TerraME Classes and Functions

Pedro Ribeiro de Andrade Tiago Garcia de Senna Carneiro
DSSA/CCST/INPE TerraLab/UFOP
pedro.andrade@inpe.br tiago@iceb.ufop.br
Version 0.6

February 29, 2012

This document presents a detailed description of each class and function of TerraME, ordered alphabetically by
names of classes. TerraME adopts American English (e.g., neighbor instead of neighbour), with the following
syntax convention:
* Names of classes have the Pascal style, starting with a capital letter, followed by other words starting
with capitalized letters (e.g., Agent, Trajectory, CellularSpace).
* Functions and parameters names have the CamelCase! style, with names starting with lowercase letters,
followed by other words starting with capitalized letters (e.g., load, database, forEachCell, dbType).
There are two signatures for functions in TerraME. The first one uses the structure “function(v1, v2, ..)”, where
v1 is the 1st argument, v2 is the 2nd, and so forth. It is possible to use less arguments than the function signature,
with missing arguments taking their default values, but the arguments must follow the specified order.
Parameters of functions following this format are described as 1st, 2nd, etc. in this document. Every parameter
that does not have a default value is compulsory. The second signature is “function{argl = v1, arg2 = v2, ..},
where v1 is the value of argument argl, v2 is the value of argument arg2, and so on. These arguments can be
used in any order. Every class constructor of TerraME and some of its functions have this kind of signature. In
this document, such arguments are described with their names.

Agent
Function Description
Agent Class that defines an Agent that is capable of performing actions and interact with
other Agents and the spatial representation of the model. It can be described as a
agent = Agent { simple table or as a hybrid state machine that has a unique internal state. The initial
id = "MyAgent", State of the Agent is the first declared State. The Agent constructor gets a table
State { ...}, containing the attributes and functions of the Agent.
State { ... } Attributes of Agent that can be used as read-only by the modeler:
} * id: the unique identifier of the Agent within the Society (only when the
Agent was not loaded from an external source),
* parent: the Society it belongs.
* type: a string containing “Agent”.
* socialnetworks: a set of SocialNetwork, with the connections of the Agent.
* placement: a Trajectory representing the default placement of the Agent.
(Only when the Agent belongs to an Environment - by itself or through a
Society)
e cells: a vector of Cells necessary to use forEachCell(agent). This value is the
same of “placement.cells”.
add Add a new Trajectory or State to the Agent/Automaton.
1st) A State or Trajectory.
addSocialNetwork Add a new SocialNetwork to the Agent.
1st) A SocialNetwork.
2nd) Name of the relation.

1 http://en.wikipedia.org/wiki/CamelCase

Function Description

build Check if the state machine was correctly defined, verifying whether the targets
match the ids of the States.

dye Remove the Agent from the Society it belongs and clear its placement relations.

enter Put the Agent into a Cell, using the placement attributes of both.
1st) A Cell.
2nd) A string representing the index to be used. Default is "placement”.

execute The entry point for executing a given Agent. When the Agent is described as a state
machine, execute is automatically defined by TerraME. It activates the Jump of the
current State while it jumps from State to State. After that, it executes all the Flows
of the current State. Usually, this function is called within an Event, thus the time of
the Event can be got directly from the Timer.
When the Agent is not defined as a composition of States, the modeler should use
follow a signature to describe this function.
1st) An Event.

getCell Return the Cell where the Agent is located according to its placement. It assumes
that each Agent belongs to at most one Cell.

getCells Returns the Cells pointed by the Agent according to its placement.

getLatency Return the time when the machine executed the transition to the current state.
Before running, the latency is zero.

getSocialNetwork Return a SocialNetwork of the Agent given its name.
1st) Name of the relation.

getStateName Return a string with the current state name.

leave Remove the Agent from a given Cell.
1st) A string representing the index to be used. Default is "placement”.

message Send a message to another Agent as a table. They can arrive exactly after they are

ag:message {
receiver = agent2,
delay = 2,
content = "money",
quantity = 20

sent (synchronous) or have some delay (asynchronous). In the later case, it is

necessary to call function synchronize from the Society they belong to activate such

messages.

receiver: The Agent that will get the message.

type: A string describing the function that will be called in the receiver. Given a
string x, the receiver will get the message in a function called on_x. Default is
“message”. The function to receive the message must be implemented by the
modeler. See Agent::on_* for more details.

delay: An integer indicating the number of times synchronize needs to be called
before activating this message. Default is zero (no delay, no synchronization
required). Whenever a delayed message is received, it comes with the element
delay=true.

Other arguments are allowed to this function, as the message is a table. The receiver

will get all the attributes sent plus a sender value.

move

Move the Agent to a new Cell.
1st) The new Cell.
2nd) A string representing the index to be used. Default is "placement”.

on_*

Signature of a function that can be implemented by the modelers when the Agents
can receive messages from other ones. This function receives a message as
argument, with the same content of the message sent plus the attribute sender,
representing the Agent that has sent the message. In the case of non-delayed
messages, the returning value of this function (executed by the receiver) is also
returned as the result of message (executed by the sender).

reproduce

child = agent:reproduce{age=0} ‘

Create an Agent with the same behavior in the same place where the original Agent
is (according to its placement). Additional properties of the new Agent can be passed
as argument (a table). The new Agent is pushed into the same Society the original
Agent belongs. The returning value of this function is the new Agent.

setTrajectoryStatus

Activate or not the trajectories defined for a given Agent.

1st) Use or not the trajectories. As default, trajectories are turned off. If status is true,
when executed, the Agent described as a state machine will automatically
traverse all trajectories defined within it.

Automaton

Function

Description

Automaton

automaton = Automaton {
id = "MyAutomaton",
State { ... },

A hybrid state machine that is located on a CellularSpace, and is replicated over each
Cell of the space. It has independent States in each Cell. The initial State in each Cell
is the first declared state.

* parent: The Environment it belongs.

* type: A string containing “Automaton”.

}

add Add a new State to the Automaton.
1st) A State.

build Check if the state machine was correctly defined, verifying whether the targets
match the ids of the States.

execute Execute the state machine. First, it executes the Jump of the current State while it
jumps from State to State. When the machine stops jumping, it executes all the Flows
of the current State. Usually, this function is called within a Message, thus the time of
the Event can be got from the Timer.
1st) An Event.

getLatency Return the time when the machine executed the transition to the current state.
Before running, the latency is zero.

setTrajectoryStatus Activate or not the trajectories defined for a given automata.
1st) Use or not the trajectories. As default, trajectories are turned off. If status is true,

when executed the automaton will automatically traverse all trajectories defined
within it. Otherwise, the automaton will not run at all.

Cell

Function Description

Cell A spatial location, with properties and nearness relations. It is a table that includes
persistent and runtime attributes. Persistent attributes are loaded from and saved

cell = Cell { to databases, while runtime attributes exist only along the simulation.

cover = "forest",
soilWater = 0

}

Attributes of Cell that can be used as read-only by the modeler:

* past: a copy of the attributes at the time of the last synchronization.

* parent: the CellularSpace the Cell belongs.

* type: a string containing “Cell”.

¢ placement: a Group representing the default placement of the Cell. (only
when the CellularSpace of the Cell belongs to an Environment)

* agents: a vector of Agents necessary to use forEachAgent(cell) (only when
the CellularSpace of the Cell belongs to an Environment).

addNeighborhood Add a new Neighborhood to a Cell.
1st) A Neighborhood.
2nd) Neighborhood’s name (default "1"). It can be a string or a number, but it is
always converted to string.
createObserver Create a new observer for the Cell. See the Observer documentation below.
first Start a Neighborhood iterator, pointing to the first element of the Neighborhood list.
getAgent Return the Agent that belongs to a given Cell. It assumes that there is at most one
Agent per Cell.
getAgents Return the Agents that belong to a given Cell.

getCurrentNeighborhood

Retrieve the Neighborhood currently pointed by the Neighborhood iterator, or nil
otherwise.

getNeighborhood Return one of the Neighborhoods of a Cell.
1st) A string with the Neighborhood’s name to be retrieved (defaultis "1").

getPast Return the values of the Cell in the last time synchronize() was called.

isFirst Return whether the Neighborhood iterator is pointing to the first Neighborhood of
the list.

isLast Return whether the Neighborhood iterator has already passed by the last
Neighborhood of the list, or whether the iterator does not exist.

last Clear the Neighborhood iterator.

next Update the Neighborhood iterator to the next Neighborhood of the list.

notify Notify every observer connected to the Cell.

1st) The time to be used in the observer. Most of the strategies available ignore this

Function

Description

value; therefore it can be left empty. See the Observer documentation for details.

size Return the number of Neighborhoods of a Cell.

synchronize TerraME can keep two copies of the attributes of a Cell in memory: one stores the
past values and the other stores the current (present) values. Synchronize copies the
current values to a table named past, within the Cell.

CellularSpace

Function Description

CellularSpace A multivalued set of Cells, which can be retrieved from TerraLib databases or created

cs = CellularSpace {
database="amazonia",
theme="cells",
user="root"

}

cs = CellularSpace {
database = "d:\\GoF.mdb",
layer ="cells_10",
theme ="cells_10",
select = "height3 as height",
where = "height3 > 200"

}

cs2 = CellularSpace {
xdim = 20,
ydim = 20

}

directly within TerraME (rectangular CellularSpaces). These two ways of creating
CellularSpaces have different mandatory arguments: database and theme for reading
from a DBMS, and xdim and ydim for CellularSpaces only in memory. Cellular spaces
stored in databases need to be loaded to TerraME before using it. Calling forEachCell
traverses CellularSpaces.

database: Name of the database.

theme: Name of the theme to be loaded.

dbType: Name of DBMS. The default value depends on the database name. If it has a
“.mdb” extension, the default value is "ado", otherwise it is "mysql"). TerraME
always converts this string to lower case.

host: Host where the database is stored (default is "localhost").

port: Port number of the connection.

user: Username (default is "").

password: The password (default is "").

layer: Name of the layer the theme was created from. It must be used to solve a
conflict when there are two themes with the same name (default is "").

load: a boolean value indicating whether the CellularSpace will be loaded
automatically (true, default value) or the user by herself will call load (false).

select: A table containing the names of the attributes to be retrieved (default is all
attributes). When retrieving a single attribute, you can use select = "attribute"
instead of select= {"attribute"}. It is possible to rename the attribute name using
"as", for example, select= {"lc as landcover"} reads lc from the database but

replaces the name to landcover in the Cells. Attributes that contain "." in their
names (such as results of table joins) will be read with "_" replacing "." in order to
follow Lua syntax to manipulate data.

where: A SQL restriction on the properties of the Cells (default is "", applying no
restriction. Only the Cells that reflect the established criteria will be loaded). The
where argument ignores the "as" flexibility of select.

xdim: Number of columns, in the case of creating a CellularSpace without needing to
load from a database.

ydim: Number of lines, in the case of creating a CellularSpace without needing to load

from a database. Default is equal to xdim.

Attributes of CellularSpace that can be used as read-only by the modeler:
e cells: A vector of Cells pointed by the CellularSpace.
* cObj_: A pointer to a C++ object.
e parent: The Environment it belongs.
* type: A string containing “CellularSpace”.

add

Add a new Cell to the CellularSpace. The new Cell is added to the end of the cells
vector.
1st) A Cell.

createObserver

Create a new observer for the CellularSpace. See the Observer documentation below.

createNeighborhood

cs:createNeighborhood()
-- moore

cs:createNeighborhood {
strategy = "vonneumann”,
self = false

}

Create a Neighborhood for each Cell of the CellularSpace. It gets a table as argument,

with the following attributes:

strategy: A string with the strategy to be used for creating the Neighborhood. See the
table below.

Strategy Description Parameters (bold
are compulsory)
"moore" A Moore (queen) Neighborhood. name, self, wrap
(default)
"vonneumann" | A von Neumann (rook) Neighborhood name, self

Function

Description

cs:createNeighborhood {
strategy = "mxn",
M =4,
N=4

}

mxn name, M, N, filter,
weight

name, filter,
weight

name, filter,

(M*2+1) x (N*2+1) (columns x rows)
Neighborhood
A 3x3 (Couclelis) Neighborhood

II3X3I|

"function” A Neighborhood based on a function where

any other Cell can be a neighbor weight

filter: A function(Cell, Cell)—=bool, where the first argument is the Cell itself and the
other represent its neighbor. It returns whether neighbor will be included in the
relation.

M: Number of columns.

N: Number of rows.

name: A string with the name of the Neighborhood to be created. Default is "1".

self: Add the Cell as neighbor of itself? Default is false. Note that the functions that do
not require this argument always depend on a filter function, which will define
whether the Cell can be neighbor of itself.

weight: A function(Cell,Cell)—>number, where the first argument is the Cell itself and
the other represent its neighbor. It calculates the weight of the relation.

wrap: Whether Cells in the borders will be connected to the Cells in the opposite
border. Default is false.

getCell

Retrieve a Cell from the CellularSpace, given its index.
1st) A Coord.

getCells

Return a vector containing all Cells of the CellularSpace.

load

Load the CellularSpace from the database. TerraME automatically executes this
function when the CellularSpace is created, but it can be execute this to load the
attributes again, erasing each other attribute and relations created by the modeller.

loadNeighborhood

cs:loadNeighborhood("n.gpm")

cs:loadNeighborhood("mtable"”
)

Load a Neighborhood stored in an external source. Each Cell receives its own set of
neighbors.
source: A string with the location of the Neighborhood to be loaded. See below.

Source | Description

"*gal" | Load a Neighborhood from contiguity relationships described as a GAL
file.

"*gwt" | Load a Neighborhood from a GWT (generalized weights) file.

"*gpm" | Load a Neighborhood from a GPM (generalized proximity matrix) file.

Any Load a Neighborhood from table stored in the same database of the

other CellularSpace.

name: A string with the name of the Neighborhood to be loaded within TerraME.
Defaultis "1".

notify Notify every observer connected to the CellularSpace.
1st) The time to be used in the observer. Most of the strategies available ignore this
value; therefore it can be left empty. See the Observer documentation for details.
sample Return a random Cell from the CellularSpace.
save Save the attributes of a CellularSpace into the same database it was retrieved.

cellularspace:save(20, "table")

cellularspace:save(20, "ntable",
{lldefll’ ’Ipll})

1st) A temporal value to be stored in the database, which can be different from the
simulation time.

2nd) Name of the table to store the attributes of the Cells.

3rd) A vector with the names of the attributes to be saved (default is all of them).
When saving a single attribute, you can use attrNames = "attribute” instead of
attrNames= {"attribute"}.

size

Retrieve the number of elements in the CellularSpace.

split

ts = cs:split("cover")
print(ts.forest:size())
print(ts.pasture:size())

ts2 = cs:split(function(cell)
if cell.forest > 0.5 then
return "gt"
else
return "It"
end

Split the CellularSpace into a set of Trajectories according to a classification strategy.
The generated Trajectories have empty intersection and union equals to the whole
CellularSpace. It works according to the type of its only and compulsory argument,
that can be:

Type of Description
argument
string The argument must represent the name of one attribute of the Cells of

the CellularSpace. Split then creates one Trajectory for each possible
value of the attribute using the value as index and fills them with the
Cells that have the respective attribute value.

Function

Description

end)
print(ts.gt:size())

function | The argument is a function that receives a Cell as argument and returns
a value with the index that contains the Cell. Trajectories are then

indexed according to the returning value.

synchronize

cs:synchronize()
cs:synchronize("landuse")

cs:synchronize{"water","use"

Synchronize the CellularSpace, calling the function synchronize() of each Cell.

1st) A string or a vector of strings with the attributes to be synchronized. If empty,
TerraME synchronizes every attribute read from the database but the (x, y)
coordinates and the attributes created along the simulation.

Coord
Function Description
Coord Class that stores a pair (¥, y). Once created, it is only possible to retrieve (%, y) by using

coord = Coord()
coord2 = Coord{x=2, y=3}
print(coord2.x) -- nil

get().

get

Return a table with (x, y) as values.

set

coord:set{x=3, y=2}
coord:set{x=4}

Change the pair (x, y), or only one of its original values.
1st) Default is not changing.
2nd) Default is not changing.

Environment
Function Description
Environment A container that encapsulates space, time, behavior, and other environments. Objects

environment = Environment {
cs1 = CellularSpace({ ... },
agl = Agent{ ... },
aut2 = Automaton{ ... },
tl = Timer{ ... },
envl = Environment{ ... }

}

can be added directly when the Environment is declared or after it has been
instantiated. It can control the simulation engine, synchronizing all the Timers within
it.

add Add an object to the Environment. The functions below are more efficient because
they do not have to find out the type of the parameter.
1st) An Agent, Automaton, CellularSpace, Timer, or Environment.
createPlacement Create relations between behavioural entities (Agents) and spatial entities (Cells).

The Environment must have only one CellularSpace. It is possible to have more than

one behavioural entity in the Environment.

strategy: A string containing the strategy to be used for creating a placement
between Agents and Cells. See the options below.

Strategy Description Paramete
rs
"random" | Create placements between Agents and Cells randomly, name,
(default) | putting each Agentin a Cell randomly chosen. max
"uniform" | Create placements uniformly. The first Agents enter in name
the first Cells. The last Cells will contain fewer Agents if
the number of Agents is not proportional to the number
of Cells. For example, placing a Society with four Agents
in a CellularSpace of three Cells will put two Agents in
the first Cell and one in each other Cell.
"void" Create only the pointers for each object in each side, name
preparing the objects to be manipulated by the modeler.

name: Name of the relation in TerraME objects. Default is “placement”, which means
that the modeller can use enter(), move(), and leave() directly. If the name is

Function

Description

different from the default value, the modeller will have to use the last argument of
these functions to indicate which relation they are changing or perform changes
on these relations manually.

max: The maximum number of Agents that can enter in the same Cell. Default is
having no limit. Using max is computationally efficient only when the number of
Agents is considerably lower than the number of Cells times max. Otherwise, it is
better to consider using the uniform strategy.

createNeighborhood Create Neighborhoods between Cells belonging to two different CellularSpaces. It
uses the two first CellularSpaces pushed into the Environment.
strategy: a string with the strategy to be used for creating the Neighborhood. See the
table below.
Strategy Description Parameters (bold
are compulsory)
"mxn" Create an [M*2+1] x [N*2+1] (columns x rows) | name, M, N, filter,
bidirected Neighborhood (Couclelis) bettween | weight
two different CellularSpaces. It supposes that
both CellularSpaces have the same resolution
and extent.
"id" Create a 1:1 Neighborhood between two name
different CellularSpaces by connecting Cells
with the same id. Note that it only uses two
CellularSpaces; when someone wants to
connect three or more, they need to be
connected two by two.
“hierarchy” | Create a Neighborhood based on the name
differences of resolutions between two
CellularSpaces. For example, Cell (1,1) of a
given CellularSpace will be connected to Cells
(1,1), (1,2), (2,1), and (2,2) of another
rectangular CellularSpace with four times the
number of Cells.
filter: A function (Cell, Cell)—=bool, where the first argument is the Cell itself and the
other represent its neighbor. It returns whether neighbor will be included in the
relation. The first (second) Cell comes from the first (second) CellularSpace
pushed into the Environment.
M: Number of columns.
N: Number of rows.
name: A string with the name of the Neighborhood to be created. Default is "1".
weight: A function (Cell,Cell)—=number, where the first argument is the Cell itself and
the other represent its neighbor. It calculates the weight of the relation. This
function is also called twice for each pair of Cells.
filter: A function (Cell, Cell)—=bool, where the first argument is a Cell and the other is
its neighbor, one from each CellularSpace. It returns whether neighbor will be
included in the relation. This function is called twice for each pair of Cells, first
filter(c1, c2) and then filter(c2, c1), wher c1 belongs to cs1 and c2 belongs to cs2.
weight: A function (Cell,Cell)—>number, where the first argument is a Cell and the
second is its neighbor. It calculates the weight of the Neighborhood relation.
createSocialNetwork as mesmas estrategias: random, quantity, etc.??
execute Execute the Environment until a given time. It activates the Timers it contains, the
Timers of the Environments it contains, and so on.
1st) Time to stop the simulation. Timers stop when there is no Event scheduled to a
time less or equal to the final time.
loadNeighborhood Load a Neighborhood between two different CellularSpaces.
1st) Name of the file to be loaded.
2nd) Name of the relation to be created. Defaultis "1".
loadPlacement Load a Placement between a Society and a CellularSpace.

1st) Name of the file to be loaded.
2nd) Name of the relation to be created. Default is "placement”.

loadSocialNetwork

Load a SocialNetwork between two different Societies.

Function

Description

1st) Name of the file to be loaded.
2nd) Name of the relation to be created. Defaultis "1".

saveNeighborhood Save a Neighborhood between two CellularSpaces in a file. It overwrites any previous
content of the file.
1st) Name of the file to be saved.
2nd) Name of the relation to be saved. Defaultis "1".
savePlacement Save a Neighborhood between a Society and a CellularSpace in a file. It overwrites any
previous content of the file.
1st) Name of the file to be saved.
2nd) Name of the relation to be saved. Default is "placement”.
saveSocialNetwork Save a Neighborhood between two Societies in a file. It overwrites any previous
content of the file.
1st) Name of the file to be saved.
2nd) Name of the relation to be saved. Defaultis "1".
Event
Function Description
Event An Event represents a time instant when the simulation engine must execute some
computation.
Event {
time = 1985, time: The first instant of time when the Event will occur (default is the current time
period = 2, of the Timer it will belong).
priority = -1, period: The periodicity of the Event (default 1).

action = function(event)
print(event:getTime())
end

Event{
time = 2000,
action = my_society

}

priority: Define the priority of the Event over other Events. The default priority is 0
(zero). Smaller values have higher priority.

action: Function from where, in general, the simulation engine services are invoked.
This function has one single argument, an Event. If the action returns false, the
Event is removed from the Timer and will not be executed again. Action can also
take a TerraME object. In this case, each object has a set of functions that will be
activated by the Event. See below how the objects are activated. Arrows indicate
the execution order.

Object Function(s) activated
Agent/Automaton | execute — notify
CellularSpace/Cell | synchronize — notify
function function
Society execute — synchronize — notify
Timer notify
Trajectory/Group | rebuild — notify
config Change the attributes of an Event that belongs to a Timer in such a way that it will be
scheduled again according to its new attributes.
1st) The first instant of time when the Event will occur (default is the current time of
the Timer it will belong).
2nd) The periodicity of the Event (default is 1).
3rd) Define the priority of the Event over other Events. The default priority is 0 (zero).
Smaller values have higher priority.
getPeriod Return the period of a given Event. This function can be used only along the
simulation, when the Event is activated and comes as a parameter to a message.
getPriority Return the priority of a given Event. This function has restrictions of use as above.
getTime Return the current simulation time. This function has restrictions of use as above.
Flow
Function Description
Flow Describe the behavior of an automaton or Agent in a given State. It is a user-defined

Flow { function(ev, agent, cell)
agent.value = agent.value + 2
end}

function that receives three parameters: the Event that activated the Flow, the
automaton/Agent that owns the Flow, and the Cell over which the Flow will be
evaluated.

Group (Inherits Society)

Function

Description

Group

richers = Group {
target = society,
filter = function(agent)
return agent.money > 90
end,
sort = function(a, b)
return a.money > b.money
end

}

groupBySize = Group {
target = society,
sort = function(al, a2)
return al.size > a2.size
end

Class that defines an ordered selection over a Society. It inherits Society; therefore it
is possible to use all functions of such class within a Group. For instance, calling
forEachAgent also traverses Groups.

target: The Society over which the Group will take place.

filter: A function (Agent)—boolean to filter the Society, adding to the Group only
those Agents whose returning value is true. If this argument is missing, all Agents
will be included in the Group.

sort: A function (Agent, Agent)—boolean to sort the generated subset of Agents. It
returns true if the first one has priority over the second one. If this argument is
missing, no sorting function will be applied.

build: A boolean value indicating whether the Group will be computed or not when
created. Default is true.

Attributes of Trajectory that can be used as read-only by the modeler:
* agents: A vector of Agents pointed by the Group.
* parent: The Society where the Group takes place.

} ¢ lastFilter: The last filter function applied to the Group.
* lastSort: The last sort function applied to the Group.
rebuild Rebuild the Group from the original data using the last filter and sort functions.
randomize Randomizes the Agents, changing the traversing order.
Jump
Function Description
Jump Control a discrete transition between States. If the method in the first argument

Jump { function(ev, agent, c)
return c.water>c.capInf
end,
target = "wet"

}

returns true, the target becomes the new active State.

1st) a function that returns a boolean value and takes as arguments an Event, an
Agent/Automaton, and a Cell, respectively.

target: a string with another State id.

Legend

Function

Legend

coverLeg = Legend{
type = "number”,
grouping = "uniquevalue”,
slices = 3,
maximum = 2,
minimum = 0,
colorBar ={
{WHITE, 0},
{RED, 1},
{GREEN, 2}
}
}

Class that defines a legend to be used in an observer. It is used only when the
observer is of type map. The configuration of a legend can be changed visually within
the graphical interface along the simulation.

grouping: A string to define the strategy to slice and color the data. See below.

Grouping Description Parameters

equalsteps Paint objects according to their attributes, colorBar, slices,
which are divided into a set of slices with the | maximum,
same range. Each slice is associated to a minimum,
given color. Equalsteps require only two precision, type,
colors in the colorBar. width

quantil Classify a set of objects according to a given colorBar, slices,
attribute. Classes, or slices, have maximum,
approximately the same size and similar minimum,
atributes. Slices are ordered from the lowest | precision, type,
values to the higher ones, associating colors width
to this order.

stdeviation | Define slices to group objects according to stdDeviation,
the distribution of a given attribute. Objects colorBar,
with similar positive or negative distances to | stdColorBar,
the average will belong to the same slice. precision, type,

width

Function

uniquevalue | Paint objects with each attribute value colorBar, type,
corresponding to a given color. String width
attributes can only belong to uniquevalue
groupings.

type: The type of the attribute to be observed. It has to be one of "bool", "number”,
"string”, and "datetime" (an ordered string).

slices: The number of colors to be used for plotting.

precision: The number of decimal digits for slicing.

stdDeviation: When the grouping mode is stddeviation, it has to be one of "full",
"half" "quarter", or "none".

maximum: The maximum value of the attribute (used only for numbers).

minimum: The minimum value of the attribute (used only for numbers).

width: The width of the line to be drawn. Used for drawing Neighborhoods (default is
10).

colorBar: A table where each position is also a table with the color. In the case of
unique value, each position needs to have also a value of the respective attribute.

stdColorBar: A table similar to the previous parameter. It is needed only when the
standard deviation is the chosen strategy.

Neighborhood
Function Description
Neighborhood Each Cell has one or more Neighborhoods to represent proximity relations. A

| n = Neighborhood()

Neighborhood is a set of pairs (cell, weight), where cell is a neighbor Cell and weight
is a number storing the relation’s strength.

addCell Add a new Cell to the Neighborhood.
1st) A Coord.
2nd) An object of class CellularSpace that contains the Cell to be added.
3rd) A number representing the weight of the connection (default 0).
clear Remove all Cells from the Neighborhood. In practice, it has almost the same behavior
as calling Neighborhood() again.
eraseCel Remove a Cell from the Neighborhood.
1st) A Coord.
first Start a neighbor iterator, pointing to the first Cell in the neighbors list.
getCellNeighbor Return a neighbor, given its coords.
1st) A Coord.
getCellWeight Return the weight of the connection to a given neighbor Cell.
1st) A Coord.
getCoord Return the coordinates of the neighbor pointed by the current iterator.
getID Return the name of the Neighborhood in the last Cell it was added.

cl:addNeighborhood(n, "n")
c2:addNeighborhood(n, "n2")
n:getlD() -- "name2"

getNeighbor Return the neighbor pointed by the current iterator.

getWeight Return the weight of the connection to a neighbor pointed by the current iterator.

isEmpty Return whether the Neighborhood does not contain any Cell.

isFirst Return whether the neighbor iterator is pointing to the first Cell of the list.

isLast Return whether the neighbor iterator has already passed by the last Cell of the list, or
whether the iterator does not exist.

last Clear the neighbor iterator.

next Change the neighbor iterator to the next Cell of the list.

sample Return a single sample from the Neighborhood.

setCellWeight Update the weight of a connection to a neighbor.
1st) A Coord.
2nd) A number pointing out the new weight.

setWeight Update the weight of the connection to a neighbor pointed by the current iterator.
1st) A number representing the new weight.

size Retrieve the number of neighbors the Neighborhood has.

Observer

Function

Description

Observer

observer = Observer {
subject = cs,
attributes = "soilWater",
subtitles = soilWaterLeg

}

Observer {
subject = mytrajectory,
observer = observer

Observer is the way to collect data from the objects of a model in order to save or to
graphically plot them. Observers can be created from any TerraME object and do not
need to be instantiated to a Lua object to work properly.

type: A string to define the way to observe a given object. See the table below.

Type Description Parameters (bold
are compulsory)

chart Create a line chart showing the variation of an subject, attributes,
attribute (y axis) of an object. X axis can be xaxis, xLabel,
another attribute or a temporal value coming yLabel, title,
from the argument of notify(). curveLabel

image Create a map with the spatial distribution of a subject, attribute,
given Agent, CellularSpace, Society or file, legend
Trajectory, saving it in a png file for each
notify(). [t works in the same way of the
observer map.

logfile Save attributes of an object into a csv text file, subject, file,
with one row for each notify(). attributes,

separator, mode

map Create a map with the spatial distribution of a subject, attribute,
given CellularSpace, Trajectory, Agent, or observer (unless
Society. It draws each element into the screen, | when the subject is
according to one or two attributes (two is a CellularSpace),
allowed only for CellularSpace) colored from legend
one or two Legends, respectively. The second
attribute and Legend are used as background.

neighborhood | Draw the Neighborhood of a Cell, or the subject, observer,
Neighborhoods of each Cell within a Trajectory, | neighlndex,
CellularSpace, or Environment. They are drawn | neighType
as lines, according to a neighType.

scheduler Create a display with the current time and subject
Event queue of a given Timer.

statemachine | Draw the state machine of an Automaton in a subject, location
Cell or an Agent. As default, states are drawn as | (only when the
gray circles with a green circle to represent the | subjectis an
current state. Unique value Legends can be Automaton), legend
used to map state names to colors, putting the
current state in evidence with bold font.

table Display a table with the current attributes of an | subject, attribute
object. Each notify() overwrites the previous
values.

textscreen Create a display in a tabular format with the subject, attribute
current attributes of an object. It will have one
row for each notify/().

udpsender Send observed attributes of an object through a | subject, attribute,
UDP port of a given IP. host, port

attribute: A vector of strings with the name of the attributes to be observed. When
empty, the observer will use every available attribute of the object that is not a table
or an external pointer.

file: Name of the file to be saved. In the case of images, it represent the fixed part of the
file name that will be concatenated with a timestamp and “.png”. In the case of
logfiles, it must be a file ending with “.csv”. Default value is “result_” for image files
and result_.csv for logfiles.

host: A string or a vector of strings with host names for udpsenders.

legend: A Legend or a vector of Legends to paint objects according to their properties.

location: A Cell representing a location to observe an Automaton.

mode: The open mode for a logfile observer, with “w” for writing a new file, “w+” for
overwriting an existing file (default), or “a” to append an existing file.

neighIlndex: A string or a vector of strings representing the neighborhood indexes to be

Function

Description

drawn by a neighborhood observer. Default is "1".

neighType: One of three strings, "basic" (default), "color”, or "width", for neighborhood
observers. Basic type draws neighborhoods as lines with the same color and width.
Color draws them using colors according to their weights. Width draws them with
widths according to their weights. All them use the attribute width of Legends. The
first two use it as width for all lines, while the last one interpolates the weights of the
relations to draw widths between one pixel and the Legend width.

observer: An Observer that will be used as background for drawing properties of
observed objects that cannot be drawn alone.

port: A string or a vector of strings with ports for the respective host names to be used by
udpsenders.

separator: The attribute separator character (i.e., “;”). Used only for logfiles.

subject: The object that will be observed.

title: An overall title to the observer.

xaxis: A string representing the attribute to be used as x axis in a chart observer. When
nil, time will be used as axis.

xLabel: Name of the x-axis. When xaxis is not nil, default is value xaxis, otherwise it is
“time”.

yLabel: Name of the y-axis. Default is attribute[1] when table.getn(attribute) == 1.
Otherwise is “”.

curveLabel: Vector of the same size of attributes that indicates the labels for each line of
a chart. Default is the name of the attributes.

Default values of observer types depend on the parameters. See table below for a
description on how it works.

Parameters, from higher to lower priority Default type
file == "*.csv" logfile

file ~= nil image

host ~= nil or port ~= nil udpsender
neighlndex ~= nil or neighType ~= nil neighborhood
type(subject) == "Timer" scheduler
type(subject) == "Event" table
type(subject) == "CellularSpace” map
type(subject) == "Trajectory” map
type(observer) == "Observer" and type(subject) == "Cell" neighborhood
type(subject) == "Cell" table
type(subject) == "Automaton” map
type(subject) == "Agent" statemachine
type(subject) == "Society" map
type(subject) == "Group" map

SocialNetwork
Function Description
SocialNetwork Each Agent has one or more social networks to represent its relations. A

| sn = SocialNetwork()

traverses SocialNetworks.

SocialNetwork is a set of pairs (connection, weight), where connection is an Agent
| and weight is a number storing the relation’s strength. Calling forEachConnection

add Add a new connection to the SocialNetwork.
1st) An Agent.
2nd) A number representing the weight of the connection (default nil - no weight).
clear Remove all Agents from the SocialNetwork. In practice, it has almost the same
behavior as calling SocialNetwork() again.
getConnection Return a connection given its id.
1st) The unique identifier of an Agent.
getID Return the ID used to index the SocialNetwork into the Agent.
getWeight Return the weight of a given connection.
1st) An Agent.
isEmpty Return whether the SocialNetwork does not contain any connection.
isConnection Return whether a given Agent is a connection.

Function Description
1st) An Agent.
remove Remove an Agent from the SocialNetwork.
1st) An Agent.
sample Return a single sample from the SocialNetwork.
setWeight Update the weight of a connection.
1st) An Agent.
2nd) A number pointing out the new weight.
size Retrieve the number of connections the SocialNetwork has.
Society
Function Description
Society Class to create and manipulate a set of Agents. Each Agent within a Society has a

| s = Society{instance-=..., file=""}

unique id, which is initialized while creating the Society. Calling forEachAgent
traverses Societies.

database: Name of the database.

dbType: Name of DBMS. The default value depends on the database name. If it has
a “mdb” extension, the default value is "ado", otherwise it is "mysql"). TerraME
always converts this string to lower case.

file: A filename (.csv) where the Society is stored.

host: Host where the database is stored (default is "localhost").

id: The unique identifier attribute used when reading the Society from a file.

instance: A table with the description of the attributes and functions of an Agent.
Some functions that may have internal TerraME use are:
* execute(self): a function with the behavior of the Agent when activated
* Dbuild(agent): a function called at the end of the instantiation process.
* on_*(self, message): a function called when the Agent receives a message.

See Agent::message() for more details.

layer: Name of the layer the theme was created from. It must be used to solve a
conflict when there are two themes with the same name (default is "").

password: The password (default is "").

port: Port number of the connection.

quantity: Number of Agents to be created. It is used when the Society will not be
loaded from a file or database.

select: A table containing the names of the attributes to be retrieved (defaultis all
attributes). When retrieving a single attribute, you can use select = "attribute"
instead of select= {"attribute"}. It is possible to rename the attribute name using
"as", for example, select= {"lc as landcover"} reads lc from the database but
replaces the name to landcover in the Cells. Ver como vai ficar o save para o as.
Documentar a questao de que nem todos os atributos sao lidos como esta no
banco.

theme: Name of the theme to be loaded.

user: Username (default is "").

where: A SQL restriction on the properties of the Agents (default is "", applying no
restriction. Only the Agents that reflect the established criteria will be loaded).
This argument ignores the "as" flexibility of select.

Attributes of Society that can be used carefully by the modeler:

* agents: a vector of Agents pointed by the Society.

* instance: a function used to build the Agent.

* counter: unique identifier used to represent the last Agent added to the
Society. The next Agent will have ‘counter+1’ as id.

* lastSynchronize: the last time synchronize() was activated. It has zero as
initial value.

* messages: a vector that contains the delayed messages.

* parent: the Environment it belongs.

add Add a new Agent to the Society. This Agent is
clear Remove all the Agents from the Society.
createSocialNetwork Create a directed SocialNetwork for each Agent of a Society. The following

| soc:createSocialNetwork {

arguments represent the strategies, which must be only one for call:
strategy: a string with the strategy to be used for creating the SocialNetwork. See
the table below.

Function Description
quantity = 2
} Strategy Description Parameters (bold
are compulsory)
soc:createSocialNetwork { "quantity” Number of connections randomly name, self,
probability = 0.15 taken from the Society quantity
name = "random" "probability" | Applies a probability for each pair | name, self,
} of Agents. probability
"func" Create a dynamic SocialNetwork name, func
soc:createSocialNetwork { according toa membership
neighbor ="1" function.
name = "byneighbor" "cell" Create a dynamic SocialNetwork name, self
} for each Agent of a Society with
every Agent within the same Cell
the Agent belongs.
"neighbor" Create a dynamic SocialNetwork name,
for each Agent of a Society with neighborhood
every Agent within the neighbor
Cells of the one the Agent belongs.
bidirected: a boolean value indicating that, for each connection from A to B, it will
also exist a connection from B to A. Default is false.
dynamic: a boolean value indicating whether the relation is computed on-the-fly or
statically. Default is false (statically). Computing dunamically requires less
memory, but requires more processing time.
func: a function that receives an Agent as argument and returns its SocialNetwork.
When using this argument, the default value of strategy becomes "func".
name: name of the relation. Defaultis "1".
neighborhood: a string with the index of the Neighborhood that will be used to
compute the network. Defaultis "1".
probability: a number between 0 and 1 indicating the probability of each
connection. The probability is applied for each pair of Agents. When using this
argument, the default value of strategy becomes "probability".
quantity: a number indicating the number of connections each Agent will have,
taking randomly from the whole Society. When using this argument, the default
value of strategy becomes "quantity".
self: a boolean value indicating whether the Agent can be connected to itself.
Default is false.
execute Execute the Society, activating function execute for each of its Agents.
getAgent Return a given Agent based on its index.
getAgents Return a vector with the Agents of the Society.
loadSocialNetwork Load a social network stored in an external source.
sample Return a single sample from the Society.
size Return the number of Agents within a Society.
synchronize Activate each asynchronous message sent by Agents belonging to the Society.
Messages with delay one are sent, while the others have their delay reduced by one.
1sY) A number indicating the current time. Default is Society::lastSynchronize+1.
State
Function Description
State A container of two kinds of rules: Jumps and Flows, plus one id, to identify itself in
the Jumps of other States.
State {
id = "working",
Jump{ ... },
Flow{ ... }

}

Timer

Function

Description

Timer

timer = Timer {

A Timer is an event-based scheduler that executes and controls the simulation. It
contains a set of Events. It allows the model to take into consideration processes
that start independently and act in different periodicities. It starts with time 0 and,

Event{..}, once it is in a given time n, it ensures that all the Events before that time were
Event{...} executed.
}
add Add a new Event to the timer.
1st) An Event.
execute Execute the timer until a given time.
1st) The time to stop the simulation. The timer will stop when there is no Event
scheduled to a time less or equal to the final time.
getTime Return the current simulation time.
reset Resets the timer to time zero, keeping the same queue.

Trajectory (Inherits CellularSpace)

Function

Description

Trajectory

traj = Trajectory{
target = cs,
filter = function(cell)

end,

sort = function(c, d)
return c.dist < d.dist

end

}

traj = Trajectory{
target = cs,
sort = function(c, d)
return c.dist < d.dist
end

}

traj = Trajectory{
target = cs,
build = false

return cell.cover == "forest"

Class that defines a spatial trajectory over Cells. It inherits CellularSpace; therefore
it is possible to use all functions of such class within a Trajectory. For instance,
calling forEachCell also traverses trajectories.

target: The CellularSpace over which the Trajectory will take place.

filter: A function (Cell)—=boolean to filter the CellularSpace, adding to the
Trajectory only those Cells whose returning value is true. If this argument is
missing, all Cells will be included in the Trajectory.

sort: A function (Cell, Cell)—=boolean to sort the generated subset of Cells. It returns
true if the first one has priority over the second one. If this argument is missing,
no sorting function will be applied. See compareByAttribute() and
compareByCoord() as predefined options to sort objects.

build: A boolean value indicating whether the Trajectory will be computed or not
when created. Default is true.

Attributes of Trajectory that can be used as read-onlyby the modeler:
e cells: A vector of Cells pointed by the Trajectory.
¢ parent: The CellularSpace where the Trajectory takes place.
¢ lastFilter: The last filter function applied to the Trajectory.
* lastSort: The last sort function applied to the Trajectory.

}
filter Apply a filter over the original CellularSpace.
1st) A function such as the second parameter of the Trajectory constructor.
getCell Return a Cell given its index.
1st) A Coord.
randomize Randomize the Cells, changing their traversing order.
rebuild Rebuild the Trajectory from the original data using the last filter and sort functions.
remove Remove a Cell from the Trajectory.
sort Sort the current CellularSpace subset.

1st) An ordering function.

Other Functions

Function

Description

coord2index

idx = coord2index(2, 3, 10)
¢ = Coord{x=2, y=3}
cs:getCell(c).value = 3
print(cs.cells[7].value) --3

Convert a pair (x, y), which represents a position in a squared and regular
CellularSspace, into the position where the Cell is stored in the CellularSpace’s
vector of Cells.

1st) The x position.

2nd) The y position.

3rd) Number of columns of the CellularSpace.

Function

Description

d

df = function(x, y)
returny - x"2+1

end

a=0
b=2

init = 0.5
delta=0.2

d{df, init, a, b, delta}

CONVERSAR COM TIAGO SOBRE ESTA FUNCAO. OS ARGUMENTOS ATUALMENTE
SAO DESCRITOS NA FORMA DE UMA TABELA, MAS NAO SAO NOMEADOS!

se o init nao for passado, o valor dele sera df(a).

a funcao d poderia receber um evento como argumento, e assim evitar os
parametros ‘a’ e ‘b’, e assim integrar a modelagem de tempo continuo usando
eventos discretos.

Assim, os parametros de d poderiam ser nomeados. Por exemplo:
d{equation=f, step=0.1, event = e, method = "euler"}

RESOLVER AQUI TAMBEM A QUESTAO DAS CONSTANTES
INTEGRATION_METHOD E DELTA.

A second-order function to calculate a numerical integration of a given function. It

uses two global variables, which define the INTEGRATION_METHOD

(integrationEuler as initial value, others available are integrationHeun and

integrationRungeKutta, but the user can also define a function) and DELTA (0.2 as

initial value).

1st) A differential equation, described as a function of two parameters, x and y,
which returns a single value.

2nd) The initial condition which must be satisfied, basically the value of f(a), where f
is the first argument, and a is the third argument.

3rd) The beginning of the interval.

4t) The end of the interval.

5t) The step of the interval (optional, using DELTA as default).

forEachAgent

forEachAgent(s, function(a)
a.age =a.age+5
end)

Transverse a given Society, Group, or Cell, applying a function in each of its Agents.

1st) A Society, Group, or Cell.

2nd) A function that takes one single Agent as argument. If some call to func returns
false, forEachAgent stops and does not process any other Agent.

forEachcCell

forEachCell(cs, function(cell)

end)

Transverse a given CellularSpace, applying a given function on each of its Cells.

1st) A CellularSpace.

2nd) A function that takes an object of class Cell as argument. If f returns false when
processing a given Cell, forEachCell stops and does not process any other Cell.

function(a,b)

end)

forEachCellPair Transverse two CellularSpaces with the same resolution and number of Cells,
applying a function that receives as argument two Cells, one from each
forEachCellPair(ca,cb, CellularSpace, that share the same (x, y).

1st) A CellularSpace.
2nd) Another CellularSpace.

3rd) A function that takes two Cells as arguments, one coming from cs1 and the
other from cs2. If some call to f returns false, forEachCellPair stops and does not
process any other pair of Cells.
forEachElement Transverse a given object, applying a function to each of its elements. It can be used

| forEachElement(ag, print)

for instance to trasverse all the elements of an Agent or an Enviroment.

1st) A TerraME object or a table.

2nd) A function that takes three arguments: the index of the element, the element
itself, and the type of the element.

forEachNeighbor

myf = function(cell, n)

end

forEachNeighbor(c, myf)

Transverse a given Neighborhood of a Cell, applying a function in each of its

neighbors. There are two signatures for this function, according to the number of

arguments used:

forEachNeighbor(cell, f) or forEachNeighbor(cell, index, f)

1st) A Cell object.

2nd) A function that takes three arguments: the Cell itself, the neighbor Cell, and the
connection weight. If some call to f returns false, forEachNeighbor stops and
does not process any other neighbor.

3rd) A string with the name of the Neighborhood to be used.

forEachNeighborhood

myf = function(cell, nhood)

end

Transverse all Neighborhoods of a Cell, applying a given function on them.
1st) A Cell.
2nd) A function that receives a Neighborhood as parameter.

Function

Description

| forEachNeighborhood(c, myf)

forEachConnection

myf = function(a, r, w)
a:message{receiver=r,
type="money", quant=2*w}
end

forEachConnection(ag, myf)

Transverse the connections of a given Agent, applying a function to each of them.

1st) An Agent.

2nd) A function that takes three arguments, two Agents (the Agent and its
connection) and the weight of the relation. If some call to func returns false,
forEachConnection stops and does not process any other connection.

forEachSocialNetwork

myf = function(a, socnet)

end

forEachSocialNework(ag, myf)

Transverse all SocialNetworks of an Agent, applying a given function over them.
1st) An Agent.
2nd) A function that receives a SocialNetwork as parameter.

index2coord

x,y=index2coord(7, 10)

¢ = Coord{x=x, y=y}
cs:getCell(c).value = 3
print(cs.cells[7].value) --3

Convert the position where the Cell is stored in the CellularSpace’s vector of Cells
into a pair (x,y), that represents a position in a squared and regular CellularSpace.
1st) The x position.

2nd) The y position.

3rd) Number of columns of the CellularSpace.

compareByAttribute

s = compareByAttribute("cover”

t = Trajectory{target=cs, sort=s}

Return a function that compares two tables (which can be, for instance, Agents or
Cells) and returns which one has a priority over the other, according to an attribute
of the objects and a given operator.

1st) A string with the name of the attribute.

2nd) A string with the operator, which can be “>”, “<”, “<=", or “>=". Default is “<”.

compareByCoord

g = compareByCoord()
t = Trajectory{target=cs, sort=g}

Return a function that compares two tables with x and y attributes (basically two
regular Cells) and returns which one has a priority over the other, according to a
given operator.

1st) A string with the operator, which can be “>”, “<”, “<=", or “>=". Default is “<”.

integrationEuler

df = function(x, y)
returny - x"2+1
end

integrationEuler(d,1,0,9,1)

Euler method to integrate ordinary differential equations in a given [a,b[interval.

1st) A differential equation, described as a function of two parameters, x and y,
which returns a single value.

2nd) The initial condition which must be satisfied, basically the value of df(a).

3rd) The beginning of the interval (a).

4t) The end of the interval (b).

5th) The step of the interval.

integrationHeun

df = function(x, y)
returny - x"2+1
end

integrationHeun(d,1,0,9,1)

Heun (Second Order Euler) method to integrate ordinary differential equations in a

given [a,b[interval.

1st) A differential equation, described as a function of two parameters, x and y,
which returns a single value.

2nd) The initial condition which must be satisfied, basically the value of df(a).

3rd) The beginning of the interval (a).

4t) The end of the interval (b).

5t) The step of the interval.

integrationRungeKutta

d = function(x, y)
returny - x"2+1
end

integrationRungeKutta(d,1,0,9,1)

Runge-Kutta Method (Fourth Order) to integrate ordinary differential equations in

a given [a,b[interval.

1st) A differential equation, described as a function of two parameters, x and y,
which returns a single value.

2nd) The initial condition which must be satisfied, basically the value of df(a).

3rd) The beginning of the interval (a).

4t) The end of the interval (b).

5th) The step of the interval.

performanceTime O NOME DESTA FUNCAO ESTA MUITO RUIM!
x = os.time() Convert the time from the os library to a more readable value, a string in the format
fori=1,400000000 do end “days:hours:minutes:seconds”.
y = os.time() 1st) A given time.
performanceTime(y-x)
type Return the type of an object. It extends the original Lua type() to support TerraME

objects, whose class name (for instance “CellularSpace” or “Agent”) is returned
instead of “table”.

Function

Description

1st) A Lua object.

