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Abstract. Map algebra is a collection of functions for handling spatial datasets 

where each data contains a set of geometries of the same type which bound to a 

geographical reference. The current theory for Map Algebra uses ad hoc opera-

tors proposed by Dana Tomlin. His proposal has had great practical success, 

and most GIS implementations provide its operations. However, there is a lack 

of theoretical foundations for the operations proposed in Tomlin’s map algebra. 

This is a limitation for the proposal of international standards for map algebra. 

Specifically, the Open Geospatial Consortium’s proposal for handling a map 

(the coverage data type) lacks a set of functions to manipulate its content. To 

address this problem, our work proposes a specification for an algebra for Open 

GIS® coverages which uses a dimension-extended version of Egenhofer and 

Herring’s 9-intersection predicates to express spatial operations. The proposed 

coverage algebra includes all Tomlin’s functions, as well as operations that are 

not part of Tomlin’s algebra, but are useful in practice. Our proposal could be 

the basis for setting up standard for operations on Open GIS coverages. The use 

of standards for operations in coverages would be a significant advance for in-

creased interoperability of spatial data. 

1 Introduction  

In recent years, there has been a significant effort to standardize the technology of 

geographical information systems (GIS). This effort is motivated by the large diffu-

sion of GIS worldwide, the need to share geographical data, and for long-term main-

tenance of geographical archives. Sharing geographical data requires that different in-

stitutions, using diverse technologies, have access to the same data sets. Long-term 

archive maintenance needs that data outlives both its original media support and the 

software used to build it. Thus, sharing and maintenance of geographical data need 

standardization. The Open Geospatial Consortium (OGC) is developing standards for 

modelling, accessing, storing, and sharing geographical data. The extent of the effort 

involved in OGC’s mandate is significant. Therefore, despite the progress already 

achieved, there are still areas where OGC’s task is not complete. One of the missing 

parts of OGC’s specification is a set of functions for manipulation of coverages, a 

subject commonly referred to as ‘map algebra’. The current version of OGC’s specifi-

cation for coverages [1] mentions unary and binary operations, and does not consider 



spatial operations. Since there is a literature on map operations ([2] [3] [4]), it is im-

portant to consider how these operations can be used for handling OGC’s coverages. 

This work will discuss how to extend OGC’s coverage data type to create an algebra 

for coverages. 

The main contribution to map algebra comes from the work of Tomlin [4]. Tomlin 

proposed a set of operations that has proven useful in practice. Extensions to Tomlin’s 

map algebra include the GeoAlgebra of Takeyama and Couclelis [5] and MapScript, a 

language that includes dynamical models [6]. Extensions of map algebra for spatio-

temporal data handling are discussed by Mennis et al. [7] and Frank [8]. All these 

works use Tomlin’s algebra as a basis for their work. The main problem with 

Tomlin’s algebra and its extensions is their ad hoc basis. There is no foundation for 

assessing the completeness of his algebra. Thus, there could be other types of opera-

tions that are missing in his algebra.  

Therefore, one of the open challenges in spatial information science is to develop a 

theoretical foundation for a comprehensive set of operations on coverages. We need 

to find out if Tomlin’s map algebra is part of a more general set. We state these ques-

tions as: “What is the theoretical foundation for spatial operations on coverages?”, 

“Could this theoretical foundation provide support for a comprehensive spatial alge-

bra for coverages?” To respond to these questions, we take the topological predicates 

of Egenhofer and Herring [9] as a basis for defining an algebra for coverages. Using 

these predicates, we develop a coverage algebra that includes Tomlin’s map algebra 

as a subset.  

In what follows, we briefly review the literature about coverages, map algebra and 

spatial predicates in chapter 2. In section 3, we present an algebraic specification of 

an algebra for coverages. In section 4, we present some examples of its use, including 

some problems that are not expressible in Tomlin’s work. This paper is the third on 

our research on providing foundations for map algebra. In [10], we point out how to 

generalize Tomlin’s map algebra by incorporating topological spatial predicates. That 

paper did not consider the OpenGIS® coverage type and lacked a rigorous algebraic 

specification. In [11], we discuss the use of functional programming for GIS applica-

tion development, and provide an example of a map algebra implementation in the 

Haskell language. In the current paper, we use the findings of [10] and [11] to provide 

a specification for an algebra for OpenGIS® coverages, using a general-purpose 

specification language. We also provide examples of its use. 

2 Literature Review 

2.1 The OpenGIS
®
 Coverage  

OGC’s definition of coverage provides a support for the concepts of ‘fields’ and 

‘maps’[1].  A coverage in a spatial representation that covers a geographical area and 

divides it in spatial partitions that may be either regular or irregular and assigns a 

value to each partition. The computer representation of a coverage consists of a cov-

erage function over a discrete domain, called the DiscreteC_Function. Its domain is a 



collection of geometries and its range is a set of vectors of attributes. The OGC speci-

fication describes the DiscreteC_Function as having four operations, shown in Figure 

1 below: 

• Num: finds the number of geometries in the coverage. 

• Values: finds the possible values of the coverage function. 

• Domain: finds the geometries in the domain of the coverage function. 

• Evaluate: given a geometry, return a vector that represent the values of the cover-

age function for the associated location. 

 

Fig. 1. The Open GIS discrete coverage function – source: [1] 

An example is coverage whose domain is the geometries that describe the states of 

a country, and the range is each state’s population in 2004. A second example would 

be a coverage whose domain is a set of regular cells and the range is a set of values 

representing the maximum and minimum yearly temperatures the region covered by 

the set of cells. OGC considers a set of coverage subtypes, where each subtype uses a 

different spatial data structure to build its domain.  The subtypes include polygons, 

images, TINs, surfaces, and point sets. OGC describes how to evaluate the discrete 

coverage function for different coverage subtypes [1].  

2.2 Topological operators for spatial relations 

The OGC specification describes a set of topological predicates for spatial relations 

between geometries of simple features[12]. These predicates use a dimension-

extended version of the 9-intersection model proposed by Egenhofer and Herring [9]. 

The 9-intersection model considers a geometrical object (A) as composed by a set of 

boundary points (∂A), a set of interior points (Aº), and a set of exterior points (A
-
). 

For area-area relations, OGC proposes the set {‘disjoint’, ‘equal’, ‘touches’, ‘within’, 

‘overlap’, ‘contains’, ‘intersects’} (see Figure 2). For a rigorous definition for area-

area relations to raster representations, see [13] and [14].  For line-area relations, the 

model proposes the set {‘disjoint’, ‘touch’, ‘within’, ‘cross’, ‘intersects’}. For point-

area relations, the model proposes the set {‘disjoint’, ‘touch’, ‘within’, ‘cross’}. Other 

topological relations are described in [9]. In what follows, we define spatial opera-

tions in coverage algebra should using OGC’s topological predicates.  

 



 

Fig. 2. Topological predicates for area-area relations based on the 9-intersection matrix. 

Adapted from [9]. 

2.3 Map Algebra  

Tomlin’s map algebra [4] includes first-order and higher-order functions for maps. 

First order functions take values as arguments (these are the functions associated to 

the map values). Higher order functions are functions that have other functions as ar-

guments. Higher order functions are the basis for map algebra operations [15].  These 

functions apply a first-order function to all elements of map. Tomlin [4] proposes  

three higher-order functions:  

• Local function: produce a new map, whose value in each location p depends 

only of the values in p in the input maps, as in “classify as unsuitable for farming 

all areas with slope greater than 15%”. A local operation is a mapping between 

the ranges of the input and output fields (Figure 3.a).  

• Focal function: produce a new map, whose value in each location p depends 

only of the values of a neighbourhood around p in the input map, as in the ex-

pression “for each county, calculate the average population of its neighbours”. 

(Fig. 3. b). 

• Zonal function: produce a new map, whose value in each location p depends on 

the values of a region in an input map. This region is defined by a restriction on a 

third map, called the reference map. Example is “given a map of cities and a digi-

tal terrain model, calculate the mean altitude for each city” (Figure 3.c).  



 
  

a. Local functions b. Focal functions c. Zonal functions 

Fig. 3. Tomlin’s functions for map algebra (source: Tomlin [4]). 

We can express Tomlin’s spatial operations using Egenhofer and Herring’s [9] 

topological predicates. The focal operation uses the condition of adjacency, which 

matches the spatial predicate ‘touch’. The zonal operation uses the condition of con-

tainment, which matches the spatial predicate ‘within’. Since ‘touch’ and ‘within’ are 

part of a more general set of predicates, Tomlin’s operations use only a subset of all 

possible topological relations between areas. Tomlin’s algebra uses spatial predicates 

in a limited way.  It applies the ‘touch’ relation (focal function) only over the same 

input map. It also only applies the ‘within’ relation (a zonal operation) over a refer-

ence map. If we remove the limits of Tomlin’s algebra, we can have a coverage alge-

bra based on the full set of topological predicates, whose operations don’t restrict the 

way in which the predicates are used.  

3 A Generalized Algebra for Coverages 

This section presents the design of an algebra for coverages. The proposed algebra ex-

tends the coverage data type defined by the Open GIS


 consortium [1] and has non-

spatial and spatial higher-order functions. The nonspatial operations are Tomlin’s lo-

cal operations. The spatial operations perform operations on coverages using 

topological predicates. 

We define the coverage operations using an algebraic specification of data types. 

In our definitions, we use CASL, the Common Algebraic Specification Language 

[16]. CASL is a general-purpose language for both requirements and design specifica-

tions. A basic specification in CASL consists of a set of declarations of symbols, and 

a set of axioms and constraints, which restrict the interpretations of the declared sym-

bols. For a detailed syntax for CASL specifications, see [16]. We provide examples 

from the CASL user manual [16] to allow the reader to better follow our proposal. 

The first example has a unique sort and a predicate: 

spec STRICT_PARTIAL_ORDER =  

sort  Elem 

pred __ < __: Elem × Elem 



axioms 

forall  x,y,z: Elem 

·  x  < x      %(reflexive)%  

·  x=y  if x  < y   /\  y  < x           %(antisymmetric)% 

 ·  x  < z  if x  < y   /\  y  < z        %(transitive)% 

The STRICT_PARTIAL_ORDER  specification uses a sort Elem and a binary infix 

predicate symbol ‘<’. Argument sorts are separated by the sign ‘×’. CASL uses  ‘__ ‘ 

(pairs of underscores) as place-holders for arguments. The predicate ‘<’ is associated 

to three axioms: reflectivity, antisymmetry and transitiveness. CASL provides the 

keyword type to shorten declarations of sorts and constructors, as in the example: 

spec CONTAINER [ sort Elem ] = 

type Container::= empty | insert (Elem: Container) 

pred __inside __: Elem × Container 

axioms 

         ∀ e, e’: Elem; C: Container 

•  ¬(e inside empty) 

• e inside (insert (e’, C)) ⇔ (e = e’ ∨ e inside C) 

end 

3.1 The Coverage Data Type 

This section presents an algebraic specification for an extended version of Open GIS 

coverage. A coverage is a c_function:: G→ V over  a finite collection of geometries G 

and a set of attribute values V. Without loss of generality, we will discuss the case of 

coverages where each geometry has only one value. The generalization to a coverage 

that returns a vector of values is simple, but would need a slightly more complicated 

notation. We will assume that Geometry and Value sorts are those used by OGC. The 

reader should refer to [1] for details. We begin by defining a set of auxiliary specifica-

tions: list (a list of elements), single and multiargument functions, comparison predi-

cates and topological predicates. For brevity’s sake, we provide a limited list of sin-

gle and multiargument functions and of selection predicates. We can extend these lists 

of functions if needed. 

spec SINGLEFUNCTION = 

         sort Value 

 ops  
log: Value → Value 

exp: Value → Value 

sin:  Value → Value 

sqrt: Value → Value 

    end 



spec MULTIFUNCTION = 

         sort Value 

ops 
sum:  Value × Value → Value 

product:  Value × Value → Value 

maximum: Value × Value → Value 

mean:  Value × Value → Value 

minimum:  Value × Value → Value 

    end 

 

spec LIST [ sort Elem ]  

type List::= empty | cons (Elem; List) 

ops  

       length: List → Integer 

end 

 

spec COMPPRED = 

         sort Value 

          pred  
__== __:      Value × Value 

__<__ : Value × Value 

__ >__ : Value × Value 

__ != __   : Value × Value 

end 

 

spec TOPOPRED = 

sort Geometry 

          pred  
__within__:      Geometry × Geometry 

__overlap__: Geometry × Geometry 

__disjoint__: Geometry × Geometry 

__equal __: Geometry × Geometry 

__touch__: Geometry × Geometry 

__contains__: Geometry × Geometry 

__cross__: Geometry × Geometry 

__intersects__: Geometry × Geometry 

    end 

Using these definitions, we provide an abstract specification the Coverage data 

type. It uses the operations defined by OGC (see Figure 1 above) and includes three 

constructors, a new predicate and a new operation.  

spec COVERAGE [sort Geometry, sort Value, sort List ] = 

type Coverage::=  empty  |   

     new (List [(Geometry, Value)]) 

                               subset (Coverage,  List [Geometry]) 



ops   

insert:         Coverage × (Geometry, Value) → Coverage 

evaluate:    Coverage × Geometry → Value 

domain:     Coverage → List [Geometry] 

num:          Coverage → Integer 

values:       Coverage → List [Value] 

pred   

__contains __: Coverage × Geometry  

axioms 

 ∀g, g’: Geometry; v: Value; C: Container 

• contains (C, g) ⇔  g ∈ domain (C)  

• evaluate (C, g) == error ⇔ contains (C, g) == false 

• evaluate (insert (C, (g, v)), g) = v                   

• v = evaluate (C, g) ⇔  v ∈ values (C) 

• num (C)  = length (domain (C)) 

• values (C) = List [ evaluate (C, g), ∀ g ∈ domain (C)] 

• subset (C, List[g]) ⇔ (C1 = empty ())∧  insert (C1,(g, v)), ∀ g ∈ List [g] ∧ 

v = evaluate (C, g) 

end 

The first constructor (empty) builds an empty Coverage. The second constructor 

(new) builds a new Coverage by providing a list of (Geometry, Value) pairs.  The 

third constructor (subset) builds a new Coverage by extracting a subset of the original 

locations. The predicate contains verifies if a certain instance of Geometry is in the 

Coverage. Insert includes a new (geometry, value) pair in the coverage. Evaluate 

takes a coverage and a geometry and produces an output value (“give me the value of 

the coverage at location g”). Domain returns the geometries of the coverage’s do-

main. Num returns the number of geometries on the coverage’s domain. Values re-

turns the list of values of the coverage’s range. The axioms point to the various re-

strictions on the Coverage specification. The last axiom shows that creating a 

Coverage from a subset of locations of an existing one is the same as building an 

empty Coverage and then inserting a list of (Geometry, Value) pairs. 

3.2 Coverage operations 

Operations on coverages are operations that produce a new coverage, and include 

nonspatial and spatial ones. For nonspatial operations, the value of a location in the 

output map depends on the values of the same location in one or more input maps. 

They include logical expressions such as “classify as high-risk all areas without vege-

tation with slope greater than 15%” and “find the average of deforestation in the last 

two years”. We consider three types of nonspatial operations: single (single argument 



operations), multiple (multiple argument operations) and select (nonspatial selection 

using a comparison predicate). 

Spatial operations are higher-order functions that use a topological predicate and 

generalize Tomlin’s focal and zonal operations. They include expressions such as 

“calculate the local mean of the map values” and “given a map of cities and a digital 

terrain model, calculate the mean altitude for each city”. These operations take two 

coverages (the reference coverage and the input coverage) and produce a new cover-

age, which has the same geometries as the reference coverage. A spatial operation has 

two parts: spatial query and composition. The spatial query operation starts by find-

ing the matching geometry in the reference coverage for each location p in the new 

coverage. Then it applies a topological predicate between that geometry and all ge-

ometries of the input coverage. The result of the spatial query is a new (temporary) 

coverage containing the input geometries that match the predicate. The composition 

operation then applies a function to the values on the new coverage to produce the re-

sult (Figure 4).  

Take the expression “given a coverage of cities and a coverage of altitudes, calcu-

late the mean altitude for each city”.  In this expression, the input coverage is the alti-

tude one and the reference coverage is one with cities. To evaluate the expression, we 

first select the terrain values within each city. This uses the selection operator with the 

within predicate. Then, we calculate the average of each set of these values. This uses 

the composition operator with the mean function.  

 

 

Fig. 4. Spatial operations (selection + composition). Adapted from [4] 

To provide the abstract specification for the coverage operations, we distinguish 

between nonspatial and spatial operations. For spatial operations, we define two auxil-

iary functions (query and compose). We use the CASL the ‘local … within’ construct 

for such needs. This construct distinguishes between operations which are visible out-

side the specification and auxiliary functions.  

spec COVERAGE_OPERATIONS  

[sort Geometry, sort Value, sort Coverage, sort SingleFunction, sort Multi-

Function, sort List,  sort CompPred sort TopoPred]  

 

 



ops 

single: SingleFunction × Coverage  → Coverage 

multiple:    MultiFunction × List[Coverage] → Coverage 

select: Coverage × CompPred × Value  → Coverage 

local ops 

sp_query:     Coverage × TopoPred  × Geometry  → Coverage 

compose :         MultiFunction × Coverage → Integer 

within op 

spatial:       MultiFunction ×  Coverage × TopoPred × Coverage 

→ Coverage 
 

axioms 

∀g, g1: Geometry; v, v1: Value; C, C1, C2: Container, topo: TopoPred,   

comp: CompPred,  fs: SingleFunction, fm: MultiFunction 

• single (fs, C) = new (List[g, v]),  

 ∀ (g, v) |  g ∈ domain (C)    ∧  v = fs (evaluate (C, g)) 

• multiple (fm, C1, C2, …, Cn) = new (List[g, v]),   

 ∀ (g, v) |  g ∈ (domain (C1)∩ domain (C2) …)∩ domain (Cn))  ∧   

                 v = fm (evaluate (C1, g), evaluate (C2,  g))) 

• select (C , comp, v1) = subset (C, S), where  

                          S = List [g | g ∈ domain (C) ∧ comp (evaluate (C, g), v1)]  

• sp_query (C, topo, g1) = subset (C, S), where  

                          S = List [g | g ∈ domain (C) ∧ topo (g, g1)]  

• compose (fm, C) = fm (values (C)) 

• spatial (f, C1, topo, C2) = new (List[g, v]),  

∀ (g,v) |  g ∈ domain (C2)  ∧  v = compose (fm, sp_query(C1 , topo, g)) 

       end 

The first axiom describes the single operation, which applies a function to all val-

ues of the input. The second axiom describes the multiple operation, which applies a 

multivalued function to all values of the input.  The third axiom describes the nonspa-

tial selection operation. The fourth axiom shows that the spatial query selects a subset 

of the original coverage whose geometries satisfy a topological predicate (“select all 

deforested areas within the state of Amazonas”). The fifth axiom describes the com-

position operation. The last axiom describes the spatial function. It builds a new cov-

erage by providing a list of (Geometry, Value) pairs. The geometries of the new cov-

erage are the same as those of the reference coverage. We get the values of the new 

coverage by combining a spatial query and a composition. In the next section, we 

show how these operations for coverages are enough for a comprehensive algebra.  



3.3 Expressiveness of Topological Operators for Coverage Algebra 

All coverage subtypes proposed by OGC are implemented as discrete geometrical 

spatial data structures. Thus it is important to consider what extent the topological op-

erators can cover the spatial relations between these coverage subtypes. As discussed 

above, spatial operations have two parts: a spatial query and a composition on the 

values selected by the query. The expressive power of the spatial query is limited by 

the capacity of computing them it in each spatial data structures. Based on OGC’s 

proposal for coverage subtypes [1], we can distinguish different types of discrete data 

structures for coverages: 

• 2,5D structures: TIN coverages.  

• 2D Area-based structures: grid coverages, images, polygon coverages, surfaces.   

• 1D Line-based structures: segmented line coverages, line string coverages. 

• 0D point-based structures: discrete point coverages, nearest neighbour cover-

ages, lost area interpolation. 

Since the dimension-extended version of the 9-intersection model only handles 2D, 

1D and 0D data structures, the proposed coverage algebra cannot be used for TIN 

coverages. Also, consider that a spatial query operation involves two coverages: the 

reference and the input coverages (see Section 3.2). Thus, application of topological 

operators depends on the geometries of the reference and the input coverages, as out-

lined in Table 1. 

Table 1. Topological operators applicable to spatial operations on coverages 

Input coverage  

type 

Reference  

coverage type 

Operators 

area area {‘disjoint’, ‘equal’, ‘touch’, ‘within’, 

‘overlap’, ‘contains’, ‘intersects’} 

area line {‘disjoint’, ‘touch’, ‘intersects’, ‘con-

tains’} 

area point {‘disjoint’, ‘touch’, ‘contains’} 

line area {‘disjoint’, ‘cross’, ‘touch’, ‘within’, 

‘intersects’} 

line line {‘disjoint’, ‘equal’, ‘touch’, ‘within’, 

‘overlap’, ‘intersects’} 

line point {‘disjoint’, ‘touch’, ‘contains’} 

point area {‘disjoint’, ‘touch’, ‘within’} 

point line {‘disjoint’, ‘touch’, ‘within’} 

point point {‘disjoint’, ‘equal’} 



3.4 Examples of Coverage Algebra 

To provide examples of the proposed coverage algebra, we propose a shorthand nota-

tion for the operations, as follows:  

Table 2. Convenience shorthand for non-spatial operators 

new_cov:= singlefun in_cov;  %  single value functions% 

new_cov:= multifun [in_cov]; % multivalued functions% 

new_cov:= in_cov comp_pred value; % selection% 

new_cov:= multifun in_cov topo_pred ref_cov; 

%for spatial operations% 

The parameters for the operations are: 

• new_cov is the coverage with the new values. 

• singlefun is a single argument function as given in section 3.1. 

• multifun is a multiargument function as given in section 3.1.  

• in_cov  is the input coverage.  

• [in_cov] is a list of input coverages. 

• comp_pred is a comparison predicate.  

• value is the comparison value.  

• topo_pred is a topological predicate (section 3.1)  

• ref_cov is the reference coverage used as a basis for applying the topo-

logical predicate. 

The examples of the Table 3 show the use of non-spatial operators applied to cov-

erages. Table 4 shows examples of spatial operations.  

Table 3. – Examples of non-spatial operators 

Informal description Coverage Algebra Expression 

“Find the square root of the topog-

raphy” 
topoSqrt:= sqrt topography; 

“Find the square root of the cities’ 

population”  
popSqrt := sqrt  cityPop; 

“Find the average of deforestation 

in the last two years” 
defAve := mean (defor2004, de-
for2003); 

“Select areas higher than 500 me-

ters” 
highM := topography > 500; 

“Select the cities with the popula-

tion higher than 50.000” 
highPop := cityPop > 50000; 



   Table 4. Examples of Spatial Operations 

Informal description Coverage Algebra Expression 

“Given a coverage of cities and one of 

states, find the total population for each 

state” 

statePop := sum cityPop 
within statePop; 

“For each cell, calculate the average de-

forestation of its neighbours” 
fsum := sum  defor touch 
fsum; 

“Given a coverage of rivers and one of  

cities with population, find the number of 

people that live along each river”. 

riversPop:= sum cityPop in-
tersects rivers; 

 

“Given a coverage of cities and one of 

deforestation, find the average deforesta-

tion of each city”. 

ave_city_defor:= average 
defor within city; 

“Given a coverage containing roads and 

a one of deforestation, calculate the 

mean deforestation along each road”. 

defRoads:= mean defor in-
tersects roads; 

Consider the operation: “For each cell, calculate the average deforestation of its 

neighbours”. In Tomlin’s algebra, this is a focal operation (Figure4.b). Considering 

the deforestation map (defor) as input and the local sum map (lsum) as output, we 

state the operation as shown in Figure 5. 

 

 

 

 

 

fsum := sum defor 
touch fsum; 

Fig. 5. Focal  sum of deforestation 

Note one interesting feature: the result (fsum) is also the reference coverage for 

the spatial predicate (defor touch fsum). This syntax may seem odd at first 

sight, but it follows from the generality of the proposal. By taking the reference map 

and the new map to be the same, we ensure the outcome satisfies the condition (“local 

mean”). Had we used a third map as a reference, the result would be different if this 

map would not have the same spatial partitioning as the output map.   



4 Examples and comparison with Tomlin’s map algebra 

In this section, we give some examples and compare our proposal to Tomlin’s map 

algebra. The examples use INPE’s database of deforestation of the Brazilian Amazo-

nia. We selected a data set from the central area of the Pará state, composed of three 

coverages: deforestation (grid cells of 25 x 25 km
2
), roads (lines), and  protected areas 

(polygons), as shown in Figure 6. 

 

Fig. 6. Deforestation, protected areas and roads (Pará State, Brazil) 

Our first example considers the expression: “Given a coverage of deforestation and 

a classification function, return the classified coverage”. The inputs is  the deforesta-

tion coverage (def_cov) and the output is a classified coverage (def_cov) The 

classification function defines four classes: (1) dense forest; (2) mixed forest with ag-

riculture; (3) agriculture with forest fragments; (4) agricultural area.   This function is: 

 classify :: Value → Value 

 classify v  

      | v < 0.2                   = "1" 

      | ((v > 0.2) && (v < 0.5))  = "2" 

      | (v > 0.5) && (v < 0.8)    = "3" 

      | v > 0.8                   = "4" 

We get the classified map (Figure 7) using the expression 

def_class = classify def_cov 



 

Fig. 7. Resulting coverage with classified deforestation 

As a second example, take the expression: “Calculate the mean deforestation for 

each protection area”. The inputs are: the deforestation coverage (def_cov), a spa-

tial predicate (within), a multivalued function (mean) and the coverage of pro-

tected areas (prot_areas). The output is a coverage of the protected areas 

(def_prot) with the same objects as the reference coverage (prot_areas) and 

the deforestation for each area . 

   def_prot = mean def_cov within prot_areas 

 
Fig. 8. Deforestation mean by protection area 

 

Our third example is the expression: “Given a coverage containing roads and one 

with deforestation, calculate the mean of the deforestation along each roads”. We 

have as inputs: the deforestation coverage (def_cov), a spatial predicate (inter-
sect), a multivalued function (mean) and a road map (roads). The product is a 

roads coverage with one value for each road. This value is the mean of the cells that 

intercept this road. 

   road_def =  mean def_cov intersect roads 



 

 

Fig. 9. Deforestation mean along the roads 

Table 4 presents a comparison between the spatial operators as expressed in our 

proposal and in Tomlin’s map algebra. The examples show that the proposed map al-

gebra expresses the focal and zonal functions of Tomlin’s map algebra, using the  

‘touch’ and ‘within’ topological predicates. Operations involving ‘overlap’, ‘contains’ 

and ‘intersects’ predicates are part of our proposed coverage algebra and are not di-

rectly expressible by Tomlin’s algebra. This shows that the proposed algebra is richer 

than Tomlin’s, as well as having a solid conceptual basis. 

Table 5. Comparison of spatial operators with Tomlin’s map algebra 

Informal Description Generalized Map Alge-

bra 

Tomlin 

“Focal mean of topography” fmean:= mean topo 
touch fmean 

FOCALMEAN OF 
TOPOGRAPHY 

“Given a coverage of cities 

and one of topography, find 

the mean altitude for each 

city.” 

altcit:= mean topo 
within city 

ZONALMEAN OF 
TOPOGRAPHY 
WITHIN CITIES  

 

“Given a coverage of na-

tional forests, get the defores-

tation at the edges of each 

forest” 

defBord:= sum de-
for overlaps for-
ests 

(no equivalent) 

“Calculate the mean of the 

deforestation along the road”  
defRoad:= mean de-
for intersects 
road 

(no equivalent) 



5 Conclusions 

Map algebra is a fundamental class of operations for spatial data sets. Most of the cur-

rent implementations of map algebra use Tomlin’s [4] proposal for local, focal and 

zonal operations. However, Tomlin’s proposal uses ad hoc concepts and lacks a sound 

theoretical basis. This work addresses this problem, by proposing a new foundation 

for operations involving coverages. We have designed a coverage algebra that uses 

topological predicates to express spatial operations and that includes Tomlin’s algebra 

as a subset.  

There is one important set of operations on coverages that is not part of our pro-

posal nor of Tomlin’s: convolution operators. A convolution operation requires two 

coverages C1 and C2 produces a third coverage C3. The value of each point p of C3  is 

the integral of the product of C1 and C2, when C2  is shifted so that its central point is 

coincident with p. From a conceptual point of view, convolutions are not part of map 

algebra, since the geometrical support for the second coverage C2 (also called a mask) 

changes for each point of the output coverage. Convolution does not involve topo-

logical relations, but rather the definition of an integral function.  

Our proposal points to a situation where all modeling of topological relations in 

two-dimensional spatial datasets can be handled by the 9-intersection model (dimen-

sion-extended), both for simple features and for coverages. Spatial data sets of higher 

dimensions (e.g., TIN coverages) need a different foundation. The foundation for 

handling spatial relation of higher dimensions requires topological operators that op-

erate on 3D surfaces [17]. Convolution operations are a special case and need to be 

handled separately. A possible extension to our algebra would be to consider direc-

tional relations [18], which would be useful to express operations such as “find the 

population of all cities north of the river”.  

Even considering these limitations, the expressiveness of the proposed coverage 

algebra is considerable. Given that it is based on a solid foundation, it could be con-

sidered as the basis for setting up standard for operations on Open GIS coverages. The 

use of standards for operations in coverages would be a significant advance for in-

creased interoperability of spatial data. 
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