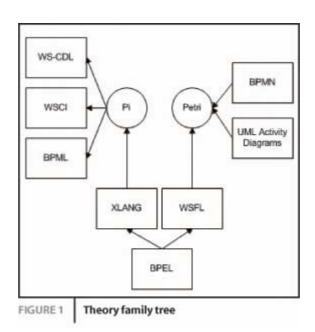
BPM Theory for Laymen

Michael Havey -


Michael Havey is a Chordiant consultant with 10 years of industry experience, mostly with application integration. Michael's book Essential Business Process Modeling was published by O'Reilly in August 2005.

SOA WORLD MAGAZINE

Neste artigo são apresentadas sucintamente duas das principais teorias aplicadas em BPM: Calculo Pi e Rede de Petri.

Porque a teoria é necessária

- Entender a influência

Cálculo Pi

Linguagem formal desenvolvida pelo matemático Robert-Miler em 1990 para definição de processos concorrentes que interagem entre si dinamicamente. Cada processo realiza uma ou mais ações, as quais podem ser executadas em sequência , em paralelo , de forma condicionada, ou recursivamente. As ações enviam e recebem informações por meio de canais. De acordo com as convenções do Cálculo-Pi, ao enviarem informações, os processos devem definir um canal a ser utilizado para comunicação com outros processos, e que será utilizado para envio das respostas. O nome do canal é variável e pode mudar em resposta a uma mudança de condições. Uma característica marcante do Cálculo-Pi é a sua mobilidade , onde a topologia dos processos pode ser modificada dinamicamente em resposta a uma mudança de condições.

Exemplo: Registro de clientes com revendedores no mercado de energia não regulado. Figura 2 O cliente C compra energia diretamente do fornecedor (forma de fornecimento padrão) na parte (a) e também registra-se com o revendedor A na parte (b). Na parte (c) o cliente muda para o revendedor concorrente B e depois na parte (d) retorna novamente para fornecimento padrão. Um modelo deste cenário em Calculo-Pi é apresentado a seguir:

```
1 CustomerSS(enroll,switch,drop,rets)=
2
             \Sigma(r:rets). (enroll r,"mike".CustomerR(r,enroll,switch,drop,rets))
3 CustomerR(r,enroll,switch,drop,rets)=
             \Sigma(r2:rets).(switch r,r2,"mike".CustomerR(r2,enroll,switch,drop,rets)) +
4
5
             drop r,"mike".CustomerSS(enroll,switch,drop,rets)
6 Supplier(enroll,switch,drop)=
             (enroll(r1,c).r1 "addcust",c +
7
8
             switch (r1,r2,c).r1 "dropcust",c.r2 "addcust",c +
             drop(r1,c).r1 "dropcust",c.Supplier(enroll,switch,drop)
9
10 Retailer(r)=
             r(action,c).Retailer(r)
11
12 Market=
             (new chEnroll,chSwitch,chDrop,retSet={retA,retB})
13
14
             CustomerSS(chEnroll,chSwitch,chDrop,retSet)|
15
             Supplier(chEnroll,chSwitch,chDrop) |
16
             Retailer(retA)|Retailer(retB)
```

Neste modelo estão descritos 5 processos: *CustomerSS*, *CustomerR*, *Supplier*, *Retailer* e *Market*.

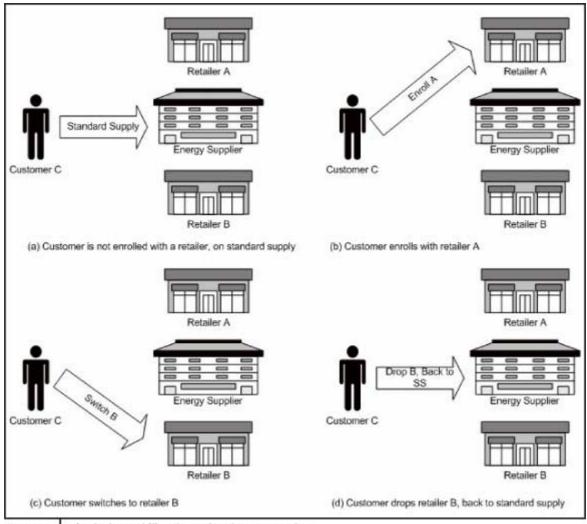
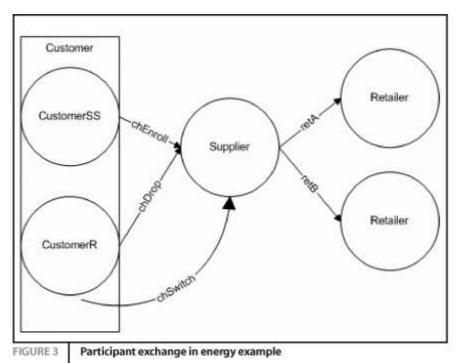



FIGURE 2 Pi Calculus mobility: deregulated energy market

Referência Bibliográficas

R. MILNER. "The Polyadic Pi-Calculus: A Tutorial" in F.L. Bauer, W. Brauer, H. Schwichtenberg, editors, Logic and Algebra of Specification. Springer. 1993. disponível em http://www.lfcs.inf.ed.ac.uk/reports/91/ECS-LFCS-91-180/