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assim como aos colegas do GeoPró e do GeoCx, Carol Pinho, Eduilson Carneiro,

Emerson Xavier, Eva Moreira, Ilka Reis, Karla Fook, Liliam Medeiros, Missae Ya-

mamoto, Olga Fradico, Raian Maretto, Roberta Rosemback, Sérgio Costa e Talita

Assis, por compartilhar as mazelas e as vitórias nestes quase cinco anos.
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GAME THEORY AND AGENT-BASED MODELLING FOR THE
SIMULATION OF GEOSPATIAL PHENOMENA

ABSTRACT

Agent-based modelling (ABM) provides a bottom-up method for building complex
systems. It has been gaining growing acceptance in various fields of science, such as
economics, sociology, and anthropology, because of its capacity to show how collec-
tive social actions emerge from individual behaviour. One of the important research
challenges for ABM concerns how to represent human actions in a landscape. The
agents have to be grounded to a representation of the world, on which they can sense
and act. In these studies, ABM toolkits need to support different types of geospa-
tial data. However, the demands and formalisms for creating agent-based models for
geospatial problems are not well established in the literature. This work presents ad-
vances on methodologies to represent and develop agent-based models of geospatial
phenomena. First, it describes an architecture for studying geospatial phenomena
using an agent-based approach. Second, it presents a coupple of models that uses
game theory as basis for the behaviour of agents. Agents compete for space, and
their interactions are expressed as non-cooperative games. A definition of mobility
is presented, and the effect of this and other parameters on the development of the
models are investigated.
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TEORIA DE JOGOS E MODELAGEM BASEADA EM AGENTES
PARA A SIMULAÇÃO DE FENÔMENOS GEOESPACIAIS

RESUMO

A modelagem baseada em agentes (Agent-Based Modelling - ABM) fornece uma
metodologia bottom-up para a construção sistemas complexos. Ela tem obtido uma
crescente aceitação em vários campos da ciência, tais como economia, sociologia e
antropologia, por causa de sua capacidade de expressar como ações coletivas podem
emergir a partir de um comportamento social individual. Um dos desafios impor-
tantes na modelagem baseada em agentes diz respeito a como representar as ações
humanas em um ambiente espacialmente expĺıcito. Agentes têm de ser conectados
a uma representação do mundo, que pode ser observada e sobre a gual eles po-
dem tomar decisões. Para estes estudos, ferramentas para modelagem baseada em
agentes precisam suportar os diferentes tipos de dados geoespaciais. Entretanto, as
demandas e os formalismos para se tratar estes problemas ainda não estão bem es-
tabelecidos na literatura. Este trabalho apresenta avanços em metodologias para se
representar e desenvolver modelos baseados em agentes de fenômenos geoespaciais.
Primeiro, é apresentada uma arquitetura para estudar fenômenos geográficos usando
a abordagem baseada em agentes. Segundo, são apresentos um conjunto de modelos
que usam a teoria dos jogos como base para o comportamento dos agentes. Nestes
modelos, os agentes competem por espaço, e a interação entre eles é expressada
através de um jogo não-cooperativo. Uma definição de mobilidade é apresentada e
seus efeitos sobre o desenvolvimento dos modelos são investigados.
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1 INTRODUCTION

In the book The Theory of Games and Economic Behavior, John von Neumann and

Oskar Morgenstern develop the first steps of the mathematical theory of games (VON

NEUMANN; MORGENSTERN, 1944). Initially, the theory focused mainly on economics

and on strategic games, such as chess, with the main formal contribution being the

minimax algorithm for two-person, zero-sum game with finite strategies. At that

time, there was a great discussion about whether or not the mathematical method

was able to be applied for studying behaviour. Decades have passed by, and game

theory evolved to a large framework that has been explored by different areas of

knowledge, such as biology (MAYNARD SMITH, 1982), political science (OSTROM,

1990), and social sciences (KOLLOCK, 1994), being proposed as a universal language

to unify all behavioural sciences (GINTIS, 2000).

In spite of the great success of game theory in the last decades, results of game

theoretical models are highly dependent on their underlying assumptions, which are

not necessarially true; sometimes they are believed as true due to lack of knowledge,

but most of the times it happens because of the necessity to guarantee tractability

of the mathematical approach. Traditionaly, formal approaches for modelling social,

economic, and ecological phenomena usually have strong assumptions such as homo-

geneity and rationality, with the main objective being to find out equilibrium points,

also called stable states of the system. However, some works have shown that these

assumptions do not stand in many cases, mainly the idea of rationality. There are

some strong justifications against it:

a) People may try to be rational, but they can rarely meet the requirements

of information and foresight imposed by rational models (SIMON, 1955);

b) Such a machine that could determine a rational solution for a given decision

making process may not exist (BRIAN ARTHUR, 1994);

c) Some equilibrium points, although stable, may not even be attainable

(EPSTEIN; HAMMOND, 2002).

Another dimension which is usually oversimplified, or even ignored, is space, mainly

due to the difficulty to be handled. Social, economic, and ecological models of

dynamic processes are examples of areas where space is a fundamental source of
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heterogeneity, affecting the way by which people interact, with properties such as

anisotropy, non-stationarity, and cyclic or rare events, which can clearly affect their

outcomes. Moreover, even if one argue that the newest communication technologies

promise to ignore the impact of distance on human relations (CAIRNCROSS, 1997), it

has been shown that spatial proximity still remains crucial in effective collaboration,

and the technological development mitigates only part of the negative impacts of

distance (KIESLER; CUMMINGS, 2002).

Given all these restrictions of analytical models, and based on the fact that science

evolves through the development of more and more complex models that can help

us to improve our capacity to understand the reality, the only way to overcome

this assumptions is by studying the underlying processes and their consequences

through computer simulations. Computers can be used as laboratories for testing

new behavioural theories by using artificial representations. Because of that, this

approach has been seen as the third way of doing science, in contrast with the two

standard methods of induction and deduction (AXELROD, 1997a).

Within the simulation based approaches, agent-based modelling (ABM)1 comes up

as a promissing alternative. ABM provides a bottom-up method for building com-

plex systems, through the representation of individual entities and their dynamical

interactions. It is a relatively new computational modelling paradigm and, within

the last years, this research field has expanded far beyond its earlier boundaries in

distributed artificial intelligence. Gilbert points out the main advantages of ABM:

It allows modelers to represent in a natural way multiple scales

of analysis, the emergence of structures at the macro or soci-

etal level from individual action, and various kinds of adaptation

and learning, none of which is easy to do with other modeling

aproaches (GILBERT, 2008).

It makes this approach flexible enough to relax the assumptions required by tra-

ditional game theoretical models. Given that, it is possible to not only have more

realistic models, but also to test new hypothesis that arise from this environment.

1In this text, we use the term ABM following (HARE; DEADMAN, 2004), who distinguish “agent-
based modelling” from “multi-agent simulation” in the sense that the former has been used for
artificial life agents, and the later has been used for software agents (task-specific agents, entertain-
ment agents, viruses). Also, the term ABM has a broader use in social sciences (AXELROD, 1997b;
BANKES, 2002) and economy (BRIAN ARTHUR, 2006). The classification of “software agents” and
“artificial life agents” was initially proposed by (FRANKLIN; GRAESSER, 1996).

2



Consequently, game theory needs to be studied facing this new modelling paragidm.

Traditional models have to be adapted or extended in order to analyse the spatial

effects through an agent-based point of view. In order to accomplish that, it is nec-

essary to evolve not only in the development of models, but also on the development

of methodologies over which these models can be constructed.

The central objective of this work is to study how the general theory of equilibrium

points, in this case Nash equilibrium and Evolutionary Stable Strategies (ESS), be-

have within a spatial environment that restricts the interactions between agents. In

order to accomplish that, the models presented on this thesis relax some assumptions

of analytical model but adds two new assumptions: limited resources and mobility.

The main questions this work analyses are: Are the analytical equilibrium points

the best reference for a competition for space? Is a population capable to evolve to

such point?

This work is written as a collection of papers. Each paper investigates a specific

scientific question, but they are connected due to the necessity of having a spatially

explicit representation within the scope of agent-based modelling. The thesis can be

splitted into two parts: representation and behaviour.

The problem of representation relies on the challenge of having a framework that

is capable of having abstractions in order to support any kind of spatial entities

and their relations. Newest software toolkits have made ABM easy enough to be

attractive to areas such as economics, sociology, anthropology, physics, and biology.

The use of simulation toolkits relieves the modeller of programming the parts of

the simulation that are not content-specific, such as simulation control and data

structures (CASTLE; CROOKS, 2006; RAILSBACK et al., 2006; TOBIAS; HOFMANN,

2004). It also increases the reliability and efficiency of the model, as the most complex

parts have been created and optimised by professional developers. However, the

demands and formalisms for creating agent-based models at this complexity level

are not well established in the literature. Because of this, newest toolkits, as well

as spatial extensions of older toolkits, have been created according to the class of

problems they are trying to support, instead of following a conceptual approach.

Two chapters tackle this problem:

Chapter 2: The objective of this chapter is to present a contribution towards gen-

eralizing the representation of geospatial entities and their relations for

3



simulating complex spatial systems using the agent-based approach. We

argue that any general toolkit should be able to represent the four types

of relation explicitly. These relations can be grouped in two classes, place-

ments and neighbourhoods, with likenesses and differences between them.

Given that, we define requirements for representing geospatial entities and

their relations.

Chapter 3: Following the requirements described on Chapter 2, this chapter de-

scribes a general architecture for building and simulating agent-based mod-

els that use real-world geospatial data, taking into account all the ways

geospatial data can feed these models. Although the approach focus on

real-world data, this architecture can also work with artificial environment

and relations.

The second part of this thesis focus on behaviour. Commonly in the literature,

decisions related to spatial mobility are taken by a straightforward reaction over

some observation on the spatial configuration, or acted as an opportunity. This

thesis broadens this view by exploring decisions that are based on the results of

the interactions of the agents, using a game theoretical approach. Two chapters are

related to this problem:

Chapter 4: This chapter describes a new model for spatial games called games on

cellular spaces. We present a definition of mobility in terms of the satisfac-

tion of an agent with its current spatial location. Agents compete for space

through a non-cooperative game by using mixed strategies. We are partic-

ularly interested in studying the relation between the theoretical definition

of Nash equilibrium and the winner strategy of a given model, and how mo-

bility can affect the results. Instead of working with the idea of rationality,

we use populations of agents that cannot change their strategies.

Chapter 5: Based on the concept of games on cellular spaces developed on Chap-

ter 4, this chapter studies the dynamics of populations competing for space

through evolutionary rules. We study whether a population is capable to

evolve and adapt itself to a stable state, and how the attained equilib-

rium is related to the theoretical equilibrium. Additionally, it analyses the

effects of each single parameter in the development of the model, investi-

gating their effects on the equilibrium state, mainly when they go towards

the analytical assumption.
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2 ENTITIES AND RELATIONS FOR AGENT-BASED MODELLING

OF COMPLEX SPATIAL SYSTEMS1

Abstract

This work presents a contribution towards generalizing the representation of geospa-

tial entities and their relations for simulating complex spatial systems using the

agent-based approach. We analyse the works in the literature, and argue that each of

the four types of relation is necessary. These relations can be grouped in two classes,

placements and neighbourhoods, with likenesses and differences between them. Given

that, we define requirements for representing geospatial entities and their relations,

and study six toolkits for ABM (Netlogo, OBEUS, Repast, Swarm, GRSP, and Ter-

raME), analysing their capabilities to address the proposed requirements. Finally, we

present our current work and future directions on developing the TerraME toolkit.

2.1 Introduction

The human being has always changed its environment. Changes can occur at the

physical, social, and economic levels, ranging from deforestation to global warming,

from individual mobility to seggregation patterns, or from an ordinary bargaining

between buyer and seller to an economic chain dynamics, to name a few. They result

from complex interactions among the entities directly and indirectly involved in the

system. The inherent complexity of the processes involved in the system shows non-

linearity, displayed by a complex behaviour that presents thresholds, positive and

negative feedback loops, lags in time and space, resilience, heterogeneity, and, above

all, surprises (LIU et al., 2007).

The living earth is the natural support where complex relations evolve over time.

It has great influence in our decision-making process, and in how we set up and

maintain relations, because we are grounded to places and regions with unique char-

1This chapter is also published as paper co-authored with A. M. V. Monteiro and G. Camara,
“Entities and Relations for Agent-based Modelling of Complex Spatial Systems”, Proceedings of
the First Brazilian Workshop on Social Simulation (BWSS/SBIA), 52-63, 2008.
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acteristics and dynamics. Although some production factors such as capital, labour,

or even information are less spatially sensitive (at least in developed places), natu-

ral resources and consumers are where they are. Moreover, even though the newest

communication technologies promise to ignore the impact of distance on human

relations (CAIRNCROSS, 1997), proximity remains crucial in effective collaboration,

and the technological development mitigates only part of the negative impacts of

distance on productivity (KIESLER; CUMMINGS, 2002).

With the development of technologies for acquisition and manipulation of data, es-

pecially geospatial data, it is now possible to work with models at individual level.

It allows building up models with a higher disaggregation, which allows considering

the modifiable areal unit problem. Different methods for data acquisition are avail-

able, such as GPS and remotely sensed data, surveys, participant observation, and

field and laboratory experiments. These methods can be combined to increase the

model effectiveness (ROBINSON et al., 2007), but the main difficulty stands in how

to manipulate the diversity of data provided by these methods.

In the past, researchers have used Geographic Information Systems (GIS) to study

these interactions. But, although GIS have strong functionalities to manipulate and

to analyse geographical data, it is hard to model temporal dynamics at individual

level within GIS environments because they are based on data models, instead of

process models (RAPER; LIVINGSTONE, 1995). Usually, GIS with embedded dynam-

ical predictive models are built as customized tools and work only with a specific

process (BATTY, 2005). In fact, most of them are created with physical rather than

human processes in mind. The only way to model social or economic problems is

thinking in human behaviour as if it was physical. For example, applications that

use Cellular Automata (CA) for studying human behaviour anthropomorphize the

state variables of a cell.

Agent-Based Modelling (ABM) comes as an approach for addressing these issues

broadly. ABM provides a bottom-up method for studying complex systems through

the dynamical interaction of agents. It allows representing individual behaviour and

cognitive process, which cannot be fully attained by approaches such as mathe-

matical or statistical modelling. Although some disbelief has taken place on this

approach (COUCLELIS, 2001; JONES, 2007; LEOMBRUNIA; RICHIARDI, 2005), it has

been shown that ABM can unquestionably increase our understanding of human

behaviour (BANKES, 2002; BOUSQUET; LE PAGE, 2004; BRIAN ARTHUR, 2006; EP-
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STEIN, 2006).

Newest software toolkits have made ABM easy enough to be attractive to areas

such as economics, sociology, anthropology, physics, and biology. The use of simula-

tion toolkits relieves the modeller of programming the parts of the simulation that

are not content-specific, such as simulation control and data structures (CASTLE;

CROOKS, 2006; RAILSBACK et al., 2006; TOBIAS; HOFMANN, 2004). It also increases

the reliability and efficiency of the model, as the most complex parts have been

created and optimised by professional developers.

Recently, agent-based models have begun to use real-world spatial data for studying

complex spatial systems (BROWN et al., 2005). However, most of the toolkits were

initially created to work with landscapes that do not consider the environment in

which we move and interact. They rely on non-grounded agents, in the sense that

they do not represent entities which can sense and act in a representation of the real

world. To follow the current development, the toolkits have to carry out the support

for working with spatial data.

This work presents a contribution towards generalizing the representation of geospa-

tial entities and their relations for simulating complex spatial systems using the

agent-based approach. We revise and analyse the works in the literature, and define

requirements for representing geospatial entities and their relations. We focus on the

geographic needs for general requisites there is already a couple of works (GASSER,

2000; MARIETTO et al., 2003; RAILSBACK et al., 2006; TOBIAS; HOFMANN, 2004). We

analyse some toolkits for ABM and their abilities to address the proposed require-

ments. Finally, we present our current work, towards fulfilling these requirements in

the TerraME toolkit.

2.2 Reviewing the entities and their relations

In this section we present the works in the literature about the relations between

the entities of agent-based models for complex spatial systems. Before defining their

relations, we need to introduce the entities of a system, which belong to a scale.

2.2.1 Scale and its components

Gibson and others review the idea of scale in the literature of social science, especially

related to the human dimensions of global environmental change (GIBSON et al.,
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2000). The causes and outcomes of the human actions can be measured at different

levels along multiple scales. Scale is a well-defined idea in the natural sciences, but

it has fuzzy borders in the social sciences. Nevertheless, the authors show that each

scale has three dimensions: spatial, temporal, and behavioural (analytical). In this

work, we are interested in computer simulations; therefore each dimension has to be

discretized in some way.

2.2.1.1 The spatial component of a scale

The spatial data has to be divided into single partitions, called cells, whose internal

content is homogeneous, in such a way that any change in a cell affects all its

extension. With it, it is possible to change each cell independently from the others,

which allows working with heterogeneous data.

GIS work with a partitioned space, be it a vector or a raster data. Dividing the

space in rectangular entities has advantages over the vectorial representation be-

cause it simplifies the representation and helps creating neighbourhood relations

(TOBLER, 1979). But vector data can bring more reality, mainly when the spatial

data represents some economic, political, or social convention.

2.2.1.2 The behavioural component of a scale

Instead of using a set of equations for describing the behaviour of a model in an

aggregated way, the behavioural entities are described as agents. Each agent can

affect itself, the space, and the other agents, and the interactions between the agents

can produce an emergent pattern. Modelling with agents allows a more aggressive

exploration of characteristics such as imperfect rationality, social and institutional

structures, and distinct behaviours in different locations.

Agents can represent geospatial entities such as farmers or householders. Therefore,

just like for representing the space, they can be associated to objects stored in a

geographic database, whose information layer contains the spatial representation of

the agents as well as their properties. Although there are some advances in visual

languages, the behaviour of agents and a complementary part of their properties

still have to be described in a programming language outside the GIS environment.
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2.2.1.3 The temporal component of a scale

Each entity of a model can have a frequency in which it decides its actions. There

are two choices for describing temporal events. The first is synchronous (parallel)

execution, where each agent is an independent process. The advantage of this ap-

proach is that the time one agent takes for its decision-making is always considered.

Thus, agents that need more time to compute their decisions are in disadvantage.

The main problem of this approach is that the modeller has to give some atten-

tion to avoid temporal conflicts, which can significantly increase the complexity of

the model.

The second alternative is asynchronous (sequential) execution, with the time dis-

cretized as a scheduler of actions. As an agent usually takes much more time to

perform changes in the geographic space than to compute its decisions, we can usu-

ally ignore the processing time. Discrete time allows a straightforward solution to

any temporal conflict between agents, defining a predetermined history of events to

take place along the execution. It simplifies replicating models because the agents

do not work in parallel. Also, once there is not any conflict between the actions of

the agents, it is possible to simulate every parallel step using two sequential steps.

As each agent has its own frequency of execution, it is possible to have events with

different temporal frequencies, or even events occurring only once. The capacity

to schedule events at different times allows the modeller to simulate the temporal

aspects of the specific urban problem under study (TORRENS, 2003).

2.2.2 Relations following Torrens and Benenson

In each step of its execution, a model is at a given time, which always increases.

Once the scheduler finishes all the events of a given time, it increments the time and

then start processing the events of the next time. The time entity is conceptually

different from the other two because their extents are completely available at each

time step. Therefore, we have agents and cells as the two main entities of a spatial

phenomenon at a given scale, while the time is in charge of the execution flow.

A relation is a mapping that describes the connection between two entities. Com-

bining the two classes of entities, we have four types of relations: Cell→Cell,

Agent→Cell, Agent→Agent and Cell→Agent. Torrens and Benenson use a leader

and follower approach to define the spatial relations (TORRENS; BENENSON, 2005).
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The leader is responsible for managing the relation, while the follower is a passive

object. The aim of the authors is to keep consistency in the relations, avoiding

conflicts between the entities:

[...] an application of the [...] rules that describe these changes

[on the relations] might cause conflicts, when, in housing applica-

tions, for example, a landlord wants to sell his property, while the

tenant does not want to leave the apartment. Who has the right

to destroy the relationship between the tenant and the property,

then? This example represents the general problem of consistency

in managing relationships.

Following the leader and follower idea, we have agents as leaders and cells as follow-

ers. The relation Cell→Cell has two followers; therefore it is a static representation,

storing spatial neighbourhoods. Agent→Cell specifies which cells one agent has or

controls. The agents are free to manage this relation.

The two other relations do not fit in the leader and follower definition. One cell

cannot be a leader in a Cell→Agent. The authors solve this relation by using a

backward query in Agent→Cell. Agent→Agent is not feasible because it is not pos-

sible to define the leader of the relation. The authors argue that the only way two

agents can communicate is by using the other available relations in a transitive way

(Agent→Cell, then Cell→Cell, then Cell→Agent). Moreover, in their toolkit User’s

Guide, Benenson and Harbash argue that “this limitation might be inconvenient

if you develop psychological model, but, luckily, we model not love affairs, but the

collective urban spatial phenomena” (BENENSON; HARBASH, 2004). Table 2.1 sum-

marises the four relations and how the authors solve each one. The authors call the

relations between two entities of the same type (Agent→Agent and Cell→Cell) as

neighbourhood, and the other two as geo-referencing. They consider the relations as

TABLE 2.1 - Cell and agent relations, according to (TORRENS; BENENSON, 2005).

P
P
P
P
P

P
P
P
P

From
To

Cell Agent

Cell Neighbourood rela-
tion (static)

Agents who are in
a certain cell (back-
ward query)

Agent Cells an agent con-
trols (dynamic)

Prohibited relation
(transition)
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being binary, that is, at each time, two entities are either connected or not.

2.3 A critical analysis of the leader and follower approach and a new

proposal

Torrens and Benenson cite an example of urban conflict, to which the leader and

follower approach can solve the consistency problem shown in the last section:

Accounting for limitations of OBEUS (direct relationships be-

tween agents are not allowed) the way to force the tenant to leave

the property is to raise their payment. The tenant (the leader in

tenant-property relationship) will likely end the relationship by

herself in that case.

Even accounting the limits of this approach, the authors argue that

[t]here is no proof that the majority of real-world situations can

be imitated by the leader-follower pattern, although we are not

aware of any natural instance where this pattern is insufficient.

The point on their example is that, in a real world situation, the landowner cannot

one-sidedly increase the payment to force the tenant to leave, because this relation

is often formally settled by a location contract. The only legal way to the landowner

force the tenant to leave the property is by breaking the contract, accepting the

outcomes imposed by its clauses. For that, we would need another agent with the

power to break the relation, even without the tenant agreement. Therefore, the

leader and follower approach cannot be used in this example.

Even if we consider true the statement that raising the payment will force the tenant

to leave the property, we would need to assume that the seller owns all the rights

on the contract, except the right to cancel it. But any toolkit that intends to have

a generalized representation of the spatial entities and their relations cannot be

limited to any a priori statement. Therefore, guarantee consistency in the relations

has to be part of the model, instead of a restriction of the toolkit, because there can

be another model that needs a different consistency in the relations.

The proposal of having agentagent relations only in a strictly transitive way is

another limitation of using the leader and follower approach. Patterns of change may

arise locally, but social structures do not have to, and the technological development
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makes it even more fragmented. In fact, there are relations which do not rely on

geographical closeness.

Instead of trying to prove that this or that relation is not necessary in a modelling

toolkit, we propose that every relation type is necessary. Whenever there is a conflict

over changing or not some relation, it has to be implemented in the model. The ways

to solve conflicts can be based on the idea of autonomy proposed by Barber and

Martin (BARBER; MARTIN, 1999). They argue that:

[a]n agent’s degree of autonomy [...] is the degree to which the

decision-making process, used to determine how that goal [of

the agent] should be pursued, is free from intervention by any

other agent.

Conflicts can be solved by an agreement, when the agents follow a true consensus, or

by a superior instance with more autonomy, called supervisor. One agent is locally

autonomous only when no other agent can affect its decision-making. Barber and

Martin use the term locally autonomous instead of just autonomous because they

consider one agent may have different levels of autonomy for different goals.

We divide the relations in two groups: placement and neighbourhood. Following

we describe each one, expose the reasons of this classification, and argue that each

relation is necessary, presenting examples of works that identify or use them.

2.3.1 Placement relations

Each relation involving two entities of distinct types is a placement. Agentcell and

cellagent represent the relations of this group. Cellagent stores the agents that belong

to a cell. Each cell may have one or more agents within it, and one agent can be at

most in one place at any given time. One can easily implement movement on the

space by changing this relation. This is the most common representation available in

toolkits because there are many models which use it, for example (EPSTEIN, 2006).

In the other side, agentcell represents the cells one agent controls, targets, watches,

or any other objective depending on the context. This representation has a growing

use in studies on land-use, where one agent represents a householder which has to

choose what to do with its own territory. As example we can cite (LIM et al., 2002).

Two points are similar in placement relations. They are binary relations because, at
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any given time, two entities are either connected or not. One agent controls or not

a cell; one agent is within or without a cell. Placement relations are also symmetric;

if an agent is within a given cell then the cell contains the agent, and conversely.

The same rationale is valid for the Agent→Cell relation. Therefore we agree with

Torrens and Benenson in these relations. But we changed the term geo-referencing

to placement because we are working with topological relations, and geo-referencing

is closer to geometry than to topology.

2.3.2 Neighbourhood relations

Each relation involving two entities of the same type is a neighbourhood. We have

two cases: cellcell and agentagent. A neighbourhood between cells represents their

spatial proximity. Common representations include the well-known Euclidean neigh-

bourhoods, Moore and von Neumann, which represent a basic definition of proximity:

adjacency. But the geographic space by itself is not restricted to Euclidean spaces.

Natural features such as mountains and rivers may affect distances, and the human

action has significantly contributed for changing proximity relations. Neighbour-

hoods can be created from metrics such as distance, visibility, or accessibility. The

result of these metrics can be in the form of weights, suggesting strengths to the

connections between cells.

The connection between two agents is often called link, or tie. A link can be based

on the time, the emotional intensity, the intimacy (mutual confiding), and the recip-

rocal services two agents spend with each other (GRANOVETTER, 1973). A recent

work shows that spatial proximity remains crucial in effective collaboration, and

the technological development mitigates only part of the negative impacts of dis-

tance on productivity (KIESLER; CUMMINGS, 2002). Moreover, geography remains

crucial even in on-line friendships. A study in a blog network shows that geographic

processes draw nearly 70% of on-line friendships (LIBEN-NOWEL et al., 2005), but it

does not mean the other 30% results only from non-spatial processes (the Internet,

in this case).

A set of interconnected entities, be they agents or cells, form a network. From a

network we can extract metrics that describe the whole composition of the network,

providing signatures to compare it with other networks, or even for creating synthetic

networks. Geospatial networks can be grouped in classes with strong signatures,

distinct from one another and from non-geographic networks (GASTNER; NEWMANN,
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2006). Social networks differ from spatial networks (such as road networks) because

they are divided into communities, presenting higher levels of clustering (NEWMANN;

PARK, 2003). Most agent-based simulations use only basic network arrangements in

arbitrary ways or as a computational criteria, but “it seems likely that network

topology should have some (and as yet unknown) effect on resulting processes and

emergent behaviour” (CIOFFI-REVILLA, 2002).

A clear example of using agentagent relation for building networks for complex spa-

tial systems is in chain models. In these models, we have groups of agents with

connections within and between groups. For instance, agents may connect to others

according to economic interests to minimize production and transport costs. Re-

cently, we have seen the food crisis that has feared the world because of its potential

to cause social and economic problems. One of the ways to bypass this problem is

exploring the whole economic chain, trying to identify the weaknesses of its nodes

and add more value to them.

Differently from placements, neighbourhoods are not boolean, but weighted. The

weight of each neighbourhood points out the strength of the connection between

the entities. Also, neighbourhoods are not symmetrical, but directed. It is possible

to have A connected to B with a weight different from B to A. Note that symmet-

ric networks are a subset of directed networks, therefore we can have symmetric

neighbourhoods, but not directed placements. Therefore, our approach differs to the

proposal of Torrens and Benenson in this case for both characteriscs: directed and

weighted. Table 2.2 summarizes the two types of relation of our approach.

TABLE 2.2 - Relations and their differences.

Neighborhood Placement
Agents Cells Agents Cells

Flow Information Agents, supplies No flow No flow
Type Weighted Weighted Binary Binary
Graph Directed Directed Symmetrical Symmetrical
Weight Amount of time,

intimacy emotional
intensity, reciprocal
services

Adjacency, contigu-
ity, continuity, dis-
tance, accessibility,
visibility

− −
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2.4 Requirements for simulating complex spatial systems

Simulating complex spatial systems using ABM needs GIS representations for both

entities and their relations. The requirements related to the relations are twofold:

create and manipulate them. The initial arrangement of each relation can be created

within a GIS and loaded from the database to the model. When the relations are

previously stored in a database, it is possible to reduce the simulation time whenever

we need to replicate the model to verify its convergence, because create some of these

relations can be time demanding.

The requirements related to the entities are:

Space. The integration between a toolkit and a GIS should support reading ge-

ographic data and their properties, in such a way that the objects of a

layer of information have a one-to-one mapping to the spatial objects of

the model.

Behaviour. As well as for representing the space, agents can be associated to ob-

jects stored in geographic databases, with a spatial location and properties.

As GIS work with spatial data in an object-oriented way, agents within a

given layer have the same properties and the same geometric type.

Time. Besides the scheduler, temporal data that is independent of the behavioural

description of the model, usually exogenous events such as building a new

road, has to be manipulated by the temporal entity when the data belongs

to a geospatial database. The temporal data available in the database has

to be automatically loaded before any behaviour take place at any given

time. Temporal changes can be data from the space, the agents, or the

relations. The modeller only has to keep in mind which properties the

agents can change, and those which are going to be automatically read

from the database, if any.

2.5 Toolkits for agent-based modelling

In this section, we present the most popular toolkits for ABM and their extensions for

working with complex spatial systems. We analyse if they support the requirements

described in last section. The toolkits are Swarm (MINAR et al., 1997; BOX, 2002),

Repast (NORTH et al., 2005; CROOKS, 2007), OBEUS (TORRENS; BENENSON, 2005),
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and Netlogo (WILENSKY, 1999). We also study two toolkits developed by Brazilian

institutes: GRSP (GRIGOLETTI; COSTA, 2007) and TerraME (CARNEIRO, 2006).

Due to space constraints, we do not present the toolkits individually, but a general

description of each can be found in their references.

Every toolkit can import some geographic data for representing the space, but only

some of them support agents as geospatial entities. Swarm and Netlogo can load

raster data for representing space, in ASCII and PPM (Portable Pix Map) formats,

respectively. Repast, OBEUS, and GRSP can represent both space and agents as

geospatial entities. Repast uses shapefiles for vector data and ASCII for raster data,

OBEUS is a GIS whose objects can change their properties and locations in time, and

GRSP accesses PostgreSQL databases. TerraME works with cellular spaces, which

are rectangular grids with properties created from raster or vector data stored in Ter-

raLib databases (CAMARA et al., 2000), but it cannot represent agents with geospatial

data. None of the analysed toolkits have any control over temporal databases.

In the side of the relations, the most common representations available are placement

of agents into cells and neighbourhood of cells, but the toolkits usually do not go

further than Euclidean proximities. Exceptions are OBEUS, Repast and TerraME.

OBEUS and Repast can use complex vector operators such as point-in-polygon,

buffering and intersection to calculate the proximity between cells. OBEUS uses the

leader and follower approach to get agentagent transitively from the other relations.

TerraME uses a more general idea of non-proximal spaces. It can access complex

neighbourhoods created not only by the relations between two objects, but it can

also use a third component, for instance a transport network, to calculate proximity.

It is called Generalized Proximity Matrix, or GPM (AGUIAR et al., 2003). But, as

TerraME does not represent agents as geospatial entities, there is no way to create

neighbourhoods for agents.

The lack of complex neighbourhoods in toolkits is due to the difficulty to create

complex relations from scratch, which can be easily built within a GIS environment.

Moreover, it seems that agentagent relation is commonly left aside because this is

the only of the four relations that does not have any direct relation to the geographic

space. Probably that is why Torrens and Benenson resolve this relation using the

other relations to make the use of the geographic space explicit. Table 2.3 summarizes

the capacities of the analysed toolkits.
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TABLE 2.3 - Comparison of the toolkits for working with geospatial data.

Toolkit Space Time Agents
Neighbourhood Placement
Agent Cell Cell→Agent Agent→Cell

GRSP Vector † Vector † Euclidean Manipulate, †
data data create

Netlogo Raster † † † Euclidean Manipulate †
OBEUS Vector † Vector Transition Complex Manipulate, Manipulate,

data data operators create create
Repast Raster or † Vector † Complex Manipulate, †

vector data operators create
Swarm Raster † † † Euclidean Manipulate †
TerraME Cellular † † † GPM † Manipulate,

data create

†: Up to the modeller.

2.6 Final comments

This work shows that each of the four relations is necessary, and defines a set of

requirements for supporting simulation of complex spatial systems. We studied the

currently available toolkits and verified that they do not support all the requirements

presented in this work. The analysed toolkits use geospatial data for representing

space, but only some use it for representing agents. There is no complete support

for the four relations, and there is no minimal temporal control. The only way to

fulfil these requirements is through a GIS integration; otherwise the toolkit would

be limited because there is no other way to be always up-to-dated with the novelties

in this area.

Currently, we are developing an ABM extension to TerraME for supporting all the

requirements presented in this paper, called TerraME-ABM. TerraME is a toolkit

for multiscale modelling of dynamical processes (CARNEIRO, 2006). It is based on

Lua (IERUSALIMSCHY, 2003), one extensible and high-level programming language

developed by PUC-Rio, in Brazil. We have as hypothesis that the GPM is a foun-

dation for setting up the relations between the entities of an agent-based model for

simulating geospatial phenomena.

To corroborate that each of the four relations is necessary, and that the GPM can

model these relations, we have as second objective to develop models using the three

relations that involve agents. They are:
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Cell→Agent: We have developed a theoretical model that simulates a competi-

tion for space, where agents fight for the cells they belong through a non-

cooperative game. We propose a definition of mobility, and study how it

can affect the results of a given model. This work was submitted to the

Journal of Artificial Societies and Social Simulation. The objective here

is to build a spatial database with the initial arrangement of the model.

With it, the model will only load the arrangement, define the behaviour of

the agents, and perform the games.

Agent→Cell: The centre-north region of the Rondnia state, in Brazil, has its oc-

cupation history associated to colonization projects, induced migratory

flows, the BR-364 railway construction, and the establishment of develop-

ment poles (BECKER, 1997). The objective is to study the deforestation

trajectory in this region from individual decisions, modelling agents ac-

cording to their farm size: small and large (ESCADA et al., 2005). There is

an early work that uses cellular automata (CARNEIRO et al., 2004). The

objective now is to model agents which decide what to do with their own

sets of cells.

Agent→Agent: The açáı occurs naturally in the Amazonian floodplain forest,

providing both fruit and the so-called heart of the palm, or palmito

(BRONDIZIO; SIQUEIRA, 1997; BRONDIZIO, 2008). The objective is to study

the açáı economic chain, in Pará, Brazil, exploring questions such as its

development and sustainability. This model will be more complex than the

other two, once it involves agents in different scales, and it will not be

limited to only the Agent→Agent relation.
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3 AN ARCHITECTURE FOR AGENT-BASED MODELLING AND

SIMULATION OF GEOSPATIAL PHENOMENA1

Abstract

This work presents a general architecture for building and simulating agent-based

models that use real-world geospatial data, taking into account all the ways geospa-

tial data can feed these models. We focus on how data can be used to create an

initial arrangement for the model, as if it was a static representation. We have as

hypothesis that the Generalized Proximity Matrix (GPM) is a foundation for setting

up the relations between the entities of an agent-based model for simulating geospa-

tial phenomena. The architecture has been implemented in the TerraME framework,

which is capable of exchanging data with TerraLib databases. Both softwares are

freely available in the Internet.

3.1 Introduction

Representing the micro-behaviour in order to get a macro-pattern is the key chal-

lenge of agent-based modelling (ABM). Since its beginning, real world evidences

have guided the development of both agents and the environment with which they

interact. This leaded to the development of artificial worlds to understand some un-

derlying principles of human behaviour, such as wealth distribution and evolution

of cooperation (EPSTEIN; AXTELL, 1996; AXELROD, 1997b).

On the other hand, many models have to be less general and more precise

(COSTANZA et al., 1993), mainly when we study decision making processes related

to the geographic space, as in the case of land use and land cover change. In these

models, the agents have to be grounded to a representation of the world, shifting

from theoretical abstractions to case-based models that focus on populations within

specific localities. With it, agent based modelling has facing the challenge of us-

1Part of this chapter is also published as paper co-authored with A. M. V. Monteiro, G. Camara,
and T. G. S. Carneiro, “An Architecture for Agent-based Modelling and Simulation of Geospatial

Phenomena”, Proceedings of the 6th European Social Simulation Association Confer-
ence (ESSA’09), 2009.
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ing not only real world evidences but data (BOERO; SQUAZZONI, 2005), especially

geospatial data (GILBERT, 2008), to feed models. Brown and others have argued that

“incorporating real spatial heterogeneity into agent-based models will improve our

ability to draw conclusions about the behavior of complex systems in realistic envi-

ronments” (BROWN et al., 2005). This leads to a need towards integrating toolkits for

agent-based modelling and Geographic Information Systems (GIS), since the form-

ers need the spatial heterogeneity and the latters are not well suited for representing

and studying behaviour (GOODCHILD, 2005; CASTLE; CROOKS, 2006).

However, most of the available toolkits were initially conceived to work with land-

scapes that do not consider the environment in which we move and interact. They

rely on non-grounded agents, in the sense that they do not represent entities which

can sense and act in a representation of the real world. It makes implementing and

simulating models based on the geographic space a difficult task, once the modeller

has to carry out all the necessary geospatial data input, output, and control.

To accomplish this challenge, toolkits have to carry out the support for working

with geospatial data. However, the demands and formalisms for creating agent-

based models at this complexity level are not well established in the literature.

There is a large literature proposing general requirements and analysing toolk-

its (GASSER, 2000; MARIETTO et al., 2003; NIKOLAI; MADEY, 2009; RAILSBACK et

al., 2006; TOBIAS; HOFMANN, 2004), but only a few concern integration with GIS

(CASTLE; CROOKS, 2006; ANDRADE et al., 2008). Probably because of this, newest

toolkits, as well as spatial extensions of older toolkits that were developed before

realising the need of working with geospatial data, have been created according to

the class of problems they are trying to support, instead of following a conceptual

and more general approach. For example, common approaches represent landscapes

where artificial agents move and interact using geospatial data (BARROS, 2004; BOX,

2002; CROOKS, 2007), or use data to feed agents that move in artificial environments

(CROOKS, 2007), but they do not use geospatial data to connect them.

The objective of this work is to present an architecture to allow implementing and

simulating agent-based models, taking into account all the ways geospatial data can

feed these models. We focus on how data can be used to create an initial arrange-

ment for the model, as if it was a static representation. Our working hypotheses is

that the idea of Generalized Proximity Matrix, or GPM, is a foundation for setting

up relations between the entities of agent-based models that simulate geospatial
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phenomena. This work is written as follows. Section 3.2 presents some concepts and

related works. In Section 3.3, we describe the idea of GPM, and how it can be used

to set up the relations involving the entities of agent-based models. The architecture

is described in Section 3.4, and finally Section 3.5 presents the concluding remarks

and future work.

3.2 Related works

Brown and others present four types of relations where geographic data and agent-

based models can interact (BROWN et al., 2005). Identity relations points out that an

agent can be associated with one or more spatial features. Agents have the ability to

take actions that affect spatial features and/or their attributes, which is described

as a causal relation. Changes are essentially time-sensitive, generating a temporal

relation. Finally, topological relations are queries about the relations among spatial

features and spatial associations between features such as distance or visibility.

Torrens and Benenson work with identity and topological relations (TORRENS; BE-

NENSON, 2005). They argue that the two basic types in models that simulate ge-

ographic processes are cells and agents. They define relation as a mapping that

describes the connection between two entities2. As there are two classes of entities,

then we have four types of relations: Cell→Cell, Agent→Cell, Cell→Agent, and

Agent→Agent. The authors use a leader and follower approach to define spatial re-

lations. Leaders are responsible for managing relations, while a followers are a passive

objects. The aim is to keep consistency in the relations, avoiding conflicts between

the entities. Therefore we have Cell→Cell as a spatial neighbourhood, a static rela-

tion (two followers). Agent→Cell is the cells one agent controls, Cell→Agent is the

agents which belong to a certain spatial location. Finally, Agent→Agent represents

the relations between agents. According to the authors, Agent→Agent can only be

generated by transitivity over the other relations, once this relation has two leaders

and it is impossible to define who owns the relation in order to guarantee consistency.

Andrade and others grouped these relations in placements and neighbourhoods (AN-

DRADE et al., 2008). Given the two entities, cells and agents, placements connect

entities from different types (Agent→Cell and Cell→Agent), while neighbourhoods

connect entities of the same type (Cell→Cell and Agent→Agent). The authors argue

that the four relations are necessary and can be fed by geospatial data, in spite of

2In this work, we adopt this definition for the term relation.
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the fact that the toolkits currently available do not support all four types of rela-

tion. However, the work does not present any conceptual framework to work with

these relations.

In this work, we consider that, instead of agents having to query a geographic

database whenever they need an answer about a specific spatial structure, the rep-

resentation of space within the model is already filled with this data. It represents

a suitability map, where the neighbourhoods between cells represents criteria such

as visibility or possible movements. We assume the modeller previously knows the

queries the agents may perform along the simulation. It can be considered a limita-

tion of this approach, but it is a way to see the problem of using geospatial data, with

the advantage of separating GIS functions from the simulation. The idea is that both

applications can work harmonically but separately, sharing only geospatial data.

Filling the whole space with the results of the queries commonly requires more time

than performing a couple simulations. However, once the data is already in the

database, the simulation runs faster because there is no need to maintain a con-

nection to a geographic database to perform such queries. It can also be considered

an advantage, once replication is a common procedure for studying the overall be-

haviour of the model. To accomplish that, we need a glue to define the relations

between the entities of agent-based models. We propose the idea of GPM as a way

to establish these relations.

3.3 GPM as basis for setting up relations

Based on the fact that Euclidean spaces are not satisfactory to describe the under-

lying complexity of the relations of the geographic space, Aguiar and others present

the idea of Generalized Proximity Matrix, or GPM (AGUIAR et al., 2003). The GPM

combines data from Euclidean spaces and from topological relations embedded in

these spaces as a way to measure spatial relations between geographic objects. The

topological relations warp the Euclidean space, reducing distances. One straightfor-

ward example is the case of transport networks.

There are two strategies for computing distances based on topological relations using

GPM. They are called open and closed networks. Open networks can use any location

in the edges as entry points. In closed networks, the nodes are the only entry points

to the network. Figure 3.1 shows two squared objects and the different ways to
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FIGURE 3.1 - Strategies for creating relations using GPM. From left to right: (a) Euclidean spaces, (b)
open networks, where it is possible to enter the network in any point, and (c) closed
networks, where it is possible to enter the network only in some predefined points.

calculate their proximity, using Euclidean spaces and the two types of networks.

The GPM establishes relations between sets of geospatial entities based on geomet-

rical relations. The result is a graph connecting these entities, which can feed each

of the four types of relations discussed in the last section. Metrics of distance using

Euclidean spaces or networks can be used to create neighbourhoods because proxim-

ity is the base for these relations when we use the geographic space. Placements are

different from neighbourhoods because the objects must have some overlay. Gen-

erally, one object has a fine and the other has a large resolution. In the case of

Agents→Cells, agents have at least a resolution as larger as the resolution of the

cells, and the opposite happens in the case of Cell→Agent. Therefore we can treat

placements as multiscale relations. The GPM has some strategies to calculate the

relations between objects represented as rectangular cells (MOREIRA et al., 2008),

which can be extended to work with polygonal objects.

Examples of using GPM to feed agent-based models are shown in Table 3.1. In

the Cell→Cell case, the upper neighbourhoods are created from a Euclidean space,

while the lower ones use the network to calculate the nearest cells. Agent→Cell and

Cell→Agent are overlays between squared cells and agents represented by polygons

and points, respectively. Agent→Agent is a relation between pairs of points measured

from a specific vision radius.
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TABLE 3.1 - GPM as a graph. Placements are bipartite graphs built from relations in Euclidean spaces,
while neighbourhoods can be generated from relations in non-Euclidean spaces, repre-
sented by graphs that can have properties such as small worlds or scale-free networks.
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3.4 The agent-based modelling architecture

This section describes an architecture for agent-based modelling of geospatial phe-

nomena. The architecture has been implemented as part of the TerraME frame-

work. TerraME is a software environment for spatially explicit dynamical modelling

(CARNEIRO, 2006). A spatial dynamic model is a model whose locations are inde-

pendent variables. The outcomes of these models are maps that depict the spatial

distribution of a given phenomenon.

The internal structure of TerraME is composed by a hierarchy of layers, where lower

layers provide basic services over which upper layers build new services. The lowest

layer is TerraLib, a C++ open source GIS library (CAMARA et al., 2008). It provides

typical spatial data management and analysis services, and procedures for temporal

data handling. TerraLib stores data in layers of information, each one representing

a set of geographic objects with the same attributes. It also stores the results of

GPM, pointing out the connections between objects and the layer or layers they

belong. The core for the simulation engine and data interface comes directly above

TerraLib. From that, TerraME uses a Lua interface to use the concepts designed in

the TerraME framework as a Lua extension, with which final users can write their
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models. Lua is an extensible and high-level scripting language (IERUSALIMSCHY,

2003). It has a great acceptance on the games development community due to its

simple way to manipulate data and easy interface with other languages.

3.4.1 The components

The main components of the architecture for agent-based modelling are:

Agent and Cell. The basic geospatial entities, each one with its own properties

and relations. Cells are passive entities, while agents are flexible and au-

tonomous. Agents and cells have unique identifiers to name which objects

stored in a layer of a geographic database they represent.

Society and CellularSpace. Sets of agents and cells, respectively. Agents within

the same Society have the same set of properties and general behaviour.

CellularSpaces represent cells with the same properties and resolution.

Both have a set of properties to create a connection to a database and

in which layer of the database the data was read.

Group and Trajectory. Ordered subsets of Societies and CellularSpaces, respec-

tively. Groups can be used to create placements of agents within cells or

neighbours of agents, and Trajectories can be used to create neighbours of

cells or placements of cells within agents. The selection and ordering use

properties of the entities, therefore relations built from them to not con-

sider geospatial properties of the entities. Groups and Trajectories can be

used as if they were of the same type of the objects there were extracted.

GeoDBMS. A geographic DataBase Management System, in our case a TerraLib

database. It stores geospatial data which will be loaded as Societies or

CellularSpaces, as well as relations between their individuals. Before the

modeller runs the simulation, she has to prepare the database with the

geospatial data and their relations. The simulation can change properties

and relations, and the results can be stored in the database for further anal-

ysis, possibly using TerraView GIS3 or the R statistical software (ANDRADE

et al., 2005). The interface with these programs is transparent because they

can access TerraLib databases directly, without having to export data to

a different format.

3http://www.dpi.inpe.br/terraview/
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Figure 3.2 shows the main components of the architecture, with the arrows drawing

the connections between them. It is possible to use second-order functions to trans-

verse the objects pointed by a given object, applying a function over each of them.

For example, forEachAgent can traverse the agents within a Society as well as the

agents that belong to a given cell.

FIGURE 3.2 - Schema with the main components of the architecture and their relations.

An example of source code for loading a Society, a CellularSpace, and their relations

from a given database is shown in Figure 3.3. The syntactical difference between

creating a Society and a CellularSpace is the presence of a function to describe the

behaviour of the agents. This function, in this case called createAgent, receives a

data structure containing the properties of a single geospatial entity and returns

an agent built from these properties. The modeller does not have to declare the

attribute names of the agents in the source code because TerraME automatically

loads the data according to their specific types in the database table.

Once both objects are created, neighbourhood relations can be loaded directly from

them, as also shown in Figure 3.3. A call to loadNeighbourhood connects the enti-

ties within a Society or a CellularSpace, while loadPlacement sets up the relations

between a Society and a CellularSpace. In the case of placement relations, as they

involve objects from different types, we need a third object, of type Environment,
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mySociety = Society {

database = "d:\\database.mdb",

layer = "farmers",

instance = createAgent

}

myCellularSpace = CellularSpace {

database = "d:\\database.mdb",

layer = "cells",

select = {"cover", "soil_quality"}

}

myEnvironment = Environment {

mySociety,

myCellularSpace

}

mySociety:loadNeighbourhood("nearest_farmers")

myCellularSpace:loadNeighborhood("transition_by_roads")

myEnvironment:loadPlacement("farms_to_cells")

FIGURE 3.3 - Loading entities and their relations from a geographic database.

to encapsulate both in a single object and then connect them. When loading the re-

lations, TerraME automatically identifies the layers according to the relation stored

in the database, “farm to cells” in the Figure. Then it searches the Environment for

the objects that match the layer names and connects the pairs of objects. In this

sense, it is possible to have more than one Society in an Environment and TerraME

still finds out and links the correct entities.

3.4.2 Direct and indirect relations

The GeoDBMS contains geospatial data to feed the relations involving agents and/or

cells. These relations are stored directly within the entity that contains it, but there

may exist relations that are not stored directly. For example, Torrens and Benenson

consider that relations between agents can only be solved indirectly as a transition

over the other relations (TORRENS; BENENSON, 2005). With this in mind, TerraME

is more flexible because it is possible to choose between direct and indirect rela-

tions. Direct relations are stored by a data structure within the entity and can be

fed by geospatial data, while indirect relations are queries over direct or indirect
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relations. To accomplish that, each forEach of Figure 3.2 uses a “get” function that

returns the data structure directly stored or calculate the relation on-the-fly. For

example, Figure 3.4 shows a simplified version of forEachAgent that calls getNeigh-

borhood, a function that by default returns a direct relation.

function forEachNeighbor(object, func)

n = object:getNeighborhood()

for i = 1, n:size() do

if not func(object, n[i]) then return false end

end

return true

end)

FIGURE 3.4 - A simplified version of forEachAgent. It gets the neighbourhood structure of the object
and then transverse it. If some function call returns false along the processing, forEachA-
gent stops and does not process the other agents.

Whenever an indirect relation is necessary, the modeller only needs to overwrite the

“get” function (in this case, getNeighborhood) by a query over the other relations.

The two indirect neighbourhoods between agents proposed by Torrens and Benenson

can be implemented as shown in Figures 3.5 and 3.6. With it, one can simply use

forEachNeighborhood as if it was a direct relation. Therefore, it becomes transparent

for the modeller whether it is directly stored or indirectly calculated: the way of

retrieving the relation is the same for both cases.

agent.getNeighborhood = function(self)

n = Neighbourhood()

forEachCell(self, function(agent, cell)

forEachAgent(cell, function(other_agent)

if agent ~= other_agent then

n:add(other_agent)

end

end)

end)

return n

end

FIGURE 3.5 - Neighbourhood of agents within the same cell. The agent needs to avoid itself as it
belongs to the same cell of its neighbours. Commonly, agents belong to a single cell,
turning forEachCell unnecessary. But it becomes necessary when the agent represents an
institution that can belong to more than one spatial location at each time instant.
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agent.getNeighborhood = function(self)

n = Neighbourhood()

forEachCell(self, function(agent, cell)

forEachNeighbor(cell, function(neighbor)

forEachAgent(neighbor, function(other_agent)

n:add(other_agent)

end)

end)

end)

return n

end

FIGURE 3.6 - Neighbourhood of agents belonging to adjacent cells. The idea is to transverse all neigh-
bours of the current cell, retrieving the agents within these cells.

3.5 Concluding Remarks

Simulating geospatial phenomena demands reliable toolkits that allow the user to

focus on describing the model, rather than worrying about data structures and

simulation control. When we add a spatial component to these systems, with the

objective to represent entities and their relations with real-world geographic data,

modelling becomes an even harder task, commonly requiring strong computational

abilities to build new up models. To make this task easier, we need simple but

robust toolkits that generalize the representations of geographic data for creating

agent-based models.

In this work, we presented an architecture where it is possible to use geospatial

data stored in a database to create agents, a representation of the geographical

space, and relations involving them. The approach does not focus on a specific

type of application, such as urban or ecological applications. Instead, the objective

is to have a general architecture for models where topological relations involving

agents and cells matters, allowing the modeller to create relations directly from

data or indirectly through other direct or indirect relations. With this, the approach

presented in this work is more general than the others available in the literature.

Future directions of this work are related to a temporal representation of geospatial

data. The requirements for the entities and relations have to be better understood,

and new requirements will show up. Another future work involves using this archi-

tecture to develop land use and land cover change models in the Brazilian Amazonia.
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4 GAMES ON CELLULAR SPACES: HOW MOBILITY AFFECTS

EQUILIBRIUM1

Abstract

In this work we propose a new model for spatial games. We present a definition of

mobility in terms of the satisfaction an agent has with its spatial location. Agents

compete for space through a non-cooperative game by using mixed strategies. We

are particularly interested in studying the relation between Nash equilibrium and

the winner strategy of a given model with mobility, and how the mobility can affect

the results. The experiments show that mobility is an important variable concerning

spatial games. When we change parameters that affect mobility, it may lead to the

success of strategies away from Nash equilibrium.

4.1 Introduction

Over the last years, the role of spatial self-structuring in the study of games has

drawn a lot of attention. Particularly, games with spatially explicit factors have

proven to be useful for modelling biological and economic environments (NOWAK;

SIGMUND, 2000). The purpose of such games is to assess the effects that spatial

structures have on adaptation strategies of agents, mainly in the study of the evo-

lution of altruistic behaviour. Adding a spatial component to the models (usually

in the form of grids) often displays different features from models with well-mixed

populations. For example, the evolution of interspecific mutualism cannot be ex-

plained by an unstructured population through the iterated continuous Prisoner’s

Dilemma (SCHEURING, 2005).

Most of the games on grids use a straightforward extension of non-spatial games,

with each cell containing a single agent that interacts with its neighbourhood. If the

agents interact only with fixed neighbours, there will be no need to recognise and

1This chapter is also published as paper co-authored with A. M. V. Monteiro, G.
Camara, and S. Sandri, “Games on Cellular Spaces: How Mobility Affects Equilibrium.”

Journal of Artificial Societies and Social Simulation 12(1) 5, 2009, available at
http://jasss.soc.surrey.ac.uk/12/1/5.html
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remember the opponents (NOWAK et al., 1995). This arrangement allows the same

game to be repeated, and the results influence how the agents populate the cellular

space. As an example, Nowak and May study the spatial Prisoner’s Dilemma, in

which a cell is given to the strategy with highest payoff in the neighbourhood, if it

is greater than the current payoff (NOWAK; MAY, 1992).

A spatial arrangement may lead to different results because it changes the way with

which agents interact, from well-mixed confronts to local competitions. But there is

a second characteristic of space that may affect the development of spatial models:

the mobility. Agents can move in the space, changing their spatial locations and

making the local relations dynamical.

The literature of spatial models presents two definitions of mobility. First, analyt-

ical models using replicator-diffusion equations often call mobility the spread of

a strategy in the space (FERRIÈRE; MICHOD, 2000). The second definition works

with the mobility of an individual agent, which can move to an empty neighbour

cell. Examples of such models can be found in studies of cooperation (EPSTEIN,

1997; GALLIARD et al., 2003), linguistics (KOSMIDIS et al., 2005), and evolution of

cancer (MANSURY et al., 2006).

In all works that involve numerical simulation, the mobility of an agent is an auto-

mated action, which always depends on a social opportunity as, for instance, an old

neighbour has left an empty cell. Moreover, that happens even if the current spatial

location is favourable to the agent. However, instead of moving to the neighbour cell

as soon as possible, a “rational” agent would ask: why should I move if I am getting

good results? That is a common strategy adopted in spatial models which do not

use games, such as in (ZHANG, 2004) and (BELTRAN et al., 2006). In these works,

the agent compares the current satisfaction with the satisfaction in the new spatial

location, moving when its satisfaction increases with the change.

In this work, we explore the question of mobility within the context of non-

cooperative games, more precisely using the chicken game. We propose a new spatial

model by defining mobility in terms of the satisfaction of an agent with its current

spatial location. Agents use mixed strategies to compete, and decide to move accord-

ing to their payoffs. An agent does not depend on a social opportunity for leaving

its spatial location: it can move to a new spatial location even if it is already popu-

lated with other agents. Agents have complete freedom to move; there is no cost or
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constraint to do so. In this framework, instead of competing with their neighbours,

the agents compete with each other within the same cell.

Contrary to what happens in the literature of spatial games, in this work we have a

clear separation between the concepts of cell and agent. There are many real world

situations where it is useful to consider agents moving from one cell to another.

Such cases are common in geographical space, where a cell is usually a container

that has properties which might be different from its neighbours. Take the case of

land use change models. Land use change cells differ not only in their locations, but

also in properties such as topography, water availability, and temperature. In these

and similar cases, a cell can contain a small community of agents. Agents interact

with their community (inside the cell) and if dissatisfied, they will try to find a

more friendly community elsewhere in space. Combining interaction within cells

and movement between cells allows new insights when modelling games in space.

We are particularly interested to study the relation between the Nash equilibrium

and the winner strategy of a given spatial model with mobility, and how the definition

of mobility can affect the results. In a nutshell, we try to answer the following

questions: is Nash equilibrium the best strategy in a competition for space where

the agents can move according to the results of the games? If not, in which cases, and

how can it help to define the best strategy? Also, how does the proposed definition

of mobility possibly affect the results?

4.2 Related works

4.2.1 Non-cooperative games and Nash equilibrium

A non-cooperative game is an n-person game where the actions of each player are

independent, without any collaboration or communication with the other players.

In an n-person game we have, for each player:

a) a finite set of pure strategies (actions);

b) a payoff function, that maps all n-tuples with the individual pure strategies

to real numbers.
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One mixed strategy is a collection of non-negative numbers adding up to 1, corre-

sponding to probabilities of using each of the pure strategies. The mixed strategy

defines the tendencies of a player. Each time it plays, it will choose randomly one

of its pure strategies, based on the probabilities defined by the mixed strategy.

For example, let us take the chicken game. Two players have the choice to escalate

(E) or not to escalate (Ẽ) a brawl. If none of them escalates, nothing happens. If

only one escalates, the other player runs away, and the winner receives 1 from the

coward player. But, if both decide to escalate, each player pays 10 due to medical

care. This game is said to be symmetric, because both players employ the same pure

strategies and payoffs, as shown in Table 4.1. Given that this game has only two

pure strategies, we denote by sx, 0 ≤ x ≤ 1, the mixed strategy of escalating with

probability x.

TABLE 4.1 - Chicken game payoffs, in pairs (A, B).

B escalates B does not escalate
A escalates (−10, −10) (+1, −1)

A does not escalate (−1, +1) (0, 0)

Nash proved that, given any non-cooperative game of n players, there is always an

equilibrium point. This point is a set of mixed strategies for each player that, if a

player individually changes its mixed strategy, the best result it may get will be

the same as in the equilibrium (NASH, 1951). No player has incentive to deviate

one-sidedly from its strategy as long as the other players remain in the equilibrium.

This is known as the Nash equilibrium.

For example, let A and B be two players of the chicken game, with strategies sa

and sb, respectively. The expected payoff of player A is −10sasb+ sa− sb. If A knew

exactly the value of sb, it would be possible to calculate the best action for it. If sb

is greater than 10%, the best choice for A is never to shoot (sa = 0), implying in

a payoff of −sb. If sb is less than 10%, A should always shoot (sa = 1), because its

payoff would be 1 − 11sb. But, if sb is exactly 10%, all strategies for A lead to the

same payoff (−0.1). Therefore, if sa is also fixed at 10%, no other strategy could

augment its payoff against A by changing its own mixed strategy. Applying the same

reasoning for B, we arrive to the conclusion that when both players follow s0.1 the
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game is at Nash equilibrium.

But this idea of equilibrium may cause controversy in some games. Most game

theorists agree on s0.1 as the rational solution for this game, but the argument is

somewhat tenuous (SIGMUND, 1993). In the chicken game, although deviating from

the equilibrium does not increase the utility of the player, it does not decrease as

well, as long as the other player stays in the equilibrium. Therefore, it is not a

strict equilibrium.

A clear explanation can be found when it is played not only by two players, but

within a population. Maynard Smith viewed this game in a population-dynamical

setting (MAYNARD SMITH, 1982). In his model, a large number of players meet

randomly in contests where they have to decide whether to escalate or not. If the

estimated overall probability is greater than 0.1, it is better not to escalate. If it

is less than 0.1, it is better to escalate. But if it is exactly 0.1, then there is no

better strategy than s0.1. In this sense, self-regulation leads to s0.1 – self-regulation

not between two players, but within a population. Nash has also proposed a similar

interpretation for the equilibrium points, the mass-action (NASH, 1950), which was

forgotten for decades in his unpublished thesis. In this work, we will study how this

non-strict equilibrium behaves in a spatial context with the agents’ mobility based

on the results of the games.

4.2.2 Spatial games

Recently, new models with different neighbourhood topologies have been proposed

to study games in the space. The proposals include variations of grids, graphs,

and some in between structures (BIELY et al., 2007; CASSAR, 2007; DURÁN; MULET,

2005; SOARES; MARTINEZ, 2006; VAINSTEIN; ARENZON, 2001; VUKOV; SZABÓ, 2005;

WU et al., 2006). (OHTSUKI; NOWAK, 2006) have shown that, in the limit of weak

selection, models with different topologies can be described only by changing the

payoff matrix. Although these models have different topologies, agents have the

same characteristics: they are fixed in the space, have only a pure strategy, play

with neighbours, and may spread their strategies to the neighbourhood according

to the result of the games.

Commonly, the result of the game is only used for defining a new spatial arrange-

ment, but it by itself does not have a future effect in the model. (FELDMAN; NAGEL,
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1993) propose a model where cells are not updated by a new strategy at the end of

the turn. Instead, each cell must pay a fee each turn to stay in the model, and a

neighbour strategy will replace it only if its savings end. (EPSTEIN, 1997) studies the

evolution of cooperation in a model where agents may be removed from the model

if they reach zero or less wealth, since the payoff matrix has negative entries.

(BELTRAN et al., 2006) propose a model where agents move in a lattice trying to

minimise their dissatisfaction. The satisfaction is a function of the difference between

the real distances it keeps from the other agents and the ideal distances it wants

to keep from them. (ZHANG, 2004) studies a segregation model, where agents may

exchange their spatial locations according to a definition of satisfiability. In both

models, only one agent can be within a cell in each time step.

4.3 The proposed model

The model takes place in a cellular space. A cellular space is an environment with

cells connected by neighbourhood relations. The simplest example of a cellular space

is a grid, with square cells having four touching neighbours. The objective of using

the term cellular space instead of graph is to distinguish the meaning of a neigh-

bourhood: instead of connecting individuals, as in typical spatial games, a cellular

space simply connects cells, defining a spatial proximity relation.

The cellular space is always populated with individuals called agents. Each agent

belongs to a single cell, which has enough space for it to live. Initially, each cell con-

tains a set of agents, which have to compete for the space through a non-cooperative

game. Whenever an agent is playing a non-cooperative game, we call it a player, but

one agent has other characteristics besides those of players in the sense of a non-

cooperative game (pure and mixed strategies), as it will be seen below.

The basic assumption of our model is that when an agent arrives at a cell (as well as

in the beginning of the model), it is satisfied with its cell, and thus no agent will move

unless it is dissatisfied. Two agents within the same cell may play a non-cooperative

game competing for it, and the result of each game affects directly their individual

satisfaction with the current cell. This is the only memory an agent has, and it is

called local satisfaction. The local satisfaction starts with a positive value when an

agent arrives at a cell. Whenever it reaches zero or less, the agent randomly picks a

neighbour cell and moves to it, looking for a better cell to compete for. Given that,
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the movement of agents in a cellular space can be characterised as a random walk.

Each agent also has a global satisfaction, starting with a positive value significantly

greater than the local satisfaction. As the local satisfaction, it is affected by the

payoffs of the games. All agents have the same global satisfaction at the beginning

of the model. An agent that got dissatisfied many times and its global satisfaction

reaches zero or less leaves the model. In the models we propose in this work, the

global satisfaction does not affect the agents’s behaviour. As global and local sat-

isfaction and game payoffs are strongly related to each other, throughout this text

we use the symbol $ to represent any value related to them.

To create a metric for measuring satisfaction, we say the satisfaction of an agent

is measured by its capital. Local satisfaction represents the limit of capital one can

dispend for a cell. Global satisfaction corresponds to the initial capital assigned to

an agent, thus it leaves the model when its money ends.

Agents differ in one characteristic: the mixed strategy. We divide the agents in groups

of equal size. Two agents within a group share the mixed strategy, but they cannot

communicate nor identify each other. Although the agents compete individually,

they represent a strategy that is going to be studied in a spatial context. To represent

the fittest agents along the model execution, the agent with higher global satisfaction

in a cell will be its owner, because, at least at first sight, it has more chance of

surviving than any other in that cell. If two agents have the same amount of money

in a given cell, the agent that stands there for a longer time is its owner. In the first

turn of the model, we divide the owners equally among each group.

The model has a finite number of turns, each one with two steps. The first step sets

up and carries out the games. Supposing the game has two players, we randomly

choose pairs of agents in each cell, and then carry out the game with each pair. Cells

with an odd number of agents have one random idle agent, and no agent will play

more than once in each turn. The same logic can be applied to games with more

than two players.

The second step defines the dynamical part of the model. Once each agent already

knows its payoff, it updates its local and global satisfactions with the payoff. Then, it

checks if any satisfaction has reached zero or less to perform a movement or leave the

model. The model runs until it reaches a stable state, which happens when there is
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at most one agent in each cell, or when their satisfaction stops to decrease. Whenever

the model arrives at one of these situations, we say that it is at equilibrium.

There are two differences between the general model proposed here and the ones

proposed in the literature. First, and most importantly, the model separates agents

from space. The agents compete for space but they are not equivalent to the space

itself. Neighbourhood relations point to where an agent can go, trying to find a

better cell to fight for. Second, an agent plays with a random opponent inside the

same cell and, as agents can move, the chance of two agents meet more than once can

be very small. Given that, we only allow mixed strategies, and no meta-strategies

such as Tit-For-Tat (AXELROD, 1980) or Pavlov (NOWAK; SIGMUND, 1993), because

this model is not a repeated game.

A model of games on cellular space can be formalised as a 9-tuple:

M = (C, n, S, p, A, s, k, g, l), where

• C is the cellular space in which the games take place,

• n is the number of players involved in the non-cooperative game,

• S is the set of actions (pure strategies) each player can take,

• p : X → R, X = {(x1, . . . , xn)|xi ∈ S}, is the payoff function,

• A is the set of groups of agents,

• s : A×S → [0, 1], ∀sa ∈ A,
∑

b∈S

s(sa, b) = 1, represents the mixed strategies,

• k ∈ N, is initial number of agents of each given group,

• g ∈ R, is the global satisfaction threshold,

• l ∈ R, is the local satisfaction threshold.

Therefore, given sx, we have s(sx, E) = x and s(sx, Ẽ) = 1 − x. An agent using a

mixed strategy commits to a randomisation device. Each time the agent plays, it

chooses a pure strategy based on the probabilities specified by the mixed strategy.
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As an example of model, the following one denotes the traditional chicken game:

Mc = (Cc, 2, {E, Ẽ}, u, {sa, sb}, s, 1,∞,∞).

The cellular space Cc has a single cell containing two agents, each one coming from

a different group, one from sa and the other from sb. They have the same set of

possible actions, “escalate” and “not escalate,” and the same payoff matrix u (shown

in Table 4.1), but they do not have to follow the same mixed strategy. Both agents

always stay in the only cell and never leave the model.

In this work, we are particularly interested in applying the chicken game within this

general model. The expected payoff of this game is almost always negative, only in

the case where both players never escalate the expected payoff is 0. Therefore this

game fits in with the requirement of reducing their satisfaction to make them move.

C is always a squared grid with 20× 20 cells, such that the possible movements of

an individual are at most to four neighbours (up, down, left and right). Cells on the

edges have three alternatives for movement, and cells on the corner have only two.

4.4 A first experiment

As first experiment, we divide the agents equally in the following three groups:

a) Always use the pure strategy seemingly more profitable, escalate, because

it is the only way to earn something, and the opponent will have a payoff

at most as bad as its;

b) Choose randomly a pure strategy in each game (escalate with chance of

50%);

c) Follow Nash equilibrium, escalating with chance equal to 10%.

Initially, there are three agents of each strategy competing in each cell, summing-up

nine agents by cell. Each agent starts the model with $200 and, inferring that loosing

$10 twice without earning any money is enough to turn an agent dissatisfied, we

chose $20 to be the local satisfaction. Therefore we have:

M0 = (C, 2, {E, Ẽ}, u, {s0.1, s0.5, s1.0}, s, 1200, 200, 20),
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TABLE 4.2 - Example of turn in a given cell.

Agent
Strat- Beginning Games End of the turn
egy Global Local Confront Action Payoff Action Global Local

a s0.5 17 4 Idle Idle +0 Stay 17 4

b s0.5 15 1 b× d Ẽ −1 Move 14 20
c s0.1 21 15 c× e E −10 Stay 11 5
d s1.0 37 12 b× d E +1 Stay 38 13
e s0.5 10 5 c× e E −10 Dye − −

where s0.1 follows Nash equilibrium, s0.5 plays by using a coin toss, and s1.0 al-

ways escalates.

To exemplify the way that this model executes, suppose a turn of a given cell with

five agents (a, b, c, d, and e), as shown in Table 4.2. The model randomly selects

the pairs (b, d) and (c, e) to play chicken, leaving a idle because the cell contains an

odd number of agents. Let us analyse the two games separately. In the first game, b

follows s0.5 and decides not to escalate, while d decides to escalate due to its strategy

s1.0. With this, b loses $1 and d gets $1. After the game, b has $14 and its satisfaction

is 0, while d has $38 and its satisfaction is 13. Consequently, b reaches the moving

threshold, leaves the cell, and updates its local satisfaction to 20 again. Finally, d

decides to stand still.

In the second game, c against e, both decide to escalate. This causes a lose of $10

for each agent. After the game, c has $11 and its satisfaction is 5, while e has $0

and it satisfaction is −5. Consequently, c decides to stand still, while e leaves the

game, because its fitness has reached a value less than zero.

As we can see in the example above, this model is stochastic, and we are interested

in the convergence more than in showing numerical results. Clearly, M0 always

converges to the state where there is at most one agent in each cell, but when we

say convergence, we aim at verifying whether the results obtained by each strategy

in the simulations are similar.

We run the model 50 times to verify convergence and, although there are three

stochastic components in the model (movement, escalating, and confronts), the sim-

ulation results have a low standard deviation. Also because of randomness, the

simulations have different number of turns until they end.
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Figure 4.1 shows the results of one realization, and Figure 4.2 shows the spatial

distribution of the owners along a simulation. Clearly, the number of agents and

the total amount of money of each group decrease along the simulation, and the

more ambitious a strategy is, the sharper is the fall of the money and the number

of agents following that strategy. Figure 4.1(c) also shows the mean value and the

standard deviation of the experiments, plotted as arrows on the right side. There are

some empty cells at the end of the simulation, which happens because, when there

are only two agents in a cell, both might escalate, lose $10, reach the threshold, and

decide to leave the cell.

The results show that the group following equilibrium has achieved most of the

cells, despite the early misfortune shown in Figure 4.1(d). There are, nevertheless,

some agents of other strategies at the end of the model. Equilibrium agents got

the best results at the end, but they did not reached the majority by their own

victories, it was indeed because the other strategies have lost their money faster. It

is possible to see clearly that more aggressive agents destroy themselves rapidly and,

therefore, following equilibrium yields a better chance of surviving. But, when there

are a few aggressive agents in the model, they can avoid themselves and conquer

some cells, justifying the growing number of cells conquered by s0.5 at the end of

the simulation. As the non-equilibrium strategies lose money faster than equilibrium

ones, the initial money has a clear impact on the model, and agents following the

equilibrium get more advantage of its increase. Simulations with higher values of

initial money have shown that the difference between the number of cells of s0.1 and

s0.5 becomes even larger.

Figure 4.3 shows the number of agents of each strategy that move during the first

150 turns of the model. More aggressive agents reach the threshold more frequently,

until they start to leave the model. After the 30th turn, the number of movements

decreases until the model stabilises.

4.5 Model variations

In M0, Nash equilibrium is the best strategy for the competition against the other

two chosen strategies. This section describes three other experiments, in order to

verify whether the equilibrium strategy fares better also in other arrangements. In

the first variation, we assign an infinite amount of money to each agent. In the

second one, an extra amount of money is assigned to both agents after they play a
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FIGURE 4.1 - Results of the first experiment.
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(a) Beginning of the simulation (b) End of 1st turn

(c) End of 100th turn (d) End of 2791th turn

FIGURE 4.2 - Example of a run of the first experiment. Green cells are controlled by s0.1, blue by s0.5,
red by s1.0, and white cells are empty.
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FIGURE 4.3 - Movements of each group in the first 150 turns.

game. We analyse how the model behaves when money is less constrained in both

experiments. In the last experiment, we use eleven strategies instead of only three.

4.5.1 Infinite amount of money

The initial amount of money can be large enough to keep all the agents alive until

the end of the simulation. With it, the model will never converge to a stable state,

because the agents will move indefinitely. We have the following model:

Minf = (C, 2, {E, Ẽ}, u, {s0.1, s0.5, s1.0}, s, 1200,∞, 20).

As we can see in Figure 4.4(a), this model has a continuous repetition of the instabil-

ity previously shown in the first 30 steps of Figure 4.3. This instability is favourable

to s0.1, which owns more than 85% of the cells, from the 30th turn until the end of

the simulation, as we can see in Figure 4.4(b). The Figure also shows the mean and

standard deviation of each strategy.

Supposing a non-spatial environment, with agents meeting each other with equal

probability, we can calculate the expected payoff of each strategy, deduce the num-

ber of movements, and compare it with the mean number of movements of the

simulation. The expected payoff of an agent is the mean expected payoff against

each group. The number of turns necessary for an agent of a given group to reach
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FIGURE 4.4 - Model with infinite money.

the threshold for moving is straight from this value, since the local satisfaction is

$20. Then, as there are 1200 agents of each group, the mean number of agents that

would move each turn can be calculated. Table 4.3 shows these values, and in the

lower part there is the difference between the expected movements in a non-spatial

model and the mean value of the movements in the experiments with infinite money.

Clearly this value is less than in a non-spatial environment because each cell with

an odd number of agents has one idle agent. Agents in space also reduce the expec-

tations of a non-spatial environment because an agent that leaves a cell may find

itself in a new one that happens to be more convenient. But this reduction is not

equal for each strategy: the more an agent escalates, it can realize an unfavourable

arrangement earlier, leaving the cell faster than the other strategies. It justifies why

the decrease is proportional to the probability of escalating.

4.5.2 Extra gain

The second variation still concerns the reduction of the number of agents along the

model. But instead of increasing the initial amount of money, as in Minf, we give

an extra gain of capital to both agents at the end of each game, with the objective

of keeping them alive. We describe a model with extra gain k as:

Mgk = (C, 2, {E, Ẽ}, u+ k, {s0.1, s0.5, s1.0}, s, 1200, 200, 20).
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TABLE 4.3 - Impact of the escalating probability in the movement.

s0.1 s0.5 s1.0
Against s0.1 −0.10 −0.10 −0.10
Against s0.5 −0.90 −2.50 −4.50
Against s1.0 −1.90 −5.50 −10.00
Mean −0.97 −2.70 −4.87
Turns before an agent moves 20.61 7.40 4.10
Expected movements by turn 58.22 162.16 292.68
Movements with infinite money 47.25 123.20 196.13
Difference 10.97 38.96 96.55
Decrease (%) 18.84 24.02 32.98

As we increase all the payoffs by a constant value, the expected payoff of each

agent also increases with this value, and thus the equilibrium point does not change

(NASH, 1950). We explore six models with different values of extra gain to verify how

it affects the results. They are: Mg+0.1
, Mg+0.2

, Mg+0.4
, Mg+0.8

, Mg+1.6
, and Mg+3.2

.

Figure 4.5 shows the number of agents in the six models at the end of the 3000th

turn. After that, the models have only some minor changes. The total number of

agents that survive rises with the extra gain, but agents with a higher escalating

probability have a lower tax of increase. Note that, contrary to the variation of

infinite money, some agents are still being removed from the model, as they reach

the global threshold.

As the extra gain increases, agents that escalate less often stop reaching the thresh-

old for moving and start to stand still, because they gain more money than lose.

Figure 4.6 shows the owners in the six models. The first strategy to lose mobility

is s0.1. Because of it, from gain Mg+0.2
until Mg+0.8

, it loses the majority to s0.5.

After the gain +0.4, s0.5 also starts to lose mobility, then cells, and finally in the

model Mg+1.6
, it already has lost most of the cells again to s0.1. A bigger increase of

extra gain does not lead s1.0 to reach the majority, because its agents have a major

disadvantage of self-destruction. With higher extra gain, the model becomes a set

of local competitions without mobility, and therefore Nash equilibrium is the best

strategy. Using the results we can infer that Nash equilibrium is the best strategy

in the models without mobility, but there is an interval of extra gain that can af-

fect the agents’s mobility, allowing other strategies to surpass Nash equilibrium. It

happens because the Nash equilibrium of this game is not strict. If there is only an
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FIGURE 4.5 - Agents of each group in the model with extra gain after turn 3000.

agent of s0.5 or s1.0 within a cell of only s0.1 agents, then it can exploit the other

agents, not by increasing its own payoff, but indeed by reducing the expected payoff

of its opponents.

4.5.3 Eleven strategies

The third variation of the model explores a richer arrangement, trying to find out

the best strategy for the first model. This model has agents following eleven distinct

mixed strategies: s0.0, s0.1, . . ., s1.0. The other parameters are the same as in M0.

Therefore we have the following model:

M11 = (C, 2, {E, Ẽ}, u, {s0.0, s0.1, . . . , s1.0}, s, 1200, 200, 20).

Figure 4.7 depicts the result of one experiment. In Figure 4.7(a) we can see that all

strategies start with a similar number of cells, but quickly the ownership changes. In

Figure 4.7(a) we can see that successful strategies in the first turns do not necessarily

end the model with a high number of cells, as also shown in M0. Some strategies are

noteworthy. Agents that never escalate (s0.0) quickly own half the number of cells,

shown in the peak of Figure 4.7(a). However, as the model evolves, they lose most

of them and, when the model finishes, they place at the 7th position. Equilibrium

agents are quite successful, but they finish the model in the third position. The
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FIGURE 4.6 - Owners by group with six values of extra gain.
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FIGURE 4.7 - Results of a single run with eleven strategies.

second place belongs to s0.3, and the strategy that achieves the best result is s0.2.

Figure 4.8 summarises the cells each group owns. The red line points out the max-

imum number of cells each group has achieved among all turns of all simulations.

The blue line shows the cells owned by each strategy at the end of the simulations,

with mean and standard deviation. The strategy s0.0 has reached a maximum of 366

cells, and this value was omitted to give more emphasis to the other strategies. Note

that the final ownership is similar to a gamma distribution. Also, there is no conflict

in identifying the place of each group using the standard deviation as error, unless

for groups from s0.7 to s1.0, which have achieved almost no cells.

We can roughly divide the simulation in three stages. In the first stage, from the

1st to the 5th turn, the aggressive strategies (s0.5 to s1.0) dominate the model and

share the majority due to their initiative. The second stage emerges rapidly because

they destroy themselves, making the purely cooperative strategy (s0.0) arise until it

reaches the majority around turn 20. Finally, in the third stage, when most of the

aggressive agents have already left the model, the more successful strategies slowly

but ceaselessly conquer the cells dominated by s0.0 agents. But, in the end, some

cooperative agents still remain. They can only survive due to the possibility of hav-

ing empty cells, as described in the results of M0. The behaviour of such an agent
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FIGURE 4.8 - Summary of the eleven strategies at the end of the simulations.

consists in waiting until the simulation ends or someone forces it to leave the cell.

Although this strategy can be considered naive, the results show that this coopera-

tive behaviour is nevertheless better than all the four more defective strategies (s0.7

to s1.0), and it almost draws with s0.6.

The individual development of each strategy in all simulations is shown in Figure 4.9.

The groups from s0.8 to s1.0 have a development similar to s0.7. We can see that each

strategy has similar results in all simulations. In the right part of each graphic, there

is a vertical arrow showing the maximum and minimum number of agents of each

strategy at the end of the simulations. Note that, in all strategies but s0.0, the higher

and lower points of the arrow match the maximum and minimum number of cells

achieved by those strategies. Although there is an average of only 3 cells owned by

s0.0 at the end of the simulations, there are 12 agents in these cells, thus 4 times

the number of cells owned by the group. Strategy s0.0 is the only one that supports

more agents than cells, something that may happen only within a purely cooperative

behaviour, because agents of other strategies end up by escalating sometime as the

simulation progresses. Therefore, when we talk about surviving instead of owning,

this strategy gains one more position, surpassing s0.6 and almost drawing with s0.5.

Thus, there is not much difference between never escalating and acting without any

strategy (s0.5), but it is better acting cooperatively than to adopt a tendency to

escalate more often than not to escalate.
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FIGURE 4.9 - Ownership of strategies along all simulations.

The majority achieved by s0.2 and the second place achieved by s0.3 can be explained

by the result of Minf, which states that, as an agent escalates more, it can realise

a threatening arrangement earlier. The counterpart of escalating more is the higher

destruction of agents within the same group. Nash equilibrium is the base for a stable

relation, and it can be used as a starting point for the best strategy. In this model,

the best strategy uses the equilibrium, but it adds some risk to get more mobility.

The winning strategy mixes both characteristics; its agents are not exploited by

threatening agents and can conquer cells from s0.0 faster than equilibrium agents.

4.6 Conclusions

The results of the experiments show that changing parameters of the model that

affect the mobility of the agents can lead to the success of strategies away from

Nash equilibrium. The results show that risky agents take more advantage of the

space, because they realize unfavourable arrangements earlier. But it may have a

drawback of destructing players within the same strategy, which leads the strategy to

be penalised as a whole. Therefore there exists a new equilibrium between these two

factors. The evidence for this conjecture is shown in the results of M11, presented

in Section 4.5. In this model, there are eleven different strategies competing for

space through a game with s0.1 as equilibrium strategy, and the more successful

strategy was s0.2, winning each of the 50 runs. Although we do not expect the

agents to be rational within this environment, Nash equilibrium is a good basis for
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the best strategy.

In all the models but the last one, there is not any grouping of agents at the end of

the simulation because, if that occurs, the simulation has not ended yet. However,

in the last variation of the initial model, it is possible to have more than one agent

within each cell because we have one strategy that will never shoot (s0.0). This leads

to groups of agents following this purely cooperative strategy within the same cell,

increasing the number of agents following this strategy at the end of the simulations.

Clearly, the models can be enhanced with further refinements and sensibility analy-

sis. For example, all the models presented in this article have agents homogeneously

distributed over the cells. In experiments not presented here, we studied models with

the agents randomly distributed over the cells at the beginning of the simulation.

The results are similar to the homogeneous case, with a straightforward increase on

the standard deviation of the results, because there is a fourth stochastic ingredient,

besides the escalating decision, the confronts, and the movement. We also tested the

model using four neighbours by cell and found similar results. In fact, these results

have the same explanatory power as the models presented in this work.

We can cite some questions to be investigated in future works. An open issue is

to explore evolutive models concerning population dynamics. New populations are

generated from the fittest agents of the previous simulation, with some mutation

in their characteristics. Will these populations competing for space evolve to Nash

equilibrium? Perhaps, “we can only expect some sort of approximate equilibrium,

since [. . .] the stability of the average frequencies will be imperfect” (NASH, 1950).

Another question that can be investigated is the evolution of cooperation within

the context of mobility. Clearly a pacific agent does not need to wait until losing

$20 since it arrived at the cell to move to another cell. Therefore we would have

a more complex model, with the behaviour of agents differing not only by their

mixed strategies, but also by their different ways to decide their actions based on

the previous results. Within this environment, it is possible to investigate how the

parameters of the model can affect how agents are grouped or repelled spatially, and

the path taken by the different strategies.
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4.7 Availability

The model presented in this work was implemented in the TerraME modelling frame-

work (CARNEIRO, 2006). TerraME is a development environment for spatial dynam-

ical modelling that links cell spaces to geospatial databases for data storage and

retrieval. It uses the geoprocessing library TerraLib for working with geospatial data

(CAMARA et al., 2000), and Lua language to create models (IERUSALIMSCHY, 2003).

Because of its simplicity, Lua has a large number of programmers in the game devel-

opment community, an activity that has many requirements in common with social

simulation. The source code as well as the programs necessary for running the simula-

tion are available at http://lucc.ess.inpe.br/doku.php?id=papers:mobility.
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5 POPULATION DYNAMICS, EVOLUTIONARY COMPUTATION,

AND ADAPTABILITY IN GAMES ON CELLULAR SPACES1

Abstract

By using differential equations, evolutionary game theory shows that most of the

games of competition for resources have equilibrium strategies named Evolutionary

Stable. Although this approach can deduce these points, it is not possible to say

how or whether a population may reach such equilibrium. In this work, we present

an evolutionary agent-based model where individuals compete for space using mixed

strategies. The objective is to investigate the evolution of populations competing for

space through evolutionary rules. We study whether a population evolves and adapts

itself to a stable state, the effects of each parameter in the development of the model,

and how the attained equilibrium is related to the theoretical equilibrium. The results

of the simulations show that populations are capable to converge to stable states, and

can adapt themselves to new games along the simulation, corroborating the hypothesis

that populations are capable to adapt themselves even if we relax the assumptions of

analytical models.

5.1 Introduction

Much of the studies dealing with population dynamics in the last decades consisted

in describing the reality through a set of mathematical equations and then deduce

equilibrium points, also called stable states of the system. Due to its expressivity

and elegance, this kind of modelling has achieved very useful results in different

areas of science. Lotka-Volterra (LOTKA, 1925; VOLTERRA, 1926) as well as SIR

1Part of this chapter is also published as two papers co-authored with A. M. V. Monteiro and
G. Camara:

• “Games on Cellular Spaces: An Evolutionary Approach.” Progress in Artificial Intelli-
gence, 14th Portuguese Conference on Artificial Intelligence, EPIA 2009, Aveiro, Por-
tugal. Lecture Notes in Artificial Intelligence (LNAI) 5816, pp. 535-546, 2009.

• “Games on Cellular Spaces,” Second Brazilian Workshop of the Game Theory
Society (BWGT): Accepted Papers, 2010.
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(KERMACK; MCKENDRICK, 1927) equations are examples of successful approaches

for dealing with complex phenomena of predator-prey dynamics and disease propa-

gation, respectively.

In fact, this way of modelling rely on some unreal assumptions which are too com-

plicated to be relaxed, such as the absence of spatial structures and homogeneity.

In the same way much of science that worked with system dynamics was based on

mathematical models of differential equations in the past, today it has been turning

into computation based models, which allow relaxing the hard assumptions of math-

ematical models. By explicitly simulating the actors involved in the system through

agent-based modelling, we can find out useful, flexible, and probably generic models,

whose original equilibrium deduced with equations may turn into a special case of

the model, enhancing our understanding of complex systems.

A well-known work that uses mathematical models is the one from Maynard Smith,

which investigated the relations between evolution and the theory of games (MAY-

NARD SMITH, 1982). He showed that Game Theory can be used to study species

competing for resources. His evolutionary theory demonstrates that there exist equi-

librium points named Evolutionary Stable Strategies (ESS), which means that, if all

members of a population adopt the same ESS then no mutant strategy could spread

under the influence of natural selection.

However, this model has some artificial assumptions, such as the fact that the pop-

ulation is infinite, and that every player of the model competes with each other.

Moreover, although this approach can deduce equilibrium points, it does not say

how or whether the population could attain such equilibrium. Even Maynard Smith

has admitted that “[a]n obvious weakness of the game-theoretic approach to evolu-

tion is that it places great emphasis on equilibrium states, whereas evolution is a

process of continuous, or at least periodic, change” (MAYNARD SMITH, 1982). More-

over, it has been shown that some equilibrium points, although stable, may not be

attainable (EPSTEIN; HAMMOND, 2002). Therefore, we need to emerge these patterns

in a generative way, which can not be done by using replicator equations.

Within this context, this work studies two questions: What would happen with the

evolution of a population if we relax the assumptions stated by the model of May-

nard Smith? How can a population reach such equilibrium? We investigate both

questions by working with a model that is based on two main features: evolution-
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ary computation and space. Evolutionary computation emerges as a natural way of

building models where there are changes in the composition of populations, mainly

by sending somewhat codified informations from generation to generation. In the

other side, the role of spatial self-structuring in the study of games has drawn a lot

of attention in the last years. Particularly, games with spatially explicit factors have

proven to be useful for modelling biological and economic environments (NOWAK;

SIGMUND, 2000). This approach has two main advantages. Firstly, it relaxes the

assumption that every agent has to compete with each other, because the locations

can determine with whom each agent will interact. Secondly, putting agents into

spatial partitions allows us to represent the limited capacity of the environment,

forcing the population to have a maximum size.

There are some empirical evidences in the literature showing that populations com-

pete for space because their members need to guarantee food, which can decide their

fate. An experiment showed that owning space may lead to survivor is presented by

(RIECHERT, 1981). The author describes the percentage of diary corporal weight

change of spiders. There are two groups of spiders: one that owns some territory

and another that does not. Most of spiders that do not own a territory lose weight,

while almost all owners increase their weight, which leads to a greater chance to

survive. There are also examples of species belonging to other animal classes, such

as turtles (STICKEL, 1950) and birds (LACK, 1966).

In order to deal with these relaxed assumptions, we present an agent-based model to

investigate the stability and adaptability of populations competing for space through

evolutionary rules. We study whether a population evolves and adapts itself to a

stable state, the effects of each parameter in the development of the model, and how

the attained equilibrium is related to the theoretical equilibrium.

This paper is written as follows. In Section 5.2, we present some game theory con-

cepts and related works. The evolutive model is described in Section 5.3, and the

simulations results are presented and analysed in Section 5.4. Finally, the conclusions

and future works follow in Section 5.5.
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5.2 Games and evolution

In a n-players game we have, for each player:

a) a finite set of pure strategies (actions);

b) a payoff function, mapping all n-tuples of pure strategies to real numbers.

One mixed strategy is a collection of non-negative numbers adding up to 1, corre-

sponding to probabilities of using each of the pure strategies. The mixed strategy

defines the tendencies of a player. Each time it plays, it will choose randomly one

of its pure strategies, based on the probabilities defined by the mixed strategy.

For example, let us take the chicken game. Two players have the choice to escalate

or not to escalate a brawl. Each one has no access to the decision of the other before

taking its decision. If none of them escalates, nothing happens. If only one escalates,

the other player runs away, and the winner receives 1 from the other. But, if both

decide to escalate, each player pays 10 due to medical care. This game is said to be

symmetric, because both players employ the same pure strategies and payoffs, as we

can see in Table 5.1. Given that this game has only two pure strategies, we say that

sx, 0 ≤ x ≤ 1, is the mixed strategy of escalating with probability x.

TABLE 5.1 - Chicken game payoffs, in pairs (A, B).

B escalates B does not escalate
A escalates (−10, −10) (+1, −1)

A does not escalate (−1, +1) (0, 0)

From this description for a non-cooperative game, Maynard Smith presents his evo-

lutionary model, based on the following assumptions:

a) infinite population;

b) asexual reproduction;

c) pairwise contests taking place between two opponents;

d) symmetric contests, that is, opponents do not differ in any way discernible

to themselves before contest starts;

e) finite set of alternative strategies.
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The last assumption fits in with the description of a game presented previously, the

assumptions (c) and (d) are restrictions over the description above, while the two

first assumptions are required to make the model mathematically tractable. It is

presumed that the players are individuals with heritable strategies, that have no

control over the strategy they play and need not even to be capable of being aware

of the game. The individuals reproduce and are subject to the forces of natural

selection, with the payoffs of the game representing their biological fitness. It is

imagined that alternative strategies of the game may occur through a process like

mutation and, in order to be an ESS, a strategy must be resistant to these mutations.

An ESS is a refined form of a Nash equilibrium. Let a two player game, with p(a, b)

representing the payoff for playing strategy a against strategy b. The strategy a is a

Nash equilibrium if and only if the following holds for both players:

p(a, a) ≥ p(b, a), ∀a 6= b.

This equilibrium definition allows for the possibility that strategy b is a neutral alter-

native to a (it scores equally well, but not better). A Nash equilibrium is presumed

to be stable even if b scores equally, on the assumption that there is no long-term in-

centive for players to adopt b instead of a. This fact represents the point of departure

of the ESS.

Maynard Smith specify two sufficient conditions for a strategy a to be an ESS:

a) p(a, a) > p(b, a), or

b) p(a, a) = p(b, a) and p(a, b) > p(b, b), ∀a 6= b.

The first condition is called a strict Nash equilibrium; the second is sometimes re-

ferred to as “Maynard Smith’s second condition.” The meaning of this condition is

that, although adopting strategy b is neutral with respect to the payoff against strat-

egy a, the population of players who continue to play strategy a have an advantage

when playing against b.

Maynard Smith’s model is based on replicator equations, one for each strategy, de-

scribing what will happen with the population given the proportions of each strategy

in the previous time step. With it, individuals play against the average strategy of

the population. The stable states of the replicator equations are the equilibrium
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points of the game. Taking the chicken game of Table 5.1 as example, we have that

the ESS is s0.1. If the whole population adopts this strategy, then there is no better

strategy for a single member than also adopting it.

Two possible interpretations for the ESS are pointed out by Maynard Smith. The

first one refers to mixed strategies, meaning that each member of the population

follows the same equilibrium mixed strategy. In the case of the chicken game, the

whole population would follow s0.1. The second solution is related to pure strategies.

We have players following different pure strategies in such a way that the average

strategy of the overall population is at equilibrium. Again with the chicken, a stable

population has 90% of its members following s0.0 and 10% following s1.0.

A couple of works in the literature propose simulation models to relax some assump-

tions of the mathematical model. Orzack and Hines show that the probability of a

population evolving to an ESS is proportional to its size, needing to have large pop-

ulations to get closer to the theoretical equilibrium (ORZACK; HINES, 2005). Fogel

and others (FOGEL et al., 1997; FOGEL et al., 1998) describe models with populations

starting at ESS but, instead of staying stable, the populations evolve to other strate-

gies and never stabilise, corroborating to the hypothesis that a population is capable

to evolve to ESS only if it is infinite. Figure 5.1 shows an example of their results.

FIGURE 5.1 - The instability of ESS in small populations with no representation of space. Source: (FO-

GEL et al., 1997).
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However, in both cases, there is no representation of space within the model, and

therefore each agent still competes with each other. Moreover, there exists not even

a genetic dimension. It means that, if the population starts without any member

following a given strategy, this strategy will never emerge in the model. Because of

that, the models are highly dependant on the initial population.

By adding space as a new dimension for studying these competitions, we can di-

rectly relax two assumptions: (i) agents having to compete with each other and (ii)

working with infinite populations. However, much of the simulation studies that add

space as a fundamental component of their models are interested in the evolution

of cooperation using only pure strategies or meta-strategies that use the last results

to choose the next action (NOWAK; SIGMUND, 2000). Only the strategy spreads over

the space because the agents may change their behaviours but not their spatial loca-

tions. In some cases, the agents have little mobility, mainly by waiting for an empty

cell to move (EPSTEIN, 1997). In this work, we study the evolution of a population

that compete for space using mixed strategies, which makes more feasible to apply

concepts of evolutionary computation, because in this context we have a space of

strategies, instead of a fixed number of strategies. The evolutive model is presented

as follows.

5.3 The model

The approach of this work is based on the non-evolutive model presented on Chap-

ter 4. As we are working with population dynamics, we need to transpose some

assumptions of the original model to this environment. The basic idea is that the

fitness of an agent is materialized as the metric for its satisfaction. Local satisfac-

tion represents the maximum effort one can dispend when competing for a cell and

global satisfaction denotes the initial fitness. The model starts with each agent hav-

ing the same fitness and the same mixed strategy. The game represents the way by

which agents solve the conflict for space partitions, and the results affect directly

their fitnesses. Mixed strategies indicate the level of aggressivity one agent has. This

property is passed from generation to generation, but one agent can never change

its own strategy.

The competition executes in the same way of the basic model, until it reaches a stable

state, when there is at most one agent in each cell. After that, the evolutive part of

the model takes place. The agents that own cells at the end of a competition deserve
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to pass their strategies to the next generation, independently of their final fitnesses.

Therefore, the model considers a competition as one evolutive step, a survival of

the fittest.

Once a competition finishes, each agent that has conquered a cell produces a couple

of descendants within that cell. The agent tries to transfer its own strategy to the

offsprings, but their learning ability is limited. Because of that, they may have a

strategy slightly different from the one of the father, according to a fixed mutation

probability. Whenever this mutation is activated, the offspring inherits the strategy

of its father with some random change; otherwise it takes exactly the same strategy.

Whether the mutation will take place and the change in the father’s strategy are

both calculated independently for each offspring.

Each father leaves the model right after it generates its descendants. This leads to

non-overlapping generations, which is a common approach in the literature (FOGEL

et al., 1998; MAYNARD SMITH, 1982; ORZACK; HINES, 2005). Finally, the evolutive

process can be repeated indefinitely, and it depends only on the initial population

of the first generation.

The model is relatively complex and has five stochastic ingredients, three of them

coming from the original model, and the other two added by the evolutive part.

They are:

a) selecting pairs of agents within the same cell to play,

b) choosing a pure strategy based on a mixed strategy,

c) relocating, once the agent is unsatisfied,

d) mutating or not a given strategy to a descendant, and

e) choosing the mutation change, once it is activated.

The three first random elements come from the original model, and the other two

are added by the evolutive approach. A uniform distribution is used to calculate the

value of (b), the others are simply samples from finite sets.

The simulated model takes place in a cellular space represented by a grid, with

possible movements of an individual being almost to four neighbours (up, down,
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left, and right). Cells on the edges have only three alternatives for movement, and

cells on the corners have only two. In the simulations, we chose the parameter values

shown in Table 5.2. These values do not change unless specified in the tests. The

initial population of the model is composed by three agents following s1.0 in each

of the 400 cells. Note only that, with a mutation change of ±0.1, we allow eleven

possible strategies to arise: s0.0, s0.1, ..., s1.0.

TABLE 5.2 - Parameter values of the evolutive model.

Parameter Value

Non-evolutive part

Cellular space size 20× 20
Game Table 5.1
Initial fitness (global satisfaction) 200
Local satisfaction 20

Evolutive part

Mutation probability 1%
Initial strategy s1.0
Mutation change ±0.1
Number of descendants 3
Generations 300

5.4 Simulations

This model was implemented in TerraME2. TerraME is a software environment

for spatially explicit dynamical modelling (CARNEIRO, 2006). It supports different

modelling paradigms, and agent-based modelling is one of them.

Although the model has a couple of random ingredients, the simulations had similar

developments. Because of that, the results presented in this section are single runs

of the model.

5.4.1 Convergence

The initial test for studying this model tries to answer the following question: Is

it capable to converge to a stable state? We simulate the model with all parameter

values as previously described. Figure 5.2 shows the number of cells owned by each

of the eleven strategies at the end of each generation, with Figure 5.2(a) zooming

the first 60 generations.

2http://www.terrame.org

63



0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

Time

C
el

ls

0.1
0.2
0.3

(a) First 60 generations.

0 50 100 150 200 250 300

0
10

0
20

0
30

0
40

0

Time
C

el
ls

0.1
0.2
0.3

(b) All the simulation.

FIGURE 5.2 - Development of strategies in a simulation with population of s1.0.

The model starts with s1.0 filling the whole cellular space, but it cannot maintain

this situation, falling to around 75% of the cellular space (approximately 300 cells).

This happens due to two facts. First, two agents within a cell may escalate, reach the

threshold, and relocate, leaving the cell empty. Second, as the population is highly

homogeneous, the fitness of every agent is reduced in the same way, enhancing the

chance that two agents kill themselves while competing for a cell.

When the first mutation to s0.9 arises in the population, it spreads itself over the

cellular space. This strategy can then produce agents following s0.8, then s0.7, and so

on, some of them reaching the majority of cells and some not, until s0.1 appears, as

shown in Figure 5.2(a). But s0.1 cannot get rid of s0.2 and both compete indefinitely.

Moreover, s0.3 also conquers a significative part of the cellular space, as we can see

in Figure 5.2(b).

The results of the simulations agree with the ones of Chapter 4, that state that as

more frequently an agent escalates, greater is its ability to realize cells with a higher

number of agents that also escalate frequently, because it will reach its threshold

for moving faster than the ones that escalate less. Moreover, realising threatening

environments earlier is important because the agents have limited fitness and need to

stay alive. This leads to an increase in the surviving chance of sub-optimal strategies
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FIGURE 5.3 - Convergence of the average strategy with population of s1.0.

such as s0.2 and s0.3. Therefore, although there is a single theoretical equilibrium

point, there is no single best strategy in this competition for space.

Although neither strategy can surpass all other strategies and dominate the overall

population, an evolutive process indeed occurs, differently to what occurred in the

models of the literature that relax some assumptions stated by Maynard Smith’s

model, but do not have a spatial representation. If we calculate the average strategy

of the population by summing up the mixed strategies of every owner at the end of

a generation and divide by the total number of agents that own a cell, we can verify

that the population indeed converges to a stable state. In Figure 5.3, we have the

average strategy of the population, with a dashed line showing the theoretical equi-

librium point3 (s0.1). The average strategy converges to a stable state with average

strategy of around s0.165 before the 70th generation and stays relatively close and

above the theoretical equilibrium point for more than 200 generations, until the end

of the simulation. Moreover, the convergence occurs without any exogenous effect

forcing the population to move towards the equilibrium point.

3In all figures of this chapter, dashed lines represent the theoretical equilibrium point.
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The result of this model is a mixing of the two definitions of equilibrium described

by Maynard Smith. In the simulation results, we do not have the overall population

following the same equilibrium strategy, nor agents following only pure strategies,

but what really happens is a combination of mixed strategies whose average is a

stable equilibrium point. In fact, in both equilibrium interpretations described by

Maynard Smith, the average strategy is equal to the theoretical equilibrium point.

In the next subsections we execute an exhaustive test on the parameters of the

model, in order to verify its robustness and understand why the average population

had presented that difference to the theoretical equilibrium point. We use a ceteris

paribus methodology, fixing all but one parameter in different groups of simulations.

There are two reasons for choosing this strategy. First, it helps us to identify whose

parameters can affect the evolution and stability of the model. Second, as we have a

set of reference values of parameters from the analytical model (which are basically

zero or infinite), it allows us to analyse how the model behaves when the parameters

evolve towards these analytical values.

5.4.2 Initial population

The first results cannot enlighten whether the evolutive process always happens be-

cause it uses only a single initial population. To test the evolutionary capability

of the model, we need to examine different initial populations. We test four differ-

ent arrangements with the whole population following the same strategy sk, where

k ∈ {0.0, 0.1, 0.5, 1.0}. That is, the initial population of each model is composed by a

single strategy, which are: never escalate, equilibrium, random, and always escalate.

Figure 5.4 contains the number of agents following each strategy at the end of each

generation, with the three most successful strategies (s0.1, s0.2, and s0.3) as coloured

lines. These strategies have similar development in the four cases, with s0.1 and s0.2

competing indefinitely for the first place, but none of them surpassing the other two

and dominating the whole population, similarly to the previous results. Figure 5.5

shows the average strategy of the overall population in each simulation. The four

simulations converge to the same stable state, in spite of the initial arrangement of

the models. The only difference between the models is the number of generations

necessary to converge to the stable state, which is proportional to the distance of

the initial strategy to the equilibrium state.
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FIGURE 5.4 - Evolution of strategies using different initial populations.
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FIGURE 5.5 - Average strategy using different initial populations.
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As we have tested the model with the extreme initial populations, s0.0 and s1.0, and

the model can generate other strategies through mutation, we can infer that the

population is capable to converge to a stable state with whatever initial population,

even a heterogeneous one. Moreover, although there are five random ingredients,

their effects do not make the model chaotic. Therefore, the model presented here

is more robust than the others in the literature because it does not depend on the

initial population.

5.4.3 Mutation probability

As presented in the last results, the model may require more or less time to con-

verge, depending on how far the initial strategy is from the equilibrium state. An-

other parameter that affects the convergence time is clearly the mutation rate. This

subsection analyses the effects of this parameter. Four simulations were carried out,

each one with a single mutation rate, varying from 0.1% to 50%. It is not interest-

ing to have the mutation rate greater than 50% because, in this case, most of the

descendants would follow a strategy different from their predecessors.

It is intuitive and the results show that increasing mutation leads to a faster conver-

gence to a stable state, as we can see in Figures 5.6 and 5.7. The former shows the

development of the individual strategies along the simulation and the latter shows

the average strategy. With mutation of 0.1%, it takes more than 150 generations to

converge, while with 50% it converges in less than 25 generations.

However, mutation probability induces other impacts beyond convergence time.

First, the distance between the average strategy and the theoretical equilibrium

is proportional to the mutation rate. It is possible to see it clearly in Figure 5.8,

which summarises the average population after the 200th generation in eight differ-

ent simulations. Note that the “mutation probability” axis is in logarithmic scale.

Our conjecture is that, when the mutation probability tends to zero, the population

also tends to the theoretical equilibrium. But note that the mutation can never be

zero because we would have a model that is not capable to change its population

and evolve. Therefore the mathematical concept of limit fits in with this situation.

Second, if we compare the models after they converge to a stable average strategy,

each individual strategy reduces its oscillation as the mutation increases, stabilising

in a well-defined small interval, with mutation equals to 50%. That happens mainly
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FIGURE 5.6 - Distribution of individual strategies with different mutation probabilities.
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FIGURE 5.7 - Average strategy with different mutation probabilities.
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FIGURE 5.8 - Final average strategy of the population with different mutation probabilities.

because, with higher mutation, if one strategy is close to a very successful strategy, it

guarantees a minimum number of agents by inheritance. For example, with mutation

50%, s0.3 inherits 25% of the descendants of s0.2. The increase in the mutation rate

makes possible the emergence of agents following almost each possible strategy.

Consequently, these few agents away from equilibrium increase the average strategy

of the model significantly.

Third, the distribution of individual strategies makes the model converge towards

a discretized gamma distribution as mutation chance increases. This result can be

seen in Figure 5.9, where s0.1 decreases and s0.3 increases as mutation increases,

until they almost draw when we have mutation of 50%. Note that the development

of strategies away from the theoretical equilibrium because of the higher mutation

probability makes the overall distribution smoother.

Finally, the mutation rate is proportional to the total number of agents that survive

at the end of each generation. Figure 5.10 shows the number of agents that give rise

to descendants along the four simulations. The four simulations have a minimum of

around 75% of the cellular space in the early generations, just like the initial results
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FIGURE 5.9 - Average number of agents of each strategy after convergence, with four mutation rates.
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FIGURE 5.10 - Effects of mutation on the number of occupied cells at the end of each generation.
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in Figure 5.2. After that, the number of agents grows and stabilises. In each graphic,

there is a dotted-and-dashed line pointing out 90% of occupation of the space to

facilitate a visual comparison. In mutation 0.1%, the population stabilises below this

line, while in mutation 10% or more the average number of cells surpasses the line.

A greater diversity in the number of strategies allows a better occupation of the

cellular space at the end of each generation. As there are more agents with different

strategies with the increase in the mutation, the fitness of the agents is reduced

more heterogeneously, which leads to a lower probability of two agents removing

themselves from the model simultaneously.

5.4.4 Mutation change

The second parameter that involves mutation is the amount of change when it is

activated. The value used in all previous simulations was ±0.1. If we reduce the

mutation change, we allow more and more strategies to emerge, instead of only

eleven, as in the previous simulations.

Figure 5.11 shows the average strategy of the population after the model stabilises

in simulations with six different mutation changes, from ±0.0005 to ±0.1. Note that

the “mutation change” axis is in logarithmic scale. With mutation change as lower

as ±0.0005, one agent that inherits a strategy with mutation will escalate once more

(or less) on average in each 2000 turns if compared with another agent that inherits
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FIGURE 5.11 - Final average strategy of the population with different mutation changes.
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without mutation. The simulation of this case gave rise to the average strategy

s0.135, meaning that each generation would long approximately 1000 turns. Therefore

the agent would escalate once more (or less) in each two generations, making the

competition between these two agents almost a random drift. However, as the model

evolves and new mutations arise, it forces the average strategy downwards.

We can see that the mutation change has the same effect of mutation probability:

when it goes towards zero, it makes the model converging to a point closer to the

theoretical equilibrium point. As in the mutation probability results, this value can

never be zero, otherwise the model could not evolve.

5.4.5 Initial fitness

The initial fitness of every agent in all previous simulations was 200. As it represents

the resources the agents have to compete, changing it affects directly the number of

turns of each generation. In this subsection, we analyse its effects on the evolution

of the population using twelve different values for initial fitness, ranging from 50 to

102400 (200× 2−2 to 200× 29).

Figure 5.12 shows the average strategy of the population after the model stabilises in

the different simulations. Note that the “initial fitness” axis is in logarithmic scale.

We can see that there is a maximum distance to the theoretical equilibrium point,
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FIGURE 5.12 - Final average strategy of the population with different initial fitnesses.
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when the initial fitness is 1600. However, this is point may be less or more, depending

on the configuration of the parameters. Indeed, the result that worth to be noted is

that there is a tendency towards s0.1 as initial fitness grows towards infinite.

5.4.6 Extra gain

After analysing the effects of global satisfaction, represented as the initial fitness,

we now analyse local satisfaction by working with extra gain. We give an extra gain

of fitness to both agents at the end of each game. Only the agents that competed

in a given turn receive it. The gain can be ecologically interpreted as a capacity of

the environment to increase or decrease the fitness of the agents, from predators

(negative gain) to preys (positive). Table 5.3 presents game Cg, which increases g

to each payoff on the original chicken game. As we increase all the payoffs by a

constant value, the expected payoff of each agent also increases with this value, and

thus the equilibrium point does not change. Given that, both C+0.0 and the chicken

game shown in Table 5.1 represent the same game.

TABLE 5.3 - Payoffs of game with extra gain Cg, in pairs (A, B).

B escalates B does not escalate
A escalates (g − 10, g − 10) (g + 1, g − 1)

A does not escalate (g − 1, g + 1) (g, g)

We tested 17 models with extra gain, including the sequence C−6.4, C−3.2, . . . , C−0.2,

C−0.1, C+0.0, C+0.1, C+0.2, . . . , C+3.2, C+6.4, plus the extreme games C−9.9 and C+9.9.

An extra gain below −9.9 would make the agents relocate in a compulsory way

at least in each three turns, without almost any relation to local satisfaction, that

should work as a metric for the composition of the other agents that belong to

a cell. An extra gain above +9.9 makes the payoffs of the game always positive,

and therefore nobody would ever relocate. It is important to note that, in these

simulations, the population always start with only s1.0.

Figure 5.13 shows the average strategy of the population after the model stabilises

using different extra gains. The positive and the negative parts of extra gain have

different results, which need to be explained and analysed separately.

To understand the positive extra gain, first we need to analyse what would happen

within a non-spatial population, as in Maynard Smith’s model. The expected payoff
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FIGURE 5.13 - Effects of extra gain on the evolution of the population.

of a well-mixed population with average strategy sx is −10x2, if we do not consider

any extra gain. Given that, the overall fitness of a population does not decrease if we

give a gain above the expected payoff to its members after the games. It means that,

given a population with average strategy sx in a cellular space, their members would

not relocate if x <

√

g

10
. The dark gray area in Figure 5.13 displays the situation

where the extra gain is greater then the expected payoff of the average strategy.

Given that, the simulations with positive extra gain never reached the 300th genera-

tion because they always found a stable point where the competition for cells never

finishes and no agent relocates. The populations only converged to those states

with positive extra gain because they started with s1.0. Otherwise, they could have

stopped in the first generation. This way, the points of positive extra gain in Fig-

ure 5.13 represent the average strategy of the penultimate generation. It means that

it is necessary to guarantee mobility in order to make the average strategy of the

population get closer to the theoretical equilibrium point, otherwise the population

would compete as a random drift within the dark gray area.

In the other side, negative extra gain indeed represents the average in the interval
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from the 100th to the 300th generation, as the population always converged to a

stable state with at most one agent in each cell. The results show that the populations

reach the points closest to the theoretical equilibrium when the gain is between

C−0.4 and C−3.2. It means that, if the environment pressures the population with

a substantial negative gain, it forces the population to get closer to the analytical

equilibrium point. With lower gains (C−6.4 and C−9.9), the populations approach

to the situation where the local satisfaction has no effect, as described previously,

and the average strategy diverges from the theoretical equilibrium. Therefore, using

local satisfaction effectively, allowing the movement of agents without making it a

compulsory action, is important to maintain the population closer to the theoretical

equilibrium point.

5.4.7 Games with different equilibrium points

In this subsection, we analyse the ability of the model to evolve with games that have

different theoretical equilibrium points. To do so, let we introduce a game called Ce,

which is a variation of the original chicken game. Ce applies e, instead of always 1, to

the payoffs where one player escalates and the other does not, as shown in Table 5.4.

The theoretical equilibrium point of game Ce is se/10. Within this context, both C1.0

and the chicken game shown in Table 5.1 represent the same game.

TABLE 5.4 - Payoffs of game Ce, in pairs (A, B).

B escalates B does not escalate
A escalates (−10, −10) (+e, −e)

A does not escalate (−e, +e) (0, 0)

We simulated the evolution of populations using four games, C2.0, C4.0, C6.0, and

C8.0, with equilibrium points of s0.2, s0.4, s0.6, and s0.8, respectively. The number of

cells controlled by the different strategies at the end of each generation in all the four

simulations is shown in Figure 5.14. We can see that, in each simulation, the strategy

of equilibrium (se/10) and the two right above (s(e+1)/10 and s(e+2)/10) are those that

achieved most cells in the simulations. With the increase in the equilibrium point, the

diversity of strategies in each generation also increases and never stabilise. However,

even with different equilibrium points, the average strategy in the four simulations

also converges to a stable state, close and above to the theoretical equilibrium points,

as we can see in Figure 5.15.
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FIGURE 5.14 - Cells owned by different strategies in games with different equilibrium points.
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FIGURE 5.15 - Convergence of the average strategy in games with different equilibrium points.
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Analysing the overall distribution of strategies after the model stabilises, now using

four new simulations with mutation chance of 50% (because the strategies are more

stable after convergence), we have the results shown in Figure 5.16. The distribution

of individual strategies is smooth and follows a discretized gamma-like distribution,

in the same way of the result shown in Figure 5.9 with mutation chance of 50%.

The more successful strategy is always in the right side of the theoretical equilib-

rium point.
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FIGURE 5.16 - Distribution of strategies in games with different equilibrium points, using 50% of mu-
tation chance.

The results presented so far use games with equilibrium points from s0.1 to s0.8.

None of the equilibrium points are close to pure strategies, that is, s0.0 and s1.0.

Now we simulate the model with games whose equilibrium points get closer to these

extreme points, simulating lower (C0.2, C0.4, C0.6, C0.8) and upper values (C9.2, C9.4,

C9.6, C9.8).

Figures 5.17 and 5.18 show the average strategy of the population when the game

gets closer to the pure strategy of never and always escalating, respectively. We can

78



0 50 150 250

0.
00

0.
04

0.
08

0.
12

Equilibrium of 0.02

Time

A
ve

ra
ge

 s
tr

at
eg

y

0 50 150 250

0.
00

0.
04

0.
08

0.
12

Equilibrium of 0.04

Time

A
ve

ra
ge

 s
tr

at
eg

y

0 50 150 250

0.
00

0.
04

0.
08

0.
12

Equilibrium of 0.06

Time

A
ve

ra
ge

 s
tr

at
eg

y

0 50 150 250

0.
00

0.
04

0.
08

0.
12

Equilibrium of 0.08

Time

A
ve

ra
ge

 s
tr

at
eg

y

FIGURE 5.17 - Theoretical equilibrium point getting closer to s0.0.
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FIGURE 5.18 - Theoretical equilibrium point getting closer to s1.0.
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see that these results do not match the previous simulations. When the theoretical

equilibrium point gets closer to s0.0, the average also goes towards this point, but

it changes faster than before, standing below the theoretical equilibrium point in

three of the four simulations, in opposition of the previous results, where the pop-

ulation always stabilised above. The standard deviation of the average strategy is

also proportional to the theoretical equilibrium.

On the other side, when the theoretical equilibrium point gets closer to s1.0, neither

the average nor the standard deviation change a bit. We can see that clearly due to

the dotted-and-dashed lines showing s0.9 in Figure 5.18; sometimes the simulations

surpass it, but the averages are clearly below this point.

The results presented in the last two figures become clear if we plot the average

strategy in the overall range of games simulated in this subsection. Figure 5.19 shows

the final distribution of the averages, with the grey area representing one standard

deviation around the average, and the dashed line showing the points where the

average strategy would be equal to the analytical equilibrium point. The standard

deviation is proportional to the equilibrium point from s0.0 to s0.6, where it reaches

a maximum of 0.159. After that, it stabilises around 0.106. We can see that the
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FIGURE 5.19 - Average strategy in the complete range of equilibrium points.
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theoretical equilibrium point always belongs to the interval of one standard deviation

around the average strategy in the complete range of studied equilibrium points.

The curve of the simulation results crosses the dashed line twice. Executing a linear

interpolation with the pairs of points whose interval crosses the line of theoretical

equilibrium, we have s0.065 and s0.883 as the two strategies where the results of

the simulations are equal to the theoretical equilibrium. However, these values are

dependant on the configuration of parameter values used in the simulations.

The resulting curve is similar to a logistic equation, where the cooperative pure

strategy (not to escalate) attracts and the more defective one repulses the average

population. Therefore, populations are capable to adapt themselves even in games

with different equilibrium points. The stable state of the population is usually above

the theoretical equilibrium point, but it is affected by border effects towards coop-

eration. A conjecture from these results is that this logistic curve tends to get closer

to the line of theoretical equilibrium points as the other parameters of the model

move towards the values of the analytical model. Analysing this conjecture requires

further investigation.

5.4.8 Adaptability

The last test of the model is related to the capability of the population to adapt

itself to a change in the environment. We suppose that this kind of change affects

the rules of the game, which can be represented by new values for the payoff matrix.

If we change the game along the simulation, will the population still converge to a

stable state, close to the new equilibrium point?

In this simulation, we started the population with only agents following s1.0 and

game C2.0. As the populations of the previous results with similar configuration of

parameters converge to a stable state in less than 50 generations, we change the

game after each 100 of 300 generations. After the 100th generation, we change the

payoffs in order to have an equilibrium point of s0.6 (game C6.0). Finally, after the

200th generation, we change the game again, this time to C1.0.

The results of the simulations are shown in Figure 5.20. We can see that the pop-

ulation is capable to adapt itself to different games along the simulation. These

results are similar to the ones shown before, once the individual strategies do not

stabilise, but the average strategy always converges and stabilises close and above
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to the theoretical equilibrium point. It means that the model is capable to converge

with whatever combination of strategies it starts. Moreover, heterogeneity plays a

central role in this case because, as more heterogeneous a population is, faster it can

readapt itself to a new stable state.
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FIGURE 5.20 - Adaptation to different games along the simulation.
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5.4.9 Summary of the results

Table 5.5 summarizes the effects of each parameter of the model, comparing the

simulation results with the analytical values of Maynard Smith’s model. Note that,

in the parameters that there is some relation with the analytical model, the result

tends to get closer the theoretical equilibrium point as the parameter goes towards

the analytical value.

TABLE 5.5 - Summary of the effects of each parameter.

Maynard Values used in Effect on the stable
Smith’s the simulations state
model

Initial Not applicable. s0.0, s0.1, s0.5, and No effect.
strategy s1.0.

Initial Infinite, as 50, 100, 200, 400, Inversely proportional
fitness resources are 800, 1600, 3200, to the distance to the

not limited. 6400, 12800, 25600, theoretical point.
51200, and 102400.

Extra Not applicable. C−9.9, C−6.4, C−3.2, Proportional to the dis-
gain (Cg) C−1.6, C−0.8, C−0.4, tance to the theoretical

C−0.2, C−0.1, C+0.0, equilibrium point with
C+0.1, C+0.2, C+0.4, positive gain. Inversely
C+0.8, C+1.6, C+3.2, proportional with nega-
C+6.4, and C+9.9. tive gain.

Mutation Zero, although 0.1%, 0.5%, 1%, 2%, Proportional to the dis-
probability it is considered 5%, 10%, 20%, and tance to the theoretical

that a mutation 50%. equilibrium point.
may emerge.

Mutation Zero, although ±0.0005, ±0.001, Proportional to the dis-
change it is considered ±0.005, ±0.01, tance to the theoretical

that a mutation ±0.05, and ±0.1. point.
may emerge.

Equilibrium Not applicable. C0.2, C0.4, C0.6, C0.8, Logistic curve in the
point (Ce) C1.0, C2.0, C4.0, C6.0, range of theoretical

C8.0, C9.0, C9.2, C9.4, points, with usual
C9.6, and C9.8. stabilization above the

theoretical equilibrium
point. Cooperation
works as an attractor
and defection as a re-
pulser.
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5.5 Conclusions

By relaxing more assumptions than other works in the literature, adding a repre-

sentation of space, limited resources, and a definition of mobility, we have a model

that is capable to converge to a stable state with any initial configuration of its

population. The results of our experiments show that, although the agents do not

have any knowledge about equilibrium points and cannot even change their indi-

vidual strategies along their lifetime, the population evolves and organises itself in

a stable state, in spite of the fact that the frequencies of each strategy never sta-

bilise along the simulations. The results also agree with the statements of Nash,

who said that “we can only expect some sort of approximate equilibrium, since [...]

the stability of the average frequencies will be imperfect” (NASH, 1950). As it is

almost impossible to validate this kind of model with real world data, showing that

the model is independent of the initial population is a reasonable way to make it

more trustworthy.

Generally, when we add more complexity to a simulation model, it tends to move

towards an unpredicted behaviour, but it is not what happens in the model studied

in this paper. It means that space is a very important dimension in the evolution

of populations because it limits the population size and define how the agents will

interact with each other. Also, adding a genetic component make the model change

slowly, in opposition to the literature, where the population can change drastically

from one generation to another. Indeed, evolution is a slow process, which occurs in

minor changes that affect one single or a small group of agents, spreading over the

population if it represents an evolutionary advantage. The model presented in this

paper replicates this general behaviour.

The results of the model also points out how heterogeneity is important in population

compositions, mainly because of the adaptation necessary to react to changes in the

environment. In terms of evolution, it is more important to abdicate of a stable

population in a complete equilibrium in order to have more chance to adapt fast to

changes in the environment.

The simulation results corroborate the hypothesis of Maynard Smith, that popu-

lations are capable to evolve to stable states, differently from the results of the

authors that relax other assumptions but pairwise contests and genetic represen-

tation. However, the conclusions from the results of the simulations have shown
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some disagreement if compared to Maynard Smith’s model, which are related to the

complexity added to the model. They are:

a) We conjecture that, in the case where there is a mixed equilibrium point,

a population is in equilibrium when the average strategy is in equilibrium.

It includes as special cases both solutions presented by Maynard Smith,

that is, a population where every agent follows the same mixed strategy,

or where there is a fixed proportion of two pure strategies.

b) The stable state is approximately the theoretical equilibrium point. In the

simulations, it is usually above the theoretical point, but when the mixed

strategy is close to a pure strategy, cooperation becomes an attractor and

defection a repulser. The fact that the population does not attain the theo-

retical equilibrium point is not a simple misconfiguration of the parameters

of the model. Some parameters cause a direct effect on the average strat-

egy. Our conjecture is that, when the parameters of the model tend to

the values of the theoretical model (fitness towards infinity, mutation rate

and probability tending to zero), the average strategy converges to the

theoretical equilibrium point.

c) Mobility plays a central role to guarantee that a population converges to a

stable state closer to the theoretical equilibrium point. Otherwise the pop-

ulation would compete as a random drift, or even diverge from the theoret-

ical equilibrium if the mobility is independent of the results of the game.

Finally, the results of the model here presented could lead to a wrong game theo-

retical analysis. The traditional literature of Game Theory recommends that, given

a real situation where a population is supposed to be in equilibrium, the difficulty

relies only on estimating the game payoffs to show that the phenomenon is indeed

in equilibrium. However, when the payoffs of the game are connected to other fac-

tors that may affect the equilibrium of the population, as shown in this work, it

is necessary to remove these effects in order to find out the real payoffs. And here

comes the difficulty, because it is completely possible to find out payoffs from the

simulation results, mainly because the population indeed reaches a stable state. But

this induced game may not be the one that the population is playing, leading to a

wrong understanding of the phenomenon. Using an agent-based approach is a good

way to overcome this hurdle.
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6 FINAL REMARKS

This thesis presented a couple of advances related to the development and explo-

ration of spatially explicit agent-based models. Its main contributions are:

a) A general architecture for dealing with geospatial phenomena in an agent-

based approach;

b) A new concept of games on cellular spaces, with a clear separation between

the definitions of cell and agent.

c) The observation that, within a spatial dynamics, there are more factors

than just the theoretical equilibrium point influencing the stability of

a population;

d) A generalization of the interpretation of Maynard Smith on the meaning

of a stable state of a population.

Additionally, there are some scientific advances related to this thesis currently being

developed or planned to be investigated by the author and other researches, which

are not included in this thesis. Some of them worth to be cited:

Game theory. The best formal approach for modelling conflict is Game Theory.

Some works can be cited for future directions in the line of games on cellular

spaces, putting forward the results presented in Chapters 4 and 5. The main

question that remains unanswered is the conjecture about how the shape

of the logistic curve would behave when the parameters of the model get

closer to the values of the analytical model. Additionally, we could study

games with incomplete information, coalitions, or relax the assumption of

non-overlapping generations. A more applied direction of this line can be

by working with models of common pool resources management and in-

stitutional arrangements, following the works of Elinor Ostrom (OSTROM,

1990; OSTROM et al., 1994).

Economic chains. This work examines economic scenarios and its impacts on eco-

nomic chains related to strategies of payment for carbon credits in the

Southeast Pará state. It studies a well established economic methodology

(input-output analysis), investigating its implicit assumptions within an
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agent-based perspective. The next steps of this specific work is to add a

spatially explicit representation to the agents, grounding them to a repre-

sentation of the real world1. Clearly, the architecture presented on Chap-

ter 3 is the way for establishing these relations.

Relations and land change models. This work applies the relations presented

in Chapter 3 to study land use change processes related to a formal agree-

ment, the soybean moratorium pact, in Santarém, Pará2. This is part of

the Master’s degree work of Talita Assis, that studies the effects of insti-

tutional arrangements in the deforestation processes within Amazonia.

Temporal relations. Chapter 3 focus on a static representation of geospatial data

to feed models. The work on temporal relations consists currently on devel-

oping a typology for modelling situations where the neighborhood structure

is capable to change along the simulation, using or not using exogenous

geospatial data. It is part of the Master’s degree work of Raian Maretto3.

TerraME Project. TerraME4 is a development environment for spatial dynamical

modelling that links cellular spaces to geospatial databases for data storage

and retrieval. It was initially developed as a Doctorate Thesis (CARNEIRO,

2006), and now it is a joint project between INPE and Federal University

of Ouro Preto (UFOP). New methodologies have been proposed to increase

the functionalities of TerraME, such as (LIMA et al., 2008; MOREIRA et al.,

2008). The architecture proposed in Chapter 3 has been implemented in

TerraME, in a long effort to define general types to satisfy all spatially

explicit dynamic models for studying human-environment interactions5.

Finally, advances on the previous research lines almost always rely on fur-

ther development of TerraME.

1P. R. Andrade, A. M. V. Monteiro, G. Camara, From Input-Output Matrixes to Agent-Based

Models: A Case Study on Carbon Credits in a Local Economy. Second Brazilian Workshop of Social
Simulation, BWSS’10 (accepted for presentation).

2T. O. Assis, A. P. D. Aguiar, G. Camara, P. R. Andrade, Modelos Baseados em Agentes em

Mudanças de Uso e Cobertura da Terra: o Caso da Moratória da Soja em Santarém. XI Brazilian
Symposium on GeoInformatics (in portuguese, submitted).

3R. V. Maretto, Dynamic Neighborhoods: A Conceptual Model and its Implementation to Cope

with Spatial Dynamics in Geographic Modelling, 2010 (Master’s Degree Proposal).
4http://www.terrame.org
5T. G. S. Carneiro, G. Camara, A. M. V. Monteiro, P. R. Andrade, TerraME: an extensible soft-

ware environment for modelling human-environment interactions in cellular spaces (in preparation,
to be submitted to Environmental Modelling and Software).
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