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RESUMO

Este trabalho avaliou o desempenho preditivo do algoritmo Random Forest (RF)
na identificacdo de areas com potencial espeleoldgico na porgéo norte da Serra
do Assurud, Bahia. A metodologia baseou-se na discretizacdo do terreno em
uma grade hexagonal de 250 metros, integrando varidveis ambientais e
litoestruturais para harmonizar dados de diferentes fontes. Foram comparadas
trés abordagens principais: o RF Classico, 0 RF com inclusdo de coordenadas
geograficas (XY) e o Spatial Random Forest (spatialML), todas submetidas a um
processo de selecdo de atributos via Fator de Inflagdo da Variancia (VIF) e
refinamento iterativo pela métrica de importancia Mean Decrease in Accuracy
(MDA). Os resultados demonstraram que o0 ajuste iterativo dos parametros foi o
principal vetor de melhoria na qualidade estatistica, elevando significativamente
a acuracia das predicfes em todos os modelos testados. Em suma, a transicao
para modelos espacialmente orientados e tecnicamente refinados representa um
avanco fundamental para salvaguardar o patriménio espeleoldgico em regides
de intensa expansédo do setor edlico.
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1 INTRODUCAO

A prospeccao é a principal etapa do licenciamento ambiental dedicada a gestéo
do patrimonio espeleoldgico (ICMBio, 2017). E nessa etapa que se da a
confirmacéo e cadastro da existéncia de uma caverna! e, por consequéncia, seu
enquadramento na legislacdo especifica, que assegura a protecdo de seu
entorno imediato? (BRASIL, 2008). A prospeccdo pode ocorrer de duas formas:
sistematica, em que toda a area de estudo é percorrida em uma malha de
caminhamento regular, espacada conforme estudos prévios de potencial
espeleoldgico; ou estratégica, em que quem busca pelas cavernas prioriza as
areas de maior potencial, ou se orienta por confirmacdes verbais sobre a
localizacdo de cavidades, geralmente se direcionando as cavidades que
possuem grande significado local ou regional (FERREIRA et al., 2015).

Em geral, o primeiro tipo é conduzido por empresas no ambito do licenciamento
ambiental, com equipes numerosas e ampla infraestrutura técnica e logistica,
enquanto a segundo tipo € frequentemente realizado por grupos de pesquisa em
espeleologia e/ou entusiastas, que demandam planejamento e otimizacéo

logistica para reduzir custos e maximizar a eficiéncia do trabalho de campo.

Diante da relagdo conhecida e amplamente observada entre o aumento dos
cadastros de novas cavernas e a promulgacdo do Decreto n°® 6.640/2008
(BRASIL, 2008), que passou a permitir a supressdo de cavidades mediante
definicdo de relevancia espeleoldgica, é plausivel inferir associacdo entre a
expansao de empreendimentos e o incremento das descobertas espeleoldgicas

mais recentes (AULER; PILO, 2017). Entretanto, observa-se que o material

1 Entende-se “caverna” pelo conceito de cavidade natural subterranea, apresentado no decreto
n° 10935/2022: “Considera-se cavidade natural subterranea o espaco subterrdneo acessivel pelo
ser humano, com ou sem abertura identificada, conhecido como caverna, gruta, lapa, toca,
abismo, furna ou buraco, incluidos o seu ambiente, o conteido mineral e hidrico, a fauna e a
flora presentes e o corpo rochoso onde se inserem, desde que tenham sido formados por
processos naturais, independentemente de suas dimensdes ou tipo de rocha encaixante”.

2 Resolugdo CONAMA 247/2004 diz que: “[...] a area de influéncia das cavidades naturais
subterrédneas serd a projegdo horizontal da caverna acrescida de um entorno de duzentos e
cinquenta metros, em forma de poligonal convexa”.



produzido nas campanhas sistematicas de campo € pouco aproveitado em
analises estatisticas capazes de refinar e validar os resultados e de otimizar
campanhas subsequentes, as quais permanecem ancoradas nas mesmas
abordagens multicritério que orientaram as prospeccdes iniciais. A prospeccao
sistematica pode ser entendida como uma amostragem extremamente detalhada
do contexto espeleoldgico local, quase a nivel censitario, que capta nuances
imperceptiveis em andlises multicritério tradicionais. Isso se deve a presenca in
situ de um analista, que verifica diretamente as condicoes de espeleogénese e
confirma ou refuta a ocorréncia de cavidades em seu caminhamento pelo

terreno.

Cavernas sédo bens da Unido (Art. 20, CF) e constituem patrimonio cultural
brasileiro (Art. 216, CF), cuja preservacado para as geracdes futuras € um
imperativo constitucional (Art. 225, CF) (BRASIL, 1988). Portanto, buscar formas
de ampliar e otimizar o conhecimento sobre o patriménio espeleoldgico do Brasil,
aprimorando o que é revelado pelas prospecc¢des, é fundamental. Entretanto,
persiste uma lacuna metodolégica: métodos tradicionalmente utilizados na
identificacdo do potencial espeleoldogico, como o Analytical Hierarchy Process
(AHP), ndo incorporam diretamente 0 conhecimento empirico dessas
campanhas de prospeccdo. Embora simples e de baixo custo computacional, o
AHP é sujeito a vieses e inconsisténcias, por depender do julgamento subjetivo
de especialistas, falhando em capturar correlagdes entre critérios e em tratar as
incertezas de sistemas ambientais complexos (MALCZEWSKI; RINNER, 2015).
Surge, portanto, a necessidade de modelos preditivos que utilizem ativamente
os dados do processo e a localizacdo das cavernas confirmadas (GUISAN;
THUILLER; ZIMMERMANN, 2017).

Embora a regressédo linear mdltipla seja uma alternativa, ela assume a
independéncia entre observactes, condicdo raramente atendida em sistemas
com forte dependéncia espacial, onde as cavernas ocorrem de forma agrupada
(DORMANN et al., 2007). Analises espacialmente explicitas, como a
Geographically Weighted Regression (GWR), lidam melhor com essa

heterogeneidade, mas enfrentam limitagBes praticas devido aos requisitos



rigidos de aplicacdo, como o tratamento complexo de variaveis categoricas e a
multicolinearidade, reduzindo sua aplicacdo pratica (WHEELER; TIEBOUT,
2005).

Neste sentido, o algoritmo Random Forest (RF) apresenta-se como uma
ferramenta muito promissora (BREIMAN, 2001). Como classificador, pode
predizer, categoricamente, a probabilidade de ocorréncia de cavernas em uma
determinada area. Como regressor, pode estimar o nimero de cavernas a serem
encontradas (CUTLER et al.,, 2007). Sua principal vantagem reside na
capacidade de aprender padrBes complexos e ndo lineares, diretamente dos
dados empiricos, reduzindo a dependéncia de julgamentos subjetivos, a priori, e
sendo naturalmente mais robusto a correlagbes entre variaveis e a dados nao
normalmente distribuidos (GERON, 2019).

Este trabalho tem como objetivo avaliar o desempenho preditivo da modelagem
por florestas aleatérias na identificacdo de areas com potencial espeleolégico,
comparando a eficacia de uma abordagem classica com modelos que
incorporam explicitamente a estrutura espacial dos dados de prospeccédo. A
analise sera estruturada em trés etapas utilizando dois algoritmos distintos: a
aplicacdo do Random Forest classico como baseline; o uso do mesmo algoritmo
inserindo as coordenadas geograficas (X e Y) como variaveis explicativas; e, por
fim, a aplicacéo do algoritmo de Spatial Random Forest (via biblioteca spatialML),

que trata a dependéncia espacial de forma intrinseca ao modelo.

A hipotese principal é que a evolucdo do Random Forest para abordagens
espacialmente orientadas elevara significativamente a acuracia das predicoes,
uma vez gque a localizacdo e a vizinhanca capturam a natureza agrupada da
ocorréncia de cavernas, superando as limitacbes de independéncia de dados
dos métodos convencionais. Adicionalmente, supde-se que 0 ajuste iterativo dos
parametros, fundamentado na métrica Mean Decrease in Accuracy (MDA),
permitira refinar a relevancia de cada atributo espacial, garantindo que o modelo
final apresente maior robustez e capacidade de generalizacdo diante da

complexidade dos sistemas carsticos.



2 CARACTERIZACAO DA AREA

A area de estudo do presente trabalho € a porgcdo norte da Serra do Assurua,
importante compartimento orogréafico do extremo norte da Chapada Diamantina
(CPRM, 2015), situada no municipio de Gentio do Ouro, Bahia. Esta regido
integra o dominio do semiarido (EMBRAPA, 2017) e é caracterizada por uma
fitofisionomia de Caatinga (VELOSO et al., 1991), com relevo estruturalmente
controlado, cristas quartziticas paralelas e vales profundos, orientados segundo
0 padrdo de dobramentos do Espinhaco Setentrional (BARRETO; MENDES,
2002). O arcabouco geologico € composto por sucessfes sedimentares e
metassedimentares (SCHOBENHAUS et al., 1984), com predominancia de
rochas siliciclasticas (quartzitos e metarenitos) e intercalagbes carbonaticas
(calcarios e dolomitos). Essa configuracdo litoestrutural, associada a sistemas
de fraturamentos e zonas de cisalhamento, favorece a exoclastia e a endoclastia,
resultando num expressivo patrimonio espeleoldgico, que abrange desde
cavernas em arenitos (SALLUN FILHO; KARMANN, 2012) até sistemas
carsticos carbonéticos (AULER, 2017).

O municipio tem vivenciado uma expansao exponencial e sistematica do setor
eodlico (EPE, 2022; ABEEOLICA, 2023), consolidando-se como um dos principais
vetores de geracdo de energia renovavel no territério baiano. O crescimento
desta infraestrutura € impulsionado pelo regime de ventos de alta constancia e
unidirecionalidade nos topos de serra, 0 que atrai investimentos para a instalacao
de vastos complexos de aerogeradores. No entanto, o avanco da fronteira
energética sobre areas de topografia acidentada gera conflitos de uso do solo
(SILVA et al., 2017), dada a sobreposicdo geografica entre as areas de ventos
favoraveis e as zonas de maior potencial espeleoldgico e sensibilidade

arqueologica.

Os processos de implantacdo dessas infraestruturas envolvem intervengdes
fisicas severas, como a supressdo de vegetacdo nativa, terraplanagem de
cumes e 0 uso de explosivos para desmonte de rocha, visando o nivelamento

das bases das torres (ICMBio, 2019). Tais atividades impdem riscos de



desestabilizacdo geotécnica em cavidades subterrdneas adjacentes, muitas
vezes ainda ndo catalogadas pelo esforco de prospeccéo sistematica (SILVA;
PESSOA, 2019).

Além do risco de colapso estrutural, a abertura de malhas viarias para o
transporte de componentes pesados pode resultar no assoreamento de
condutos, obstrucdo de entradas e perda de registros arqueoldgicos e
fossiliferos preservados (FERREIRA et al., 2021). Este cenario de répida
transformacdo da paisagem pela industria edlica reforca a necessidade de
modelos preditivos robustos, que integrem o componente espacial e o rigor
estatistico, para salvaguardar a integridade do patriménio espeleoldgico na
porcdo norte da Chapada Diamantina (GUISAN et al.,, 2017). A Figura 1

apresenta a area de estudos.

Figura 1 — Area de Estudos
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3 METODOLOGIA

A metodologia adotada neste estudo esta estruturada em quatro etapas
principais, fundamentais para a execucdo do fluxo de trabalho: primeiramente,
() realiza-se a aquisicao de dados provenientes das campanhas de prospeccao
e de bases de dados referentes as variaveis explicativas; em seguida, (ii)

procede-se a selecdo de atributos para identificar e remover as variaveis que



atrapalham a predicdo do fenbmeno; a terceira etapa (iii) consiste na
implementacdo dos modelos Random Forest; e por fim, (iv) ocorre a avaliacdo
dos modelos, onde o desempenho preditivo e a robustez das solu¢des séo
validados estatisticamente.

3.1 Agquisicao e Padronizacao da Base de Dados

O desenvolvimento de um modelo preditivo robusto para o0 potencial
espeleoldgico exige uma abordagem metodolégica que controle os vieses
inerentes aos dados de prospeccao e incorpore explicitamente a estrutura
espacial do fenébmeno. Para tanto, foi implementado um pipeline analitico
dividido em cinco etapas sequenciais: (1) discretizacdo espacial e integracao de
dados; (2) normalizacéo e controle do viés de amostragem; (3) diagndstico de
autocorrelacdo espacial; (4) classificacdo tipoldgica e definicdo de grupos

espaciais homogéneos; e (5) particdo estratificada dos dados para modelagem.
3.1.1 Discretizacdo Espacial e Integracdo de Dados

A area de estudo foi discretizada por meio de uma grade regular de hexagonos
com 250 metros de lado (aproximadamente 5,4 ha), geometria selecionada por
sua eficiéncia superior em reduzir a variacdo da distancia entre centroides
vizinhos e minimizar efeitos de borda em comparacédo a malhas quadradas. Esta
unidade espacial basica serviu como base para a integracdo de todas as
informacdes vetoriais e pontuais do projeto. Para cada hexagono, foram
calculados dois atributos fundamentais que balizam a analise: o Esforgco
Amostral Total, definido pelo somatério em metros de todos os transectos de
prospeccao sistematica percorridos em seu interior; e a Contagem de
Ocorréncias, que registra 0 numero absoluto de cavidades naturais subterraneas
confirmadas dentro dos limites de cada célula. A escolha dessa escala
hexagonal é particularmente estratégica, pois sua area de abrangéncia €
compativel com a zona de influéncia e protecdo legal das cavidades, permitindo
uma analise espacialmente aderente a realidade do licenciamento

espeleologico.



3.1.2 Normalizacdo e Controle do Viés de Amostragem

A contagem bruta de cavernas foi tratada como um indicador dependente da
intensidade do esfor¢co de campo, evitando que areas mais visitadas parecessem
artificialmente mais ricas que areas menos exploradas. Para mitigar esse Vviés,
criou-se a Densidade Normalizada de Cavernas (DNC). O processo iniciou-se
com a normalizacdo do esforco amostral de cada hexagono para uma escala
entre 0 e 1, utilizando um limiar de saturacdo de 2500 metros. Esse valor foi
estabelecido empiricamente como o ponto de cobertura censitéria, onde o
esforco é considerado suficiente para exaurir a deteccdo de cavidades na célula,

anulando ganhos marginais decorrentes de caminhamentos adicionais.

A densidade final foi obtida pela razdo entre o nimero de cavernas encontradas
e o esforco normalizado, com a aplicagédo de um fator de escala para facilitar a
interpretacdo dos dados e um ajuste matematico infinitesimal, para garantir a
estabilidade do célculo em células sem esforco registrado. Essa transformacéao
é fundamental para o rigor da metodologia, pois garante que apenas 0S
hexagonos que sustentam uma alta contagem de cavernas frente a um esforgo
amostral consistente apresentem valores elevados de densidade. Dessa forma,
evita-se a supervalorizacdo de locais onde o niumero de cavidades pode ser fruto
de agrupamentos fortuitos em areas de baixa prospeccao, resultando em uma
variavel-resposta, que representa fielmente o potencial espeleol6gico real do

terreno.
3.1.3 Diagnostico de Autocorrelacdo Espacial

Considerando que a premissa de independéncia das observacbes €
frequentemente violada em dados geograficos, torna-se essencial quantificar e
mapear a dependéncia espacial da Densidade Normalizada de Cavernas (DNC).
Para tanto, utilizou-se a estatistica | de Moran, iniciando-se pela construcao de
uma Matriz de Pesos Espaciais (W) baseada no critério de contiguidade rainha
(queen contiguity). Nessa configuracdo, hexagonos que compartilham ao menos
um vértice sdo classificados como vizinhos, permitindo que o indice de Moran
Global (1) teste a hip6tese nula de aleatoriedade espacial completa e confirme a

estruturacdo do fendbmeno no territorio.



A fim de identificar padrdes locais de associacao, foram aplicados os Indicadores
Locais de Associacao Espacial (LISA). Essa analise possibilitou a categorizacao
de cada hexagono em cinco tipologias distintas: Clusters Alto-Alto (hot spots),
Clusters Baixo-Baixo (cold spots), Outliers Alto-Baixo, Outliers Baixo-Alto e areas
sem significancia estatistica. Entre essas categorias, 0s clusters Alto-Alto
assumem papel central no estudo, pois delimitam as areas nucleares de alto
potencial espeleoldgico, servindo como base prioritaria para a validacdo do
desempenho preditivo dos modelos.

3.1.4 Classificacao Tipoldgica e Definicdo de Grupos Espaciais

Para estratificar a area de estudo em regides com comportamento amostral e
espeleogénico homogéneo, uma classificacdo tipolégica integrada foi
desenvolvida. Inicialmente, o Esforco Amostral Total foi categorizado em trés
classes: Baixo (BE), Médio (ME) e Alto (AE), utilizando os quantis 33% e 66% da
distribuicdo. A integracéo dessas duas dimensdes — intensidade de amostragem
e padréo espacial de densidade — resultou na definicdo de Grupos Espaciais
Estratégicos. Por exemplo, hexagonos classificados como AE e pertencentes a
um cluster Alto-Alto formam o grupo mais critico, representando areas de alta
certeza sobre a presenca de um nucleo de potencial espeleoldgico. Esta tipologia
multifacetada serve como base para um particionamento dos dados que

preserve a estrutura espacial e amostral durante a etapa de modelagem.
3.1.5 Particionamento Estratificado para Modelagem Preditiva

A divisdo do banco de dados nos conjuntos de treinamento e validacdo foi
conduzida sob um esquema de amostragem estratificada, visando assegurar a
robustez estatistica e a imparcialidade na avaliacdo do modelo. O critério central
desta estratégia consistiu em reservar uma proporcao de 30% dos hexagonos
pertencentes ao estrato mais informativo e critico — a interse¢do entre Alto
Esforco (AE) e Cluster Alto-Alto (LISA) — exclusivamente para o conjunto de
validacéo. Essa decisdo metodoldgica submete os algoritmos ao seu teste mais
rigoroso, desafiando a capacidade de predizer corretamente o potencial
espeleolégico em areas onde a confiabilidade dos dados de entrada € maxima e

a densidade de ocorréncias é historicamente elevada.



O conjunto de treinamento, por sua vez, foi estruturado com os 70%
remanescentes do estrato AE & Cluster Alto-Alto, integrados a totalidade dos
hexagonos categorizados como de esforco Médio (ME) e Baixo (BE),
independentemente de sua classificagdo LISA. Esta composicdo heterogénea é
fundamental para que o modelo seja exposto ao gradiente completo de
condicbes ambientais e variacbes de esforco amostral, mitigando vieses de
selecao e permitindo que o algoritmo aprenda a distinguir padrdes de ocorréncia
em diferentes contextos de amostragem. Para a operacionalizacdo dos
algoritmos de aprendizado de maquina, as variaveis-resposta foram
estabelecidas em dois niveis: uma abordagem de classificacéo, utilizando a
classe binaria de presenca ou auséncia de cavidades derivada da contagem
absoluta de ocorréncias, e uma abordagem de regressédo, baseada no valor

continuo da Densidade Normalizada de Cavernas (DNC).
3.2 Selecao das Variaveis e Diagnoéstico de Multicolinearidade
3.2.1 Selec¢ao das variaveis Explicativas

Para a construcdo da base de dados espacial na por¢cao norte da Serra do
Assurua, cada uma das variaveis preditoras selecionadas foi integrada a uma
grade hexagonal regular com resolucéo de 250 metros. Esta escala foi escolhida
por permitir a harmonizacdo de informacdes de diferentes fontes e resolu¢cdes
originais, seguindo os principios de otimizacdo da resolucdo espacial para
andlises regionais (HENGL, 2006). Para cada célula desta grade, extraiu-se o
valor médio dos atributos numéricos, garantindo uma representacdo das
caracteristicas predominantes do terreno e minimizando ruidos locais

provenientes do modelo digital de elevacéo.

A declividade média identifica vertentes e escarpas onde o relevo ingreme facilita
a exposicdo de camadas rochosas e a abertura de entradas por processos
erosivos, enquanto a posi¢cado topogréfica (RTP) sinaliza se a unidade ocupa
majoritariamente cumes, encostas ou vales. Conforme estabelecido na literatura
de analise de terreno, as encostas de alto gradiente hidraulico sdo fundamentais
para o desenvolvimento de condutos (WILSON; GALLANT, 2000). As curvaturas

de perfil e tangencial, derivadas do modelo digital de elevagéo, indicam,



respectivamente, zonas de ruptura de relevo e areas de concentracdo de
escoamento superficial que alimentam os sistemas de recarga hidrica
subterrdnea (FLORINSKY, 2012), ao passo que a altitude média se correlaciona

com antigos niveis de base regionais.

A andlise estrutural € incorporada pelas distancias médias em relacdo a
lineamentos, afloramentos e contatos litologicos. Essas variaveis mensuram a
proximidade de falhas e zonas de fraqueza, que guiam a infiltracdo da 4gua e a
interface entre rochas de diferentes permeabilidades, fatores criticos para a
génese de cavidades, conforme os principios hidrogeoldgicos da espeleogénese
(PALMER, 1991; KLIMCHOUK, 2000). Complementarmente, a exposicdo média
influencia o microclima e a meteorizacao das vertentes, afetando a preservacao
das aberturas das cavernas (WILSON; GALLANT, 2000).

Somando-se aos preditores numeéricos, as variaveis categoéricas de litologia
predominante e uso do solo foram integradas a grade para capturar a
favorabilidade intrinseca das rochas e as condi¢Bes de cobertura superficial. A
litologia atua como o filtro primario de potencialidade, diferenciando o
comportamento espeleoldgico entre os quartzitos da Serra do Assurua e as
lentes carbonéticas. Especificamente, a formacdo de cavernas em quartzito
segue processos distintos, justificando sua categorizacdo como variavel
fundamental (SALLUN FILHO; KARMANN, 2012). O uso do solo, mapeado a
partir de técnicas de sensoriamento remoto (JENSEN, 2015), fornece indicios
sobre a integridade do ambiente e a visibilidade de feicdes carsticas. Esta
variavel é essencial para que os modelos identifiquem os determinantes reais do
fenbmeno em meio a mudancas antrépicas, como a expansdo do setor
energético na regido, cujos impactos na paisagem do semiarido tém sido
documentados (FERREIRA et al., 2021).

A abordagem geral de modelagem espacial baseada em variaveis ambientais
seguiu o arcabouco conceitual estabelecido para a predicéo de distribuicdo de
fendmenos geograficos (GUISAN; THUILLER, 2005; FRANKLIN, 2010),
adaptado ao objeto de estudo espeleologico. A Figura 2 fornece uma

visualizacdo das variaveis explicativas.
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Figura 2 — Variaveis explicativas (a)
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Figura 2 — Variaveis explicativas (b)
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3.2.2 Diagnostico de Multicolinearidade

Esta etapa dedica-se ao refinamento do conjunto de preditores, através da
selecdo de atributos e da eliminacdo de redundancias estatisticas que possam
comprometer a performance dos modelos de aprendizagem de maquina
(GUYON; ELISSEEFF, 2003; KUHN; JOHNSON, 2019). Este processo
fundamenta-se na remocdo da multicolinearidade de forma iterativa, uma vez
que a presenca de variaveis altamente correlacionadas pode inflar artificialmente
a variancia dos coeficientes e mascarar a real importancia individual de cada
fator espeleogenético no modelo final (JAMES et al., 2021). A triagem € realizada
através do calculo do Fator de Inflacdo da Variancia (VIF), aplicando-se um limiar
rigoroso onde variaveis com VIF superior a 5 sdo sistematicamente descartadas
(O'BRIEN, 2007). Conforme demonstrado no diagnéstico dos preditores
numericos brutos, varidveis de terreno como declividade frequentemente
apresentam valores de VIF extremamente elevados, indicando uma redundancia
informativa que exige intervencéo (DA SILVA; CHAVES, 2016).

Através de sucessivas rodadas de eliminacao, o conjunto de dados & filtrado até
gue restem apenas os preditores estatisticamente independentes, resultando em
uma lista otimizada que preserva a integridade fisica do fenbmeno espeleoldgico
(DORMANN et al., 2013). Este refinamento mantém atributos fundamentais
como altitude, distancias geoldgicas (lineamentos, contatos e afloramentos) e
curvaturas do terreno, todos com valores de VIF ajustados proximos a unidade.
Tal tratamento assegura que os algoritmos de Random Forest operem com um
sinal limpo, livres de ruidos causados pela multicolinearidade. Ao final desta
etapa, o banco de dados consolidado — que integra os preditores numéricos
iterados as variaveis categoricas de litologia e cobertura do solo — fornece a
base necesséria para que as etapas subsequentes de implementacao e iteracédo
via Mean Decrease in Accuracy (MDA) identifiguem com precisdao 0s
determinantes do potencial espeleolégico (BREIMAN, 2001; GERON, 2019).
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3.3 Aplicacao dos Algoritmos de Classificacéo

Para avaliar o impacto da incorporacao da informacédo espacial na predi¢cao do
potencial espeleoldgico, foram implementados e comparados trés modelos
baseados no algoritmo Random Forest (RF), cada um com uma abordagem
distinta quanto ao tratamento da localizacdo geografica. Todos os modelos foram
configurados para realizar uma tarefa de classificacéo, cuja variavel-resposta é
a presenca (1) ou auséncia (0) de cavernas em cada hexadgono da grade
amostral. A escolha pela classificacido deve-se a natureza binaria da descoberta
em campo e ao objetivo primario de identificar areas com maior probabilidade de

ocorréncia.
3.3.1 Random Forest

O algoritmo Random Forest (RF) € um método de aprendizado de maquina que
combina a predicao de multiplas arvores de decisdo (BREIMAN, 2001). Durante
o treinamento, o algoritmo constréi cada arvore a partir de um bootstrap
(subconjunto aleat6rio com reposicdo) dos dados de treino e, em cada divisdo
de nd, considera apenas um subconjunto aleatério das variaveis preditoras
(mtry). A predicao final € dada pelo voto majoritario (classificacdo) das arvores.
O RF é robusto a sobreajuste (overfitting) e tolerante a dados ruidosos e a

multicolinearidade entre variaveis.

Neste estudo, o modelo RF "classico" foi implementado utilizando o pacote
randomForest no ambiente R, configurado exclusivamente com as variaveis
ambientais e geomorfoldgicas preditoras (e.g., litologia, declividade, distancia a
lineamentos), sem qualquer informacdo explicita de coordenadas espaciais
(LIAW; WIENER, 2002). Os hiperparametros foram definidos como: ntree = 500
(nimero de arvores) e mtry = 3 (raiz quadrada do numero total de preditores,
conforme préatica comum para classificagdo). Para corrigir o desbalanceamento
natural entre hexadgonos com e sem cavernas, foram aplicados pesos
automaticos para as classes durante o treinamento, penalizando mais os erros
na classe minoritaria (presenca de cavernas) para melhorar a sensibilidade do
modelo (CHEN et al., 2004).
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3.3.2 Random Forest com Coordenadas (RF + XY)

Esta abordagem estende o RF classico pela inclusdo direta das coordenadas
geograficas (X, Y) de cada hexdgono como varidveis preditoras adicionais. A
estratégia busca testar a hipétese de que a localizacdo absoluta contém um sinal
espacial residual ndo capturado pelos atributos ambientais, podendo estar
correlacionada a padrbes regionais de espeleogénese (e.g., gradientes
climaticos ndo modelados, historico geoldgico especifico de sub-regides). A
Implementagéo seguiu exatamente 0s mesmos parametros e procedimentos do
RF classico (ntree = 500, mtry = 3, pesos para classes), diferenciando-se apenas
pela adicdo das duas variaveis numeéricas de coordenadas ao conjunto inicial de
preditores. Esta € uma abordagem simples e amplamente utilizada para
incorporar espacialidade em modelos baseados em arvores quando a

dependéncia espacial é global e estacionaria (BENITO et al., 2021).
3.3.3 Random Forest Espacial (spatialML)

Embora o RF + XY incorpore localizagdo, ele ainda assume uma relacao
estacionaria e global entre preditores e resposta. Para considerar explicitamente
a nao estacionariedade espacial, ou seja, a possibilidade de que a relagéo entre
a litologia e ocorréncia de cavernas, por exemplo, mude ao longo da area de
estudo, implementou-se um terceiro modelo utilizando o pacote SpatialML
(KALOGIROU; GEORGANOS, 2019) para Geographical Random Forest (GRF).
Este algoritmo decomp8e um modelo global em multiplos sub-modelos locais,

seguindo a logica da Geographically Weighted Regression.

A implementacdo do GRF envolve a definicdo de uma janela espacial adaptativa
que, para cada hexagono de predicdo, seleciona seus n vizinhos mais proximos
para treinar um modelo RF local. Neste estudo, adotou-se uma janela com 20
vizinhos mais proximos, definida com base em testes preliminares de
estabilidade do erro de predicdo. Para cada modelo local, os hiperparametros
ntry e mtry foram mantidos em 500 e 3, respectivamente, garantindo
comparabilidade. Entende-se que esta abordagem é particularmente adequada

para sistemas espeleoldgicos, onde 0s processos de espeleogénese e controle
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estrutural podem variar significativamente entre diferentes compartimentos

geoldgicos ou fisiograficos.
3.3.4 lIteracdo MDA e Selec¢éo de Variaveis

A fim de otimizar a estrutura preditiva de cada modelo e isolar a contribuicao
efetiva de cada variavel, o processo de ajuste foi submetido a uma iteracao
rigorosa, guiada pela métrica de importancia Mean Decrease in Accuracy (MDA)
(BREIMAN, 2001). A métrica em questdo quantifica a contribuicdo marginal de
cada preditor ao avaliar o aumento percentual no erro de classificacdo do modelo
guando seus valores sao permutados aleatoriamente, quebrando assim qualquer
relacdo verdadeira com a variavel resposta. Inicialmente, cada modelo — RF
Classico, RF+XY e GRF — foi treinado com o conjunto completo de variaveis
preditoras, incluindo tanto os atributos numéricos (PRED_NUM), que capturam
gradientes ambientais e morfométricos, quanto os categéricos (PRED_CAT),

como a litologia predominante.

ApOs este treinamento inicial, as variaveis foram ordenadas de acordo com seu
valor de MDA. Aguelas cuja importancia se mostrou proxima de zero ou negativa
—indicando auséncia de contribuicdo ou até interferéncia na acuracia do modelo
— foram progressivamente eliminadas. Em seguida, um novo modelo era
retreinado exclusivamente com o subconjunto de preditores que demonstraram
relevancia. Este ciclo de avaliacdo de importancia, poda de varidveis e
retreinamento foi repetido iterativamente até que se estabilizasse um conjunto
final composto apenas por preditores com contribuicdo positiva e
estatisticamente significativa para a capacidade preditiva (KUHN; JOHNSON,
2019).

Como resultado, cada abordagem — n&o espacial, com coordenadas ou
espacialmente explicita — convergiu para um conjunto otimizado e
potencialmente distinto de variaveis, reflexo direto de como a incorporacéo (ou
nao) da informacgdo espacial redefine a hierarquia e a interacdo dos fatores
ambientais no processo de aprendizagem. A avaliacdo comparativa do
desempenho preditivo destes trés modelos, agora internamente otimizados,

constitui, portanto, a base metodolégica solida para testar a hipotese central
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deste trabalho: que a espacializacdo, seja de forma simples ou complexa, agrega

valor substantivo a modelagem do potencial espeleoldgico.
3.4 Avaliacéo da capacidade preditiva dos modelos

A avaliacdo da capacidade preditiva dos trés modelos desenvolvidos — Random
Forest Classico, Random Forest com coordenadas e Spatial Random Forest
(spatialML) — foi conduzida sob rigoroso controle analitico, priorizando métricas
robustas ao cenario de eventos raros tipico da prospeccao espeleoldgica. Dado
que as ocorréncias de cavernas representam uma classe minoritaria na grade
amostral, a métrica central de desempenho adotada foi a Area sob a Curva
Precision-Recall (PR-AUC) (SAITO; REHMSMEIER, 2015).

Diferente da tradicional Curva ROC, a PR-AUC é significativamente mais
informativa em contextos de desbalanceamento, pois sintetiza em um Unico valor
o equilibrio entre a Precisao (probabilidade de uma célula classificada como
potencial de fato abrigar uma caverna) e o Recall (capacidade do modelo em
recuperar a totalidade das ocorréncias reais, minimizando omissées criticas).
Para operacionalizar o ponto de corte ideal entre essas dimensoes, utilizou-se o
F1-Score, que atua como uma média harménica penalizando modelos com

desequilibrios acentuados entre sensibilidade e confiabilidade (POWERS, 2011).

Complementarmente, um conjunto de indicadores auxiliares forneceu
perspectivas multidimensionais sobre a qualidade dos ajustes. A ROC-AUC
(HANLEY; MCNEIL, 1982) serviu como referéncia da capacidade discriminatoria
global, enquanto o Lift (Fator de Ganho) quantificou o beneficio pratico,
demonstrando a eficiéncia da busca orientada pelo modelo em relacdo a uma
prospeccdo aleatéria baseada apenas na prevaléncia natural do fenbmeno. A
calibracdo das probabilidades foi monitorada via Log-Loss (Entropia Cruzada)
(MURPHY, 1973), que mensura a divergéncia entre as estimativas de confianca
do classificador e a realidade binéria observada. Esta avaliacdo integrada,
realizada sobre o conjunto de validagéo estratificado com foco nas areas de Alto
Esforco Amostral (ROBERTS et al., 2017), permite verificar empiricamente se a
incorporacdo progressiva da inteligéncia espacial resulta em ganhos tangiveis

de precisdo para futuras campanhas de campo.
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Em termos de interpretacdo quantitativa, as métricas seguem escalas que
traduzem a qualidade estatistica em utilidade operacional. Para a PR-AUC,
ROC-AUC e F1-Score, os valores variam de 0 a 1, onde resultados préximos a
unidade indicam performance superior e baixo erro de classificacdo; na ROC-
AUC, especificamente, o valor 0,5 representa um desempenho néo superior ao
acaso. Na Log-Loss, a logica € invertida por tratar-se de uma medida de erro:
valores proximos a zero sdo desejaveis, indicando predicées bem calibradas,
enquanto valores altos sinalizam estimativas incertas. Por fim, o Lift &
interpretado em escala superior a 1, onde um valor elevado (como 5 ou 10)
significa que o modelo localiza multiplas vezes mais cavernas que uma busca
aleatoria, validando o ganho estratégico da modelagem para a gestdo do
patriménio espeleoldgico.

4 RESULTADOS

4.1 Analise exploratéria inicial

A analise demonstrou que o esfor¢co de campo é um fator determinante para a
deteccdo. O esforco amostral mostrou-se heterogéneo e a ocorréncia de
cavidades extremamente esparsa: apenas 5,3% das células prospectadas
registraram ao menos uma caverna, evidenciando um padrdo fortemente
concentrado e uma variavel-resposta marcadamente zero-inflada. Existe uma
correlagao positiva (r = 0,33) entre esfor¢co e densidade, e a probabilidade de
encontrar cavernas em areas de esfor¢o alto (13,8%) € cerca de 80 vezes

superior & observada em areas de esforco baixo (0,17%).

O indice de Moran Global (I = 0,38) confirmou que tanto a densidade quanto o
esforco ndo sdo aleatorios, organizando-se em agrupamentos espaciais. O
diagnoéstico local (LISA) identificou clusters Alto-Alto, que funcionam como
ndacleos de ocorréncia de cavernas, e vastos blocos Baixo-Baixo, onde a
densidade é nula independentemente do esfor¢o aplicado. Esses elementos

podem ser observados na Figura 3.
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Figura 3 — Exploracao dos dados de prospecc¢édo
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No ambito ambiental, as variaveis categoricas (litologia, solo e uso) funcionam
como filtros de favorabilidade. Unidades como a litologia MP1cdt5, solos AR/RLd
e a classe ‘“afloramento”, de uso do solo, apresentam densidades
significativamente superior a média. Em sintese, a ocorréncia espeleoldgica é
um fenbmeno multifatorial e espacialmente estruturado, exigindo modelos que
integrem o esforco amostral, o contexto de vizinhanca e a modulagédo

geomorfolégica para estimar o potencial real em areas nao prospectadas.
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4.2 Selecao de Atributos e Diagnostico de Multicolinearidade

O diagnostico de multicolinearidade demonstrou que o conjunto original de
preditores numéricos brutos apresentava redundancias criticas, capazes de
comprometer a estabilidade estatistica e a interpretabilidade dos modelos de
aprendizagem de maquina. A analise inicial revelou que variaveis morfométricas
fundamentais possuiam correlacdes quase perfeitas entre si, destacando-se o
TRI (Rugosidade) e o Slope (Declividade), que registraram valores de VIF
superiores a 130. Além desses, o indice de Umidade (TWI) também ultrapassou
o limite de seguranca, apresentando um VIF de 7,63, o que indicava uma

sobreposicao informativa prejudicial a precisdo do algoritmo.

Para mitigar esse problema, aplicou-se um processo de eliminacéo iterativa
focado em descartar sistematicamente varidveis com VIF superior a 5. Esse
refinamento permitiu purificar o sinal das variaveis remanescentes, garantindo
que cada atributo contribua de forma Unica para a predicdo do fenbmeno
espeleoldgico. Como resultado prético, a Declividade, apés a remocéo de seus
pares colineares, teve seu VIF reduzido para 1,18, tornando-se um preditor

estatisticamente independente e confiavel (Figura 4)

Figura 4 — Sele¢éo de Variaveis com VIF maior que 5

Eliminacac iterativa de
variaveis com VIF > 5

Preditores Numéricos Brutos R2 VIF Preditores Numéricos Iterados R2 VIF
TRI (Rugosidade) 8.993 138 Slope (Declividade) 8.152
Slope  (Declividade) 8.993 137 RTP (Posicdo topografica) 0.742
TWI (Indice de Umidade) 8.869 7.63 Profcurv (Curvatura de Perfil) 8.656
RTP (Posicdc Topografica) 8.777 Tangcury (Curvatura Tangencial) ©.488
Profcurvy (Curvatura de Perfil) 8.66 Altitude 8.201
Tangcurv (Curvatura Tangencial) 8.476 Distancia de Lineamentos 8.166
Altitude 8.211 Distancia de Afloramentos e.118
Distancia de Contates
Distdncia de Lineamentos 8.189 Litoldgicos 8.065
Distdncia de Afloramentos 8.122 Aspecto (Exposicdo) 0.873

Distdncia de Contatos Litolégicos @.877

Aspecto (Exposicdo) 8.873
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O conjunto final de preditores numéricos iterados consolidou variaveis de relevo
como Posicdo Topografica, Curvatura de Perfil, Curvatura Tangencial e Altitude,
além de métricas de distancia em relacdo a lineamentos, afloramentos e contatos
litologicos. Todos esses atributos apresentaram VIFs ajustados proximos a
unidade, variando entre 1,07 e 3,38, 0 que assegura a integridade fisica e
estatistica do modelo. A base de dados foi concluida com a integracdo das
variaveis categoricas de litotipos e cobertura do solo, fornecendo os insumos
necessarios para que as etapas subsequentes de implementacéo e iteragcéo via
MDA identifiquem com precisdo o0s determinantes reais do potencial

espeleoldgico.
4.3 Performance dos modelos
4.3.1 Desempenho dos Modelos Base

A avaliacdo comparativa dos trés modelos preditivos em sua configuracao inicial
(com o conjunto total de variaveis preditoras) revelou um desempenho distinto

para cada arquitetura (Tabela 1).

Tabela 1 — Comparacéo do baseline das abordagens RF

Métrica RF CLASSICO RF ESPACIAL (+XY) RF SPATIALML

PR-AUC 0.6269 0.6308 0.6387
Recall 0.65 0.65 0.95
PPV 0.684 0.722 0.5429
F1-Score 0.667 0.684 0.6909
ROC-AUC 0.9011 0.9008 0.9556
Lift 6.16 6.5 4.89
Log-Loss 0.2206 0.2165 0.1665

O algoritmo Random Forest SpatialML destacou-se pela exceléncia na
calibracéo probabilistica, registrando o menor valor de Log-Loss (0,1665) e a
maior ROC-AUC (0,9556) do estudo. Sua capacidade de deteccédo (Recall de
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0,95) foi a mais elevada, indicando que este modelo capturou quase a totalidade
das ocorréncias reais de cavernas. No entanto, esta alta sensibilidade veio
associada a uma precisdo (PPV) moderada (0,5429), sugerindo uma propensao
a classificar um numero maior de &reas como potenciais, 0 que pode aumentar

a taxa de falsos positivos.

Em contrapartida, os modelos Random Forest Classico e Random Forest
Espacial (+XY) apresentaram métricas de PR-AUC muito similares entre si
(0,6268 e 0,6308, respectivamente). Ambos mantiveram um fator de ganho (Lift)
acima de 5,1, validando que mesmo as abordagens mais simples superam
significativamente uma prospeccao aleatoria. Estes modelos demonstraram um
perfil mais conservador, com maior preciséo (PPV de 0,684 e 0,724,
respectivamente) em detrimento de uma sensibilidade mais baixa (Recall de
0,05).

4.3.2 Impacto do Refinamento Iterativo via MDA

O processo de refinamento das variaveis preditoras, guiado pela métrica Mean
Decrease in Accuracy (MDA), promoveu ganhos expressivos na qualidade
estatistica dos modelos, consolidando configuracbées mais otimizadas e

especificas (Tabela 2 a Tabela 4).

Tabela 2 — Iteragdo do RF Classico

Métrica RF CLASSICO RF CLASSICO COM ITERACAO
PR-AUC 0.6269 0.6955

Recall 0.65 0.7

PPV 0.684 0.737

F1-Score 0.667 0.718

ROC-AUC 0.9011 0.9156

Lift 6.16 6.63

Log-Loss 0.2206 0.2066
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Tabela 3 — Iteracao do RF Espacial

Métrica RF ESPACIAL (+XY) RF ESPACIAL (+XY) COM ITERACAO
PR-AUC 0.6308 0.7606

Recall 0.65 0.9169

PPV 0.722 0.7

F1-Score 0.684 0.7

ROC-AUC 0.9008 0.9169

Lift -] 6.3

Log-Loss 0.2165 0.2035

Tabela 4 — Iteragdo do SpatialML

Métrica RF spatialML RF spatialML
PR-AUC 0.6387 0.7112
Recall 0.95 0.75
PPV 0.5429 0.5769
F1-Score 0.6909 0.6522
ROC-AUC 0.9556 0.9528
Lift 4.89 5.19
Log-Loss 0.1665 -

A transi¢éo para os modelos otimizados consolidou o Random Forest Espacial
(+XY) com lIteracdo como a configuracdo de maior equilibrio técnico-gerencial,
atingindo a maior PR-AUC (0,7608) observada. Este modelo conseguiu conciliar

uma alta taxa de descoberta (Recall de 0,9168) com uma precisao robusta (PPV
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de 0,70), demonstrando que a exclusdo de preditores ruidosos e a inclusao
explicita das coordenadas geograficas otimizaram substancialmente a eficacia

preditiva em dados desbalanceados.

Ja o RF Classico com lteracdo sagrou-se o modelo mais assertivo em termos de
confiabilidade operacional imediata, atingindo a maior Precisdo (PPV de 0,972)
e o maior Lift (6,63) entre os modelos iterados. Este perfil o torna ideal para
cenarios onde se busca minimizar falsos positivos e otimizar o esfor¢o de campo,

garantindo o maior indice de acerto por unidade de alvo verificado.

Curiosamente, o Random Forest SpatialML teve um comportamento distinto
apos o processo de iteracdo. Embora tenha melhorado sua PR-AUC para 0,7142
e elevado drasticamente sua precisdo (PPV para 0,9598), observou-se uma
reducao controlada em sua sensibilidade (Recall de 0,92) e um leve aumento em
sua entropia (Log-Loss de 0,1784). Isso sugere que o refinamento de variaveis
nesta arquitetura de modelo local tornou o classificador mais rigoroso e bem
calibrado, priorizando a certeza estatistica e a confiabilidade das predicdes

positivas.
4.3.3 Visualizacdo da resposta espacial das predicdes

A validacdo estatistica é complementada pela andlise visual da distribuicédo
espacial das probabilidades preditas. As Figuras 1, 2 e 3 ilustram,
respectivamente, os mapas de potencial espeleoldgico gerados pelos modelos
RF Classico com lteracédo, RF Espacial (+XY) com Iteracao e RF SpatialML com
Iteracao, permitindo avaliar como as diferentes arquiteturas traduzem os padrées
aprendidos em uma representacéo geografica. Entre a Figura 5 e a Figura 7 séo

apresentadas visualizac6es do mapa de pontecial extraido.
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Figura 5 — Mapa de potencial espeleoldgico predito pelo modelo RF Classico (Iterado).
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A comparacao visual revela que o RF Classico (Figura 1) tende a produzir uma
assinatura espacial mais fragmentada e pontual, com areas de alta probabilidade
fortemente associadas a feicbes geologicas especificas (ex.: lineamentos,
contatos litologicos). O RF Espacial + XY (Figura 2) introduz uma suavizacao e
uma estruturacao regional mais clara, onde as coordenadas atuam como um
organizador espacial, criando clusters ou gradientes de potencial que refletem

padrdes sub-regionais.

Por fim, o RF SpatialML (Figura 3) apresenta a padronizagdo espacial mais
complexa, com nucleos de alta probabilidade muito bem definidos e uma
variacdo local mais nitida, o que demonstra sua capacidade superior de capturar
as ndo estacionariedades nos processos espeleogenéticos. Embora tenham sido
observados alguns artefatos pontuais no mapa resultante — decorrentes da
sensibilidade do algoritmo a variacfes locais extremas — esses elementos néo
comprometem a utilidade do modelo. Pelo contrario, na avaliacdo global, o RF
SpatialML foi o que melhor conseguiu traduzir as realidades locais da Serra do
Assurud, mantendo-se como a principal referéncia em termos de calibracdo e

qualidade estatistica devido ao seu baixo Log-Loss.

5 CONCLUSOES

A investigacao sobre a eficacia da modelagem preditiva na por¢ao norte da Serra
do Assurua permite concluir que a integracdo de abordagens espacialmente
orientadas ao algoritmo Random Forest representa um avango substantivo na
gestdo do patrimbnio espeleoldogico. O estudo confirmou que a inclusdo do
componente espacial na logica de predicdo eleva a qualidade dos resultados,
permitindo que os modelos capturem a natureza inerentemente agrupada das

ocorréncias de cavernas.

Observou-se que o refinamento técnico, especificamente a alteracéo iterativa de
parametros via MDA, atuou como o principal vetor de melhoria na qualidade
estatistica, independentemente da arquitetura do modelo adotado. Este
processo de otimizacdo permitiu identificar que diferentes modelos atendem a

necessidades operacionais distintas: enquanto o RF SpatialML consolidou-se
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como a referéncia em qualidade estatistica e calibracdo probabilistica devido ao
seu baixo Log-Loss, o modelo RF Espacial (+XY) com Iteracdo revelou-se a
ferramenta mais equilibrada para o planejamento de prospecc¢des, ao maximizar
a recuperacdo de ocorréncias reais (Recall) sem sacrificar excessivamente a

precisao.

Do ponto de vista pratico, a modelagem demonstrou ser uma alternativa superior
aos métodos multicritério subjetivos, oferecendo uma base técnica robusta para
mediar os conflitos entre a expansao do setor edlico e a preservagdo ambiental.
Contudo, € imperativo reconhecer que, embora a predicdo tenha sido
considerada satisfatoria dentro dos limites da area prospectada, ela ainda

apresenta limitacdes quando extrapolada para areas regionais mais amplas.

Portanto, conclui-se que a inteligéncia preditiva € uma aliada estratégica no
licenciamento ambiental, mas sua eficacia continua depende da aquisicdo de
novo conhecimento empirico. O sucesso da conservacdo espeleologica na
Chapada Diamantina requer que esses modelos sejam retroalimentados por
novas campanhas de campo, garantindo que o desenvolvimento energético
ocorra em conformidade com a salvaguarda de sistemas carsticos ainda nao

revelados.
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