reference coverage. A spatial operation has

two parts: spatial query and composition. The spatial query operation starts by find-

ing the matching geometry in the reference coverage for each location p in the new

coverage. Then it applies a topological predicate between that geometry and all ge-

ometries of the input coverage. The result of the spatial query is a new (temporary)

coverage containing the input geometries that match the predicate. The composition

operation then applies a function to the values on the new coverage to produce the re-

sult (Figure 4).

Take the expression “given a coverage of cities and a coverage of altitudes, calcu-

late the mean altitude for each city”. In this expression, the input coverage is the alti-

tude one and the reference coverage is one with cities. To evaluate the expression, we

first select the terrain values within each city. This uses the selection operator with the

within predicate. Then, we calculate the average of each set of these values. This uses

the composition operator with the mean function.

Fig. 4. Spatial operations (selection + composition). Adapted from [4]

To provide the abstract specification for the coverage operations, we distinguish

between nonspatial and spatial operations. For spatial operations, we define two auxil-

iary functions (query and compose). We use the CASL the ‘local … within’ construct

for such needs. This construct distinguishes between operations which are visible out-

side the specification and auxiliary functions.

spec COVERAGE_OPERATIONS

[sort Geometry, sort Value, sort Coverage, sort SingleFunction, sort Multi-

Function, sort List, sort CompPred sort TopoPred]

ops

single: SingleFunction × Coverage → Coverage

multiple: MultiFunction × List[Coverage] → Coverage

select: Coverage × CompPred × Value → Coverage

local ops

sp_query: Coverage × TopoPred × Geometry → Coverage

compose : MultiFunction × Coverage → Integer

within op

spatial: MultiFunction × Coverage × TopoPred × Coverage

→ Coverage

axioms

∀g, g1: Geometry; v, v1: Value; C, C1, C2: Container, topo: TopoPred,

comp: CompPred, fs: SingleFunction, fm: MultiFunction

• single (fs, C) = new (List[g, v]),

 ∀ (g, v) | g ∈ domain (C) ∧ v = fs (evaluate (C, g))

• multiple (fm, C1, C2, …, Cn) = new (List[g, v]),

 ∀ (g, v) | g ∈ (domain (C1)∩ domain (C2) …)∩ domain (Cn)) ∧

 v = fm (evaluate (C1, g), evaluate (C2, g)))

• select (C , comp, v1) = subset (C, S), where

 S = List [g | g ∈ domain (C) ∧ comp (evaluate (C, g), v1)]

• sp_query (C, topo, g1) = subset (C, S), where

 S = List [g | g ∈ domain (C) ∧ topo (g, g1)]

• compose (fm, C) = fm (values (C))

• spatial (f, C1, topo, C2) = new (List[g, v]),

∀ (g,v) | g ∈ domain (C2) ∧ v = compose (fm, sp_query(C1 , topo, g))

 end

The first axiom describes the single operation, which applies a function to all val-

ues of the input. The second axiom describes the multiple operation, which applies a

multivalued function to all values of the input. The third axiom describes the nonspa-

tial selection operation. The fourth axiom shows that the spatial query selects a subset

of the original coverage whose geometries satisfy a topological predicate (“select all

deforested areas within the state of Amazonas”). The fifth axiom describes the com-

position operation. The last axiom describes the spatial function. It builds a new cov-

erage by providing a list of (Geometry, Value) pairs. The geometries of the new cov-

erage are the same as those of the reference coverage. We get the values of the new

coverage by combining a spatial query and a composition. In the next section, we

show how these operations for coverages are enough for a comprehensive algebra.

3.3 Expressiveness of Topological Operators for Coverage Algebra

All coverage subtypes proposed by OGC are implemented as discrete geometrical

spatial data structures. Thus it is important to consider what extent the topological op-

erators can cover the spatial relations between these coverage subtypes. As discussed

above, spatial operations have two parts: a spatial query and a composition on the

values selected by the query. The expressive power of the spatial query is limited by

the capacity of computing them it in each spatial data structures. Based on OGC’s

proposal for coverage subtypes [1], we can distinguish different types of discrete data

structures for coverages:

• 2,5D structures: TIN coverages.

• 2D Area-based structures: grid coverages, images, polygon coverages, surfaces.

• 1D Line-based structures: segmented line coverages, line string coverages.

• 0D point-based structures: discrete point coverages, nearest neighbour cover-

ages, lost area interpolation.

Since the dimension-extended version of the 9-intersection model only handles 2D,

1D and 0D data structures, the proposed coverage algebra cannot be used for TIN

coverages. Also, consider that a spatial query operation involves two coverages: the

reference and the input coverages (see Section 3.2). Thus, application of topological

operators depends on the geometries of the reference and the input coverages, as out-

lined in Table 1.

Table 1. Topological operators applicable to spatial operations on coverages

Input coverage

type

Reference

coverage type

Operators

area area {‘disjoint’, ‘equal’, ‘touch’, ‘within’,

‘overlap’, ‘contains’, ‘intersects’}

area line {‘disjoint’, ‘touch’, ‘intersects’, ‘con-

tains’}

area point {‘disjoint’, ‘touch’, ‘contains’}

line area {‘disjoint’, ‘cross’, ‘touch’, ‘within’,

‘intersects’}

line line {‘disjoint’, ‘equal’, ‘touch’, ‘within’,

‘overlap’, ‘intersects’}

line point {‘disjoint’, ‘touch’, ‘contains’}

point area {‘disjoint’, ‘touch’, ‘within’}

point line {‘disjoint’, ‘touch’, ‘within’}

point point {‘disjoint’, ‘equal’}

3.4 Examples of Coverage Algebra

To provide examples of the proposed coverage algebra, we propose a shorthand nota-

tion for the operations, as follows:

Table 2. Convenience shorthand for non-spatial operators

new_cov:= singlefun in_cov; % single value functions%

new_cov:= multifun [in_cov]; % multivalued functions%

new_cov:= in_cov comp_pred value; % selection%

new_cov:= multifun in_cov topo_pred ref_cov;

%for spatial operations%

The parameters for the operations are:

• new_cov is the coverage with the new values.

• singlefun is a single argument function as given in section 3.1.

• multifun is a multiargument function as given in section 3.1.

• in_cov is the input coverage.

• [in_cov] is a list of input coverages.

• comp_pred is a comparison predicate.

• value is the comparison value.

• topo_pred is a topological predicate (section 3.1)

• ref_cov is the reference coverage used as a basis for applying the topo-

logical predicate.

The examples of the Table 3 show the use of non-spatial operators applied to cov-

erages. Table 4 shows examples of spatial operations.

Table 3. – Examples of non-spatial operators

Informal description Coverage Algebra Expression

“Find the square root of the topog-

raphy”
topoSqrt:= sqrt topography;

“Find the square root of the cities’

population”
popSqrt := sqrt cityPop;

“Find the average of deforestation

in the last two years”
defAve := mean (defor2004, de-
for2003);

“Select areas higher than 500 me-

ters”
highM := topography > 500;

“Select the cities with the popula-

tion higher than 50.000”
highPop := cityPop > 50000;

 Table 4. Examples of Spatial Operations

Informal description Coverage Algebra Expression

“Given a coverage of cities and one of

states, find the total population for each

state”

statePop := sum cityPop
within statePop;

“For each cell, calculate the average de-

forestation of its neighbours”
fsum := sum defor touch
fsum;

“Given a coverage of rivers and one of

cities with population, find the number of

people that live along each river”.

riversPop:= sum cityPop in-
tersects rivers;

“Given a coverage of cities and one of

deforestation, find the average deforesta-

tion of each city”.

ave_city_defor:= average
defor within city;

“Given a coverage containing roads and

a one of deforestation, calculate the

mean deforestation along each road”.

defRoads:= mean defor in-
tersects roads;

Consider the operation: “For each cell, calculate the average deforestation of its

neighbours”. In Tomlin’s algebra, this is a focal operation (Figure4.b). Considering

the deforestation map (defor) as input and the local sum map (lsum) as output, we

state the operation as shown in Figure 5.

fsum := sum defor
touch fsum;

Fig. 5. Focal sum of deforestation

Note one interesting feature: the result (fsum) is also the reference coverage for

the spatial predicate (defor touch fsum). This syntax may seem odd at first

sight, but it follows from the generality of the proposal. By taking the reference map

and the new map to be the same, we ensure the outcome satisfies the condition (“local

mean”). Had we used a third map as a reference, the result would be different if this

map would not have the same spatial partitioning as the output map.

4 Examples and comparison with Tomlin’s map algebra

In this section, we give some examples and compare our proposal to Tomlin’s map

algebra. The examples use INPE’s database of deforestation of the Brazilian Amazo-

nia. We selected a data set from the central area of the Pará state, composed of three

coverages: deforestation (grid cells of 25 x 25 km
2
), roads (lines), and protected areas

(polygons), as shown in Figure 6.

Fig. 6. Deforestation, protected areas and roads (Pará State, Brazil)

Our first example considers the expression: “Given a coverage of deforestation and

a classification function, return the classified coverage”. The inputs is the deforesta-

tion coverage (def_cov) and the output is a classified coverage (def_cov) The

classification function defines four classes: (1) dense forest; (2) mixed forest with ag-

riculture; (3) agriculture with forest fragments; (4) agricultural area. This function is:

 classify :: Value → Value

 classify v

 | v < 0.2 = "1"

 | ((v > 0.2) && (v < 0.5)) = "2"

 | (v > 0.5) && (v < 0.8) = "3"

 | v > 0.8 = "4"

We get the classified map (Figure 7) using the expression

def_class = classify def_cov

Fig. 7. Resulting coverage with classified deforestation

As a second example, take the expression: “Calculate the mean deforestation for

each protection area”. The inputs are: the deforestation coverage (def_cov), a spa-

tial predicate (within), a multivalued function (mean) and the coverage of pro-

tected areas (prot_areas). The output is a coverage of the protected areas

(def_prot) with the same objects as the reference coverage (prot_areas) and

the deforestation for each area .

 def_prot = mean def_cov within prot_areas

Fig. 8. Deforestation mean by protection area

Our third example is the expression: “Given a coverage containing roads and one

with deforestation, calculate the mean of the deforestation along each roads”. We

have as inputs: the deforestation coverage (def_cov), a spatial predicate (inter-
sect), a multivalued function (mean) and a road map (roads). The product is a

roads coverage with one value for each road. This value is the mean of the cells that

intercept this road.

 road_def = mean def_cov intersect roads

Fig. 9. Deforestation mean along the roads

Table 4 presents a comparison between the spatial operators as expressed in our

proposal and in Tomlin’s map algebra. The examples show that the proposed map al-

gebra expresses the focal and zonal functions of Tomlin’s map algebra, using the

‘touch’ and ‘within’ topological predicates. Operations involving ‘overlap’, ‘contains’

and ‘intersects’ predicates are part of our proposed coverage algebra and are not di-

rectly expressible by Tomlin’s algebra. This shows that the proposed algebra is richer

than Tomlin’s, as well as having a solid conceptual basis.

Table 5. Comparison of spatial operators with Tomlin’s map algebra

Informal Description Generalized Map Alge-

bra

Tomlin

“Focal mean of topography” fmean:= mean topo
touch fmean

FOCALMEAN OF
TOPOGRAPHY

“Given a coverage of cities

and one of topography, find

the mean altitude for each

city.”

altcit:= mean topo
within city

ZONALMEAN OF
TOPOGRAPHY
WITHIN CITIES

“Given a coverage of na-

tional forests, get the defores-

tation at the edges of each

forest”

defBord:= sum de-
for overlaps for-
ests

(no equivalent)

“Calculate the mean of the

deforestation along the road”
defRoad:= mean de-
for intersects
road

(no equivalent)

5 Conclusions

Map algebra is a fundamental class of operations for spatial data sets. Most of the cur-

rent implementations of map algebra use Tomlin’s [4] proposal for local, focal and

zonal operations. However, Tomlin’s proposal uses ad hoc concepts and lacks a sound

theoretical basis. This work addresses this problem, by proposing a new foundation

for operations involving coverages. We have designed a coverage algebra that uses

topological predicates to express spatial operations and that includes Tomlin’s algebra

as a subset.

There is one important set of operations on coverages that is not part of our pro-

posal nor of Tomlin’s: convolution operators. A convolution operation requires two

coverages C1 and C2 produces a third coverage C3. The value of each point p of C3 is

the integral of the product of C1 and C2, when C2 is shifted so that its central point is

coincident with p. From a conceptual point of view, convolutions are not part of map

algebra, since the geometrical support for the second coverage C2 (also called a mask)

changes for each point of the output coverage. Convolution does not involve topo-

logical relations, but rather the definition of an integral function.

Our proposal points to a situation where all modeling of topological relations in

two-dimensional spatial datasets can be handled by the 9-intersection model (dimen-

sion-extended), both for simple features and for coverages. Spatial data sets of higher

dimensions (e.g., TIN coverages) need a different foundation. The foundation for

handling spatial relation of higher dimensions requires topological operators that op-

erate on 3D surfaces [17]. Convolution operations are a special case and need to be

handled separately. A possible extension to our algebra would be to consider direc-

tional relations [18], which would be useful to express operations such as “find the

population of all cities north of the river”.

Even considering these limitations, the expressiveness of the proposed coverage

algebra is considerable. Given that it is based on a solid foundation, it could be con-

sidered as the basis for setting up standard for operations on Open GIS coverages. The

use of standards for operations in coverages would be a significant advance for in-

creased interoperability of spatial data.

Acknowledgments

Gilberto Câmara’s work is partially funded by CNPq (grants PQ - 300557/1996-5 and

550250/2005-0) and FAPESP (grant 04/11012-0). Danilo Palomo’s and Sérgio

Costa’s work is funded by CAPES. Gilberto Câmara would like to thank Andrew

Frank and Max Egenhofer for many stimulating discussions on the issues covered by

this paper.

References

1. Kottman, C., Roswell, C.: The OpenGIS Abstract Specification Topic 6: The Coverage

Type and Its Subtypes (Version 4). Open Geospatial Consortium, Wayland, MA (2000)

2. Berry, J.K.: Fundamental Operations in Computer-Assisted Map Analysis. International

Journal of Geographical Information Systems 1 (1987) 119–136

3. Frank, A.: Overlay Processing in Spatial Information Systems. In: Chrisman, N.R. (ed.):

AUTO-CARTO 8, Eighth International Symposium on Computer-Assisted Cartography,

Baltimore, MD (1987) 16-31

4. Tomlin, C.D.: Geographic Information Systems and Cartographic Modeling. Prentice-Hall,

Englewood Cliffs, NJ (1990)

5. Takeyama, M., Couclelis, H.: Map Dynamics: Integrating Cellular Automata and GIS

through Geo-Algebra. International Journal of Geographical Information Systems 11

(1997) 73-91

6. Pullar, D.: MapScript: A Map Algebra Programming Language Incorporating Neighbor-

hood Analysis. GeoInformatica 5 (2001) 145-163

7. Mennis, J., Viger, R., Tomlin, D.: Cubic Map Algebra Functions for Spatio-Temporal

Analysis. Cartography and Geographic Information Science 32 (2005) 17-32

8. Frank, A.: Map Algebra Extended with Functors for Temporal Data. In: Akoka, J. (ed.):

Perspectives in Conceptual Modeling: ER 2005 Workshops. Springer, Klagenfurt, Austria

(2005) 194-207

9. Egenhofer, M., Herring, J.: Categorizing Binary Topological Relationships Between Re-

gions, Lines, and Points in Geographic Databases. Department of Surveying Engineering,

University of Maine, Orono, ME (1991)

10. Câmara, G., Palomo, D., Souza, R.C.M., Oliveira, O.R.F.: Towards a generalized map al-

gebra: principles and data types. In: Fonseca, F. (ed.): VII Brazilian Symposium on Geoin-

formatics (GEOINFO 2005). SBC, Campos do Jordao, Brazil (2005)

11. Costa, S., Camara, G., Palomo, D.: TerraHS: Integration of Functional Programming and

Spatial Databases for GIS Application Development. In: Davis, C. (ed.): VIII Brazilian

Symposium in Geoinformatics, GeoInfo 2006. SBC, Campos do Jordão, Brazil (2006)

12. Herring, J.: OpenGIS® Implementation Specification for Geographic information - Simple

feature access - Part 1: Common architecture (version 1.2.0). Open Geospatial Consortium,

Wayland, MA (2006)

13. Winter, S.: Topological Relations between Discrete Regions. In: Egenhofer, M., Herring, J.

(eds.): Advances in Spatial Databases—4th International Symposium, SSD ‘95, Portland,

ME, Vol. 951. Springer-Verlag, Berlin (1995) 310-327

14. Winter, S., Frank, A.: Topology in Raster and Vector Representation. GeoInformatica 4

(2000) 35-65

15. Frank, A.: Higher order functions necessary for spatial theory development. Auto-Carto 13,

Vol. 5. ACSM/ASPRS, Seattle, WA (1997) 11-22

16. Bidoit, M., Mosses, P.D.: CASL User Manual. Lecture Notes in Computer Science 2900

(IFIP Series). Springer, Heidelberg (2004)

17. Egenhofer, M.: Spherical Topological Relations. Journal on Data Semantics III (2005) 25-

49

18. Frank, A.: Qualitative Spatial Reasoning about Distances and Directions in Geographic

Space. Journal of Visual Languages and Computing 3 (1992) 343-371

