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RESUMO 

Este trabalho avaliou o desempenho preditivo do algoritmo Random Forest (RF) 
na identificação de áreas com potencial espeleológico na porção norte da Serra 
do Assuruá, Bahia. A metodologia baseou-se na discretização do terreno em 
uma grade hexagonal de 250 metros, integrando variáveis ambientais e 
litoestruturais para harmonizar dados de diferentes fontes. Foram comparadas 
três abordagens principais: o RF Clássico, o RF com inclusão de coordenadas 
geográficas (XY) e o Spatial Random Forest (spatialML), todas submetidas a um 
processo de seleção de atributos via Fator de Inflação da Variância (VIF) e 
refinamento iterativo pela métrica de importância Mean Decrease in Accuracy 
(MDA). Os resultados demonstraram que o ajuste iterativo dos parâmetros foi o 
principal vetor de melhoria na qualidade estatística, elevando significativamente 
a acurácia das predições em todos os modelos testados. Em suma, a transição 
para modelos espacialmente orientados e tecnicamente refinados representa um 
avanço fundamental para salvaguardar o patrimônio espeleológico em regiões 
de intensa expansão do setor eólico. 

Palavras-chave: Espeleologia Preditiva; Random Forest; Inteligência Espacial.  
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1 INTRODUÇÃO 

A prospecção é a principal etapa do licenciamento ambiental dedicada à gestão 

do patrimônio espeleológico (ICMBio, 2017). É nessa etapa que se dá a 

confirmação e cadastro da existência de uma caverna1 e, por consequência, seu 

enquadramento na legislação específica, que assegura a proteção de seu 

entorno imediato2 (BRASIL, 2008). A prospecção pode ocorrer de duas formas: 

sistemática, em que toda a área de estudo é percorrida em uma malha de 

caminhamento regular, espaçada conforme estudos prévios de potencial 

espeleológico; ou estratégica, em que quem busca pelas cavernas prioriza as 

áreas de maior potencial, ou se orienta por confirmações verbais sobre a 

localização de cavidades, geralmente se direcionando às cavidades que 

possuem grande significado local ou regional (FERREIRA et al., 2015). 

Em geral, o primeiro tipo é conduzido por empresas no âmbito do licenciamento 

ambiental, com equipes numerosas e ampla infraestrutura técnica e logística, 

enquanto a segundo tipo é frequentemente realizado por grupos de pesquisa em 

espeleologia e/ou entusiastas, que demandam planejamento e otimização 

logística para reduzir custos e maximizar a eficiência do trabalho de campo.  

Diante da relação conhecida e amplamente observada entre o aumento dos 

cadastros de novas cavernas e a promulgação do Decreto nº 6.640/2008 

(BRASIL, 2008), que passou a permitir a supressão de cavidades mediante 

definição de relevância espeleológica, é plausível inferir associação entre a 

expansão de empreendimentos e o incremento das descobertas espeleológicas 

mais recentes (AULER; PILÓ, 2017). Entretanto, observa-se que o material 

 
 

1 Entende-se “caverna” pelo conceito de cavidade natural subterrânea, apresentado no decreto 
n° 10935/2022: “Considera-se cavidade natural subterrânea o espaço subterrâneo acessível pelo 
ser humano, com ou sem abertura identificada, conhecido como caverna, gruta, lapa, toca, 
abismo, furna ou buraco, incluídos o seu ambiente, o conteúdo mineral e hídrico, a fauna e a 
flora presentes e o corpo rochoso onde se inserem, desde que tenham sido formados por 
processos naturais, independentemente de suas dimensões ou tipo de rocha encaixante”. 
2 Resolução CONAMA 247/2004 diz que: “[...] a área de influência das cavidades naturais 
subterrâneas será a projeção horizontal da caverna acrescida de um entorno de duzentos e 
cinqüenta metros, em forma de poligonal convexa”. 
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produzido nas campanhas sistemáticas de campo é pouco aproveitado em 

análises estatísticas capazes de refinar e validar os resultados e de otimizar 

campanhas subsequentes, as quais permanecem ancoradas nas mesmas 

abordagens multicritério que orientaram as prospecções iniciais. A prospecção 

sistemática pode ser entendida como uma amostragem extremamente detalhada 

do contexto espeleológico local, quase a nível censitário, que capta nuances 

imperceptíveis em análises multicritério tradicionais. Isso se deve à presença in 

situ de um analista, que verifica diretamente as condições de espeleogênese e 

confirma ou refuta a ocorrência de cavidades em seu caminhamento pelo 

terreno. 

Cavernas são bens da União (Art. 20, CF) e constituem patrimônio cultural 

brasileiro (Art. 216, CF), cuja preservação para as gerações futuras é um 

imperativo constitucional (Art. 225, CF) (BRASIL, 1988). Portanto, buscar formas 

de ampliar e otimizar o conhecimento sobre o patrimônio espeleológico do Brasil, 

aprimorando o que é revelado pelas prospecções, é fundamental. Entretanto, 

persiste uma lacuna metodológica: métodos tradicionalmente utilizados na 

identificação do potencial espeleológico, como o Analytical Hierarchy Process 

(AHP), não incorporam diretamente o conhecimento empírico dessas 

campanhas de prospecção. Embora simples e de baixo custo computacional, o 

AHP é sujeito a vieses e inconsistências, por depender do julgamento subjetivo 

de especialistas, falhando em capturar correlações entre critérios e em tratar as 

incertezas de sistemas ambientais complexos (MALCZEWSKI; RINNER, 2015). 

Surge, portanto, a necessidade de modelos preditivos que utilizem ativamente 

os dados do processo e a localização das cavernas confirmadas (GUISAN; 

THUILLER; ZIMMERMANN, 2017). 

Embora a regressão linear múltipla seja uma alternativa, ela assume a 

independência entre observações, condição raramente atendida em sistemas 

com forte dependência espacial, onde as cavernas ocorrem de forma agrupada 

(DORMANN et al., 2007). Análises espacialmente explícitas, como a 

Geographically Weighted Regression (GWR), lidam melhor com essa 

heterogeneidade, mas enfrentam limitações práticas devido aos requisitos 
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rígidos de aplicação, como o tratamento complexo de variáveis categóricas e a 

multicolinearidade, reduzindo sua aplicação prática (WHEELER; TIEBOUT, 

2005). 

Neste sentido, o algoritmo Random Forest (RF) apresenta-se como uma 

ferramenta muito promissora (BREIMAN, 2001). Como classificador, pode 

predizer, categoricamente, a probabilidade de ocorrência de cavernas em uma 

determinada área. Como regressor, pode estimar o número de cavernas a serem 

encontradas (CUTLER et al., 2007). Sua principal vantagem reside na 

capacidade de aprender padrões complexos e não lineares, diretamente dos 

dados empíricos, reduzindo a dependência de julgamentos subjetivos, a priori, e 

sendo naturalmente mais robusto a correlações entre variáveis e a dados não 

normalmente distribuídos (GÉRON, 2019). 

Este trabalho tem como objetivo avaliar o desempenho preditivo da modelagem 

por florestas aleatórias na identificação de áreas com potencial espeleológico, 

comparando a eficácia de uma abordagem clássica com modelos que 

incorporam explicitamente a estrutura espacial dos dados de prospecção. A 

análise será estruturada em três etapas utilizando dois algoritmos distintos: a 

aplicação do Random Forest clássico como baseline; o uso do mesmo algoritmo 

inserindo as coordenadas geográficas (X e Y) como variáveis explicativas; e, por 

fim, a aplicação do algoritmo de Spatial Random Forest (via biblioteca spatialML), 

que trata a dependência espacial de forma intrínseca ao modelo.  

A hipótese principal é que a evolução do Random Forest para abordagens 

espacialmente orientadas elevará significativamente a acurácia das predições, 

uma vez que a localização e a vizinhança capturam a natureza agrupada da 

ocorrência de cavernas, superando as limitações de independência de dados 

dos métodos convencionais. Adicionalmente, supõe-se que o ajuste iterativo dos 

parâmetros, fundamentado na métrica Mean Decrease in Accuracy (MDA), 

permitirá refinar a relevância de cada atributo espacial, garantindo que o modelo 

final apresente maior robustez e capacidade de generalização diante da 

complexidade dos sistemas cársticos. 
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2 CARACTERIZAÇÃO DA ÁREA 

A área de estudo do presente trabalho é a porção norte da Serra do Assuruá, 

importante compartimento orográfico do extremo norte da Chapada Diamantina 

(CPRM, 2015), situada no município de Gentio do Ouro, Bahia. Esta região 

integra o domínio do semiárido (EMBRAPA, 2017) e é caracterizada por uma 

fitofisionomia de Caatinga (VELOSO et al., 1991), com relevo estruturalmente 

controlado, cristas quartzíticas paralelas e vales profundos, orientados segundo 

o padrão de dobramentos do Espinhaço Setentrional (BARRETO; MENDES, 

2002). O arcabouço geológico é composto por sucessões sedimentares e 

metassedimentares (SCHOBENHAUS et al., 1984), com predominância de 

rochas siliciclásticas (quartzitos e metarenitos) e intercalações carbonáticas 

(calcários e dolomitos). Essa configuração litoestrutural, associada a sistemas 

de fraturamentos e zonas de cisalhamento, favorece a exoclastia e a endoclastia, 

resultando num expressivo patrimônio espeleológico, que abrange desde 

cavernas em arenitos (SALLUN FILHO; KARMANN, 2012) até sistemas 

cársticos carbonáticos (AULER, 2017). 

O município tem vivenciado uma expansão exponencial e sistemática do setor 

eólico (EPE, 2022; ABEEÓLICA, 2023), consolidando-se como um dos principais 

vetores de geração de energia renovável no território baiano. O crescimento 

desta infraestrutura é impulsionado pelo regime de ventos de alta constância e 

unidirecionalidade nos topos de serra, o que atrai investimentos para a instalação 

de vastos complexos de aerogeradores. No entanto, o avanço da fronteira 

energética sobre áreas de topografia acidentada gera conflitos de uso do solo 

(SILVA et al., 2017), dada a sobreposição geográfica entre as áreas de ventos 

favoráveis e as zonas de maior potencial espeleológico e sensibilidade 

arqueológica. 

Os processos de implantação dessas infraestruturas envolvem intervenções 

físicas severas, como a supressão de vegetação nativa, terraplanagem de 

cumes e o uso de explosivos para desmonte de rocha, visando o nivelamento 

das bases das torres (ICMBio, 2019). Tais atividades impõem riscos de 
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desestabilização geotécnica em cavidades subterrâneas adjacentes, muitas 

vezes ainda não catalogadas pelo esforço de prospecção sistemática (SILVA; 

PESSÔA, 2019).  

Além do risco de colapso estrutural, a abertura de malhas viárias para o 

transporte de componentes pesados pode resultar no assoreamento de 

condutos, obstrução de entradas e perda de registros arqueológicos e 

fossilíferos preservados (FERREIRA et al., 2021). Este cenário de rápida 

transformação da paisagem pela indústria eólica reforça a necessidade de 

modelos preditivos robustos, que integrem o componente espacial e o rigor 

estatístico, para salvaguardar a integridade do patrimônio espeleológico na 

porção norte da Chapada Diamantina (GUISAN et al., 2017). A Figura 1 

apresenta a área de estudos. 

Figura 1 – Área de Estudos 

 

3 METODOLOGIA 

A metodologia adotada neste estudo está estruturada em quatro etapas 

principais, fundamentais para a execução do fluxo de trabalho: primeiramente, 

(i) realiza-se a aquisição de dados provenientes das campanhas de prospecção 

e de bases de dados referentes às variáveis explicativas; em seguida, (ii) 

procede-se à seleção de atributos para identificar e remover as variáveis que 
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atrapalham a predição do fenômeno; a terceira etapa (iii) consiste na 

implementação dos modelos Random Forest; e por fim, (iv) ocorre a avaliação 

dos modelos, onde o desempenho preditivo e a robustez das soluções são 

validados estatisticamente. 

3.1 Aquisição e Padronização da Base de Dados 

O desenvolvimento de um modelo preditivo robusto para o potencial 

espeleológico exige uma abordagem metodológica que controle os vieses 

inerentes aos dados de prospecção e incorpore explicitamente a estrutura 

espacial do fenômeno. Para tanto, foi implementado um pipeline analítico 

dividido em cinco etapas sequenciais: (1) discretização espacial e integração de 

dados; (2) normalização e controle do viés de amostragem; (3) diagnóstico de 

autocorrelação espacial; (4) classificação tipológica e definição de grupos 

espaciais homogêneos; e (5) partição estratificada dos dados para modelagem. 

3.1.1 Discretização Espacial e Integração de Dados 

A área de estudo foi discretizada por meio de uma grade regular de hexágonos 

com 250 metros de lado (aproximadamente 5,4 ha), geometria selecionada por 

sua eficiência superior em reduzir a variação da distância entre centroides 

vizinhos e minimizar efeitos de borda em comparação a malhas quadradas. Esta 

unidade espacial básica serviu como base para a integração de todas as 

informações vetoriais e pontuais do projeto. Para cada hexágono, foram 

calculados dois atributos fundamentais que balizam a análise: o Esforço 

Amostral Total, definido pelo somatório em metros de todos os transectos de 

prospecção sistemática percorridos em seu interior; e a Contagem de 

Ocorrências, que registra o número absoluto de cavidades naturais subterrâneas 

confirmadas dentro dos limites de cada célula. A escolha dessa escala 

hexagonal é particularmente estratégica, pois sua área de abrangência é 

compatível com a zona de influência e proteção legal das cavidades, permitindo 

uma análise espacialmente aderente à realidade do licenciamento 

espeleológico. 
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3.1.2 Normalização e Controle do Viés de Amostragem 

A contagem bruta de cavernas foi tratada como um indicador dependente da 

intensidade do esforço de campo, evitando que áreas mais visitadas parecessem 

artificialmente mais ricas que áreas menos exploradas. Para mitigar esse viés, 

criou-se a Densidade Normalizada de Cavernas (DNC). O processo iniciou-se 

com a normalização do esforço amostral de cada hexágono para uma escala 

entre 0 e 1, utilizando um limiar de saturação de 2500 metros. Esse valor foi 

estabelecido empiricamente como o ponto de cobertura censitária, onde o 

esforço é considerado suficiente para exaurir a detecção de cavidades na célula, 

anulando ganhos marginais decorrentes de caminhamentos adicionais. 

A densidade final foi obtida pela razão entre o número de cavernas encontradas 

e o esforço normalizado, com a aplicação de um fator de escala para facilitar a 

interpretação dos dados e um ajuste matemático infinitesimal, para garantir a 

estabilidade do cálculo em células sem esforço registrado. Essa transformação 

é fundamental para o rigor da metodologia, pois garante que apenas os 

hexágonos que sustentam uma alta contagem de cavernas frente a um esforço 

amostral consistente apresentem valores elevados de densidade. Dessa forma, 

evita-se a supervalorização de locais onde o número de cavidades pode ser fruto 

de agrupamentos fortuitos em áreas de baixa prospecção, resultando em uma 

variável-resposta, que representa fielmente o potencial espeleológico real do 

terreno. 

3.1.3 Diagnóstico de Autocorrelação Espacial 

Considerando que a premissa de independência das observações é 

frequentemente violada em dados geográficos, torna-se essencial quantificar e 

mapear a dependência espacial da Densidade Normalizada de Cavernas (DNC). 

Para tanto, utilizou-se a estatística I de Moran, iniciando-se pela construção de 

uma Matriz de Pesos Espaciais (W) baseada no critério de contiguidade rainha 

(queen contiguity). Nessa configuração, hexágonos que compartilham ao menos 

um vértice são classificados como vizinhos, permitindo que o Índice de Moran 

Global (I) teste a hipótese nula de aleatoriedade espacial completa e confirme a 

estruturação do fenômeno no território. 
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A fim de identificar padrões locais de associação, foram aplicados os Indicadores 

Locais de Associação Espacial (LISA). Essa análise possibilitou a categorização 

de cada hexágono em cinco tipologias distintas: Clusters Alto-Alto (hot spots), 

Clusters Baixo-Baixo (cold spots), Outliers Alto-Baixo, Outliers Baixo-Alto e áreas 

sem significância estatística. Entre essas categorias, os clusters Alto-Alto 

assumem papel central no estudo, pois delimitam as áreas nucleares de alto 

potencial espeleológico, servindo como base prioritária para a validação do 

desempenho preditivo dos modelos. 

3.1.4 Classificação Tipológica e Definição de Grupos Espaciais 

Para estratificar a área de estudo em regiões com comportamento amostral e 

espeleogênico homogêneo, uma classificação tipológica integrada foi 

desenvolvida. Inicialmente, o Esforço Amostral Total foi categorizado em três 

classes: Baixo (BE), Médio (ME) e Alto (AE), utilizando os quantis 33% e 66% da 

distribuição. A integração dessas duas dimensões – intensidade de amostragem 

e padrão espacial de densidade – resultou na definição de Grupos Espaciais 

Estratégicos. Por exemplo, hexágonos classificados como AE e pertencentes a 

um cluster Alto-Alto formam o grupo mais crítico, representando áreas de alta 

certeza sobre a presença de um núcleo de potencial espeleológico. Esta tipologia 

multifacetada serve como base para um particionamento dos dados que 

preserve a estrutura espacial e amostral durante a etapa de modelagem. 

3.1.5 Particionamento Estratificado para Modelagem Preditiva 

A divisão do banco de dados nos conjuntos de treinamento e validação foi 

conduzida sob um esquema de amostragem estratificada, visando assegurar a 

robustez estatística e a imparcialidade na avaliação do modelo. O critério central 

desta estratégia consistiu em reservar uma proporção de 30% dos hexágonos 

pertencentes ao estrato mais informativo e crítico — a interseção entre Alto 

Esforço (AE) e Cluster Alto-Alto (LISA) — exclusivamente para o conjunto de 

validação. Essa decisão metodológica submete os algoritmos ao seu teste mais 

rigoroso, desafiando a capacidade de predizer corretamente o potencial 

espeleológico em áreas onde a confiabilidade dos dados de entrada é máxima e 

a densidade de ocorrências é historicamente elevada.  
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O conjunto de treinamento, por sua vez, foi estruturado com os 70% 

remanescentes do estrato AE & Cluster Alto-Alto, integrados à totalidade dos 

hexágonos categorizados como de esforço Médio (ME) e Baixo (BE), 

independentemente de sua classificação LISA. Esta composição heterogênea é 

fundamental para que o modelo seja exposto ao gradiente completo de 

condições ambientais e variações de esforço amostral, mitigando vieses de 

seleção e permitindo que o algoritmo aprenda a distinguir padrões de ocorrência 

em diferentes contextos de amostragem. Para a operacionalização dos 

algoritmos de aprendizado de máquina, as variáveis-resposta foram 

estabelecidas em dois níveis: uma abordagem de classificação, utilizando a 

classe binária de presença ou ausência de cavidades derivada da contagem 

absoluta de ocorrências, e uma abordagem de regressão, baseada no valor 

contínuo da Densidade Normalizada de Cavernas (DNC). 

3.2 Seleção das Variáveis e Diagnóstico de Multicolinearidade 

3.2.1 Seleção das variáveis Explicativas 

Para a construção da base de dados espacial na porção norte da Serra do 

Assuruá, cada uma das variáveis preditoras selecionadas foi integrada a uma 

grade hexagonal regular com resolução de 250 metros. Esta escala foi escolhida 

por permitir a harmonização de informações de diferentes fontes e resoluções 

originais, seguindo os princípios de otimização da resolução espacial para 

análises regionais (HENGL, 2006). Para cada célula desta grade, extraiu-se o 

valor médio dos atributos numéricos, garantindo uma representação das 

características predominantes do terreno e minimizando ruídos locais 

provenientes do modelo digital de elevação. 

A declividade média identifica vertentes e escarpas onde o relevo íngreme facilita 

a exposição de camadas rochosas e a abertura de entradas por processos 

erosivos, enquanto a posição topográfica (RTP) sinaliza se a unidade ocupa 

majoritariamente cumes, encostas ou vales. Conforme estabelecido na literatura 

de análise de terreno, as encostas de alto gradiente hidráulico são fundamentais 

para o desenvolvimento de condutos (WILSON; GALLANT, 2000). As curvaturas 

de perfil e tangencial, derivadas do modelo digital de elevação, indicam, 
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respectivamente, zonas de ruptura de relevo e áreas de concentração de 

escoamento superficial que alimentam os sistemas de recarga hídrica 

subterrânea (FLORINSKY, 2012), ao passo que a altitude média se correlaciona 

com antigos níveis de base regionais. 

A análise estrutural é incorporada pelas distâncias médias em relação a 

lineamentos, afloramentos e contatos litológicos. Essas variáveis mensuram a 

proximidade de falhas e zonas de fraqueza, que guiam a infiltração da água e a 

interface entre rochas de diferentes permeabilidades, fatores críticos para a 

gênese de cavidades, conforme os princípios hidrogeológicos da espeleogênese 

(PALMER, 1991; KLIMCHOUK, 2000). Complementarmente, a exposição média 

influencia o microclima e a meteorização das vertentes, afetando a preservação 

das aberturas das cavernas (WILSON; GALLANT, 2000). 

Somando-se aos preditores numéricos, as variáveis categóricas de litologia 

predominante e uso do solo foram integradas à grade para capturar a 

favorabilidade intrínseca das rochas e as condições de cobertura superficial. A 

litologia atua como o filtro primário de potencialidade, diferenciando o 

comportamento espeleológico entre os quartzitos da Serra do Assuruá e as 

lentes carbonáticas. Especificamente, a formação de cavernas em quartzito 

segue processos distintos, justificando sua categorização como variável 

fundamental (SALLUN FILHO; KARMANN, 2012). O uso do solo, mapeado a 

partir de técnicas de sensoriamento remoto (JENSEN, 2015), fornece indícios 

sobre a integridade do ambiente e a visibilidade de feições cársticas. Esta 

variável é essencial para que os modelos identifiquem os determinantes reais do 

fenômeno em meio a mudanças antrópicas, como a expansão do setor 

energético na região, cujos impactos na paisagem do semiárido têm sido 

documentados (FERREIRA et al., 2021).  

A abordagem geral de modelagem espacial baseada em variáveis ambientais 

seguiu o arcabouço conceitual estabelecido para a predição de distribuição de 

fenômenos geográficos (GUISAN; THUILLER, 2005; FRANKLIN, 2010), 

adaptado ao objeto de estudo espeleológico. A Figura 2 fornece uma 

visualização das variáveis explicativas. 
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Figura 2 – Variáveis explicativas (a) 
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Figura 2 – Variáveis explicativas (b) 
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3.2.2 Diagnóstico de Multicolinearidade 

Esta etapa dedica-se ao refinamento do conjunto de preditores, através da 

seleção de atributos e da eliminação de redundâncias estatísticas que possam 

comprometer a performance dos modelos de aprendizagem de máquina 

(GUYON; ELISSEEFF, 2003; KUHN; JOHNSON, 2019). Este processo 

fundamenta-se na remoção da multicolinearidade de forma iterativa, uma vez 

que a presença de variáveis altamente correlacionadas pode inflar artificialmente 

a variância dos coeficientes e mascarar a real importância individual de cada 

fator espeleogenético no modelo final (JAMES et al., 2021). A triagem é realizada 

através do cálculo do Fator de Inflação da Variância (VIF), aplicando-se um limiar 

rigoroso onde variáveis com VIF superior a 5 são sistematicamente descartadas 

(O'BRIEN, 2007). Conforme demonstrado no diagnóstico dos preditores 

numéricos brutos, variáveis de terreno como declividade frequentemente 

apresentam valores de VIF extremamente elevados, indicando uma redundância 

informativa que exige intervenção (DA SILVA; CHAVES, 2016). 

Através de sucessivas rodadas de eliminação, o conjunto de dados é filtrado até 

que restem apenas os preditores estatisticamente independentes, resultando em 

uma lista otimizada que preserva a integridade física do fenômeno espeleológico 

(DORMANN et al., 2013). Este refinamento mantém atributos fundamentais 

como altitude, distâncias geológicas (lineamentos, contatos e afloramentos) e 

curvaturas do terreno, todos com valores de VIF ajustados próximos à unidade. 

Tal tratamento assegura que os algoritmos de Random Forest operem com um 

sinal limpo, livres de ruídos causados pela multicolinearidade. Ao final desta 

etapa, o banco de dados consolidado — que integra os preditores numéricos 

iterados às variáveis categóricas de litologia e cobertura do solo — fornece a 

base necessária para que as etapas subsequentes de implementação e iteração 

via Mean Decrease in Accuracy (MDA) identifiquem com precisão os 

determinantes do potencial espeleológico (BREIMAN, 2001; GÉRON, 2019). 
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3.3 Aplicação dos Algoritmos de Classificação 

Para avaliar o impacto da incorporação da informação espacial na predição do 

potencial espeleológico, foram implementados e comparados três modelos 

baseados no algoritmo Random Forest (RF), cada um com uma abordagem 

distinta quanto ao tratamento da localização geográfica. Todos os modelos foram 

configurados para realizar uma tarefa de classificação, cuja variável-resposta é 

a presença (1) ou ausência (0) de cavernas em cada hexágono da grade 

amostral. A escolha pela classificação deve-se à natureza binária da descoberta 

em campo e ao objetivo primário de identificar áreas com maior probabilidade de 

ocorrência. 

3.3.1 Random Forest 

O algoritmo Random Forest (RF) é um método de aprendizado de máquina que 

combina a predição de múltiplas árvores de decisão (BREIMAN, 2001). Durante 

o treinamento, o algoritmo constrói cada árvore a partir de um bootstrap 

(subconjunto aleatório com reposição) dos dados de treino e, em cada divisão 

de nó, considera apenas um subconjunto aleatório das variáveis preditoras 

(mtry). A predição final é dada pelo voto majoritário (classificação) das árvores. 

O RF é robusto a sobreajuste (overfitting) e tolerante a dados ruidosos e à 

multicolinearidade entre variáveis. 

Neste estudo, o modelo RF "clássico" foi implementado utilizando o pacote 

randomForest no ambiente R, configurado exclusivamente com as variáveis 

ambientais e geomorfológicas preditoras (e.g., litologia, declividade, distância a 

lineamentos), sem qualquer informação explícita de coordenadas espaciais 

(LIAW; WIENER, 2002). Os hiperparâmetros foram definidos como: ntree = 500 

(número de árvores) e mtry = 3 (raiz quadrada do número total de preditores, 

conforme prática comum para classificação). Para corrigir o desbalanceamento 

natural entre hexágonos com e sem cavernas, foram aplicados pesos 

automáticos para as classes durante o treinamento, penalizando mais os erros 

na classe minoritária (presença de cavernas) para melhorar a sensibilidade do 

modelo (CHEN et al., 2004). 
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3.3.2 Random Forest com Coordenadas (RF + XY) 

Esta abordagem estende o RF clássico pela inclusão direta das coordenadas 

geográficas (X, Y) de cada hexágono como variáveis preditoras adicionais. A 

estratégia busca testar a hipótese de que a localização absoluta contém um sinal 

espacial residual não capturado pelos atributos ambientais, podendo estar 

correlacionada a padrões regionais de espeleogênese (e.g., gradientes 

climáticos não modelados, histórico geológico específico de sub-regiões). A 

implementação seguiu exatamente os mesmos parâmetros e procedimentos do 

RF clássico (ntree = 500, mtry = 3, pesos para classes), diferenciando-se apenas 

pela adição das duas variáveis numéricas de coordenadas ao conjunto inicial de 

preditores. Esta é uma abordagem simples e amplamente utilizada para 

incorporar espacialidade em modelos baseados em árvores quando a 

dependência espacial é global e estacionária (BENITO et al., 2021). 

3.3.3 Random Forest Espacial (spatialML) 

Embora o RF + XY incorpore localização, ele ainda assume uma relação 

estacionária e global entre preditores e resposta. Para considerar explicitamente 

a não estacionariedade espacial, ou seja, a possibilidade de que a relação entre 

a litologia e ocorrência de cavernas, por exemplo, mude ao longo da área de 

estudo, implementou-se um terceiro modelo utilizando o pacote SpatialML 

(KALOGIROU; GEORGANOS, 2019) para Geographical Random Forest (GRF). 

Este algoritmo decompõe um modelo global em múltiplos sub-modelos locais, 

seguindo a lógica da Geographically Weighted Regression. 

A implementação do GRF envolve a definição de uma janela espacial adaptativa 

que, para cada hexágono de predição, seleciona seus n vizinhos mais próximos 

para treinar um modelo RF local. Neste estudo, adotou-se uma janela com 20 

vizinhos mais próximos, definida com base em testes preliminares de 

estabilidade do erro de predição. Para cada modelo local, os hiperparâmetros 

ntry e mtry foram mantidos em 500 e 3, respectivamente, garantindo 

comparabilidade. Entende-se que esta abordagem é particularmente adequada 

para sistemas espeleológicos, onde os processos de espeleogênese e controle 
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estrutural podem variar significativamente entre diferentes compartimentos 

geológicos ou fisiográficos. 

3.3.4 Iteração MDA e Seleção de Variáveis 

A fim de otimizar a estrutura preditiva de cada modelo e isolar a contribuição 

efetiva de cada variável, o processo de ajuste foi submetido a uma iteração 

rigorosa, guiada pela métrica de importância Mean Decrease in Accuracy (MDA) 

(BREIMAN, 2001). A métrica em questão quantifica a contribuição marginal de 

cada preditor ao avaliar o aumento percentual no erro de classificação do modelo 

quando seus valores são permutados aleatoriamente, quebrando assim qualquer 

relação verdadeira com a variável resposta. Inicialmente, cada modelo – RF 

Clássico, RF+XY e GRF – foi treinado com o conjunto completo de variáveis 

preditoras, incluindo tanto os atributos numéricos (PRED_NUM), que capturam 

gradientes ambientais e morfométricos, quanto os categóricos (PRED_CAT), 

como a litologia predominante. 

Após este treinamento inicial, as variáveis foram ordenadas de acordo com seu 

valor de MDA. Aquelas cuja importância se mostrou próxima de zero ou negativa 

– indicando ausência de contribuição ou até interferência na acurácia do modelo 

– foram progressivamente eliminadas. Em seguida, um novo modelo era 

retreinado exclusivamente com o subconjunto de preditores que demonstraram 

relevância. Este ciclo de avaliação de importância, poda de variáveis e 

retreinamento foi repetido iterativamente até que se estabilizasse um conjunto 

final composto apenas por preditores com contribuição positiva e 

estatisticamente significativa para a capacidade preditiva (KUHN; JOHNSON, 

2019). 

Como resultado, cada abordagem – não espacial, com coordenadas ou 

espacialmente explícita – convergiu para um conjunto otimizado e 

potencialmente distinto de variáveis, reflexo direto de como a incorporação (ou 

não) da informação espacial redefine a hierarquia e a interação dos fatores 

ambientais no processo de aprendizagem. A avaliação comparativa do 

desempenho preditivo destes três modelos, agora internamente otimizados, 

constitui, portanto, a base metodológica sólida para testar a hipótese central 
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deste trabalho: que a espacialização, seja de forma simples ou complexa, agrega 

valor substantivo à modelagem do potencial espeleológico. 

3.4 Avaliação da capacidade preditiva dos modelos 

A avaliação da capacidade preditiva dos três modelos desenvolvidos — Random 

Forest Clássico, Random Forest com coordenadas e Spatial Random Forest 

(spatialML) — foi conduzida sob rigoroso controle analítico, priorizando métricas 

robustas ao cenário de eventos raros típico da prospecção espeleológica. Dado 

que as ocorrências de cavernas representam uma classe minoritária na grade 

amostral, a métrica central de desempenho adotada foi a Área sob a Curva 

Precision-Recall (PR-AUC) (SAITO; REHMSMEIER, 2015). 

Diferente da tradicional Curva ROC, a PR-AUC é significativamente mais 

informativa em contextos de desbalanceamento, pois sintetiza em um único valor 

o equilíbrio entre a Precisão (probabilidade de uma célula classificada como 

potencial de fato abrigar uma caverna) e o Recall (capacidade do modelo em 

recuperar a totalidade das ocorrências reais, minimizando omissões críticas). 

Para operacionalizar o ponto de corte ideal entre essas dimensões, utilizou-se o 

F1-Score, que atua como uma média harmônica penalizando modelos com 

desequilíbrios acentuados entre sensibilidade e confiabilidade (POWERS, 2011). 

Complementarmente, um conjunto de indicadores auxiliares forneceu 

perspectivas multidimensionais sobre a qualidade dos ajustes. A ROC-AUC 

(HANLEY; MCNEIL, 1982) serviu como referência da capacidade discriminatória 

global, enquanto o Lift (Fator de Ganho) quantificou o benefício prático, 

demonstrando a eficiência da busca orientada pelo modelo em relação a uma 

prospecção aleatória baseada apenas na prevalência natural do fenômeno. A 

calibração das probabilidades foi monitorada via Log-Loss (Entropia Cruzada) 

(MURPHY, 1973), que mensura a divergência entre as estimativas de confiança 

do classificador e a realidade binária observada. Esta avaliação integrada, 

realizada sobre o conjunto de validação estratificado com foco nas áreas de Alto 

Esforço Amostral (ROBERTS et al., 2017), permite verificar empiricamente se a 

incorporação progressiva da inteligência espacial resulta em ganhos tangíveis 

de precisão para futuras campanhas de campo. 
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Em termos de interpretação quantitativa, as métricas seguem escalas que 

traduzem a qualidade estatística em utilidade operacional. Para a PR-AUC, 

ROC-AUC e F1-Score, os valores variam de 0 a 1, onde resultados próximos à 

unidade indicam performance superior e baixo erro de classificação; na ROC-

AUC, especificamente, o valor 0,5 representa um desempenho não superior ao 

acaso. Na Log-Loss, a lógica é invertida por tratar-se de uma medida de erro: 

valores próximos a zero são desejáveis, indicando predições bem calibradas, 

enquanto valores altos sinalizam estimativas incertas. Por fim, o Lift é 

interpretado em escala superior a 1, onde um valor elevado (como 5 ou 10) 

significa que o modelo localiza múltiplas vezes mais cavernas que uma busca 

aleatória, validando o ganho estratégico da modelagem para a gestão do 

patrimônio espeleológico. 

 

4 RESULTADOS 

4.1 Análise exploratória inicial  

A análise demonstrou que o esforço de campo é um fator determinante para a 

detecção. O esforço amostral mostrou-se heterogêneo e a ocorrência de 

cavidades extremamente esparsa: apenas 5,3% das células prospectadas 

registraram ao menos uma caverna, evidenciando um padrão fortemente 

concentrado e uma variável-resposta marcadamente zero-inflada. Existe uma 

correlação positiva (r = 0,33) entre esforço e densidade, e a probabilidade de 

encontrar cavernas em áreas de esforço alto (13,8%) é cerca de 80 vezes 

superior à observada em áreas de esforço baixo (0,17%).  

O Índice de Moran Global (I = 0,38) confirmou que tanto a densidade quanto o 

esforço não são aleatórios, organizando-se em agrupamentos espaciais. O 

diagnóstico local (LISA) identificou clusters Alto-Alto, que funcionam como 

núcleos de ocorrência de cavernas, e vastos blocos Baixo-Baixo, onde a 

densidade é nula independentemente do esforço aplicado. Esses elementos 

podem ser observados na Figura 3. 
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Figura 3 – Exploração dos dados de prospecção 

 

No âmbito ambiental, as variáveis categóricas (litologia, solo e uso) funcionam 

como filtros de favorabilidade. Unidades como a litologia MP1cdt5, solos AR/RLd 

e a classe “afloramento”, de uso do solo, apresentam densidades 

significativamente superior à média. Em síntese, a ocorrência espeleológica é 

um fenômeno multifatorial e espacialmente estruturado, exigindo modelos que 

integrem o esforço amostral, o contexto de vizinhança e a modulação 

geomorfológica para estimar o potencial real em áreas não prospectadas. 
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4.2 Seleção de Atributos e Diagnóstico de Multicolinearidade 

O diagnóstico de multicolinearidade demonstrou que o conjunto original de 

preditores numéricos brutos apresentava redundâncias críticas, capazes de 

comprometer a estabilidade estatística e a interpretabilidade dos modelos de 

aprendizagem de máquina. A análise inicial revelou que variáveis morfométricas 

fundamentais possuíam correlações quase perfeitas entre si, destacando-se o 

TRI (Rugosidade) e o Slope (Declividade), que registraram valores de VIF 

superiores a 130. Além desses, o Índice de Umidade (TWI) também ultrapassou 

o limite de segurança, apresentando um VIF de 7,63, o que indicava uma 

sobreposição informativa prejudicial à precisão do algoritmo. 

Para mitigar esse problema, aplicou-se um processo de eliminação iterativa 

focado em descartar sistematicamente variáveis com VIF superior a 5. Esse 

refinamento permitiu purificar o sinal das variáveis remanescentes, garantindo 

que cada atributo contribua de forma única para a predição do fenômeno 

espeleológico. Como resultado prático, a Declividade, após a remoção de seus 

pares colineares, teve seu VIF reduzido para 1,18, tornando-se um preditor 

estatisticamente independente e confiável (Figura 4) 

Figura 4 – Seleção de Variáveis com VIF maior que 5 
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O conjunto final de preditores numéricos iterados consolidou variáveis de relevo 

como Posição Topográfica, Curvatura de Perfil, Curvatura Tangencial e Altitude, 

além de métricas de distância em relação a lineamentos, afloramentos e contatos 

litológicos. Todos esses atributos apresentaram VIFs ajustados próximos à 

unidade, variando entre 1,07 e 3,38, o que assegura a integridade física e 

estatística do modelo. A base de dados foi concluída com a integração das 

variáveis categóricas de litotipos e cobertura do solo, fornecendo os insumos 

necessários para que as etapas subsequentes de implementação e iteração via 

MDA identifiquem com precisão os determinantes reais do potencial 

espeleológico. 

4.3 Performance dos modelos 

4.3.1 Desempenho dos Modelos Base 

A avaliação comparativa dos três modelos preditivos em sua configuração inicial 

(com o conjunto total de variáveis preditoras) revelou um desempenho distinto 

para cada arquitetura (Tabela 1). 

Tabela 1 – Comparação do baseline das abordagens RF 

Métrica RF CLÁSSICO RF ESPACIAL (+XY) RF SPATIALML 

PR-AUC 0.6269 0.6308 0.6387 

Recall 0.65 0.65 0.95 

PPV 0.684 0.722 0.5429 

F1-Score 0.667 0.684 0.6909 

ROC-AUC 0.9011 0.9008 0.9556 

Lift 6.16 6.5 4.89 

Log-Loss 0.2206 0.2165 0.1665 
 

O algoritmo Random Forest SpatialML destacou-se pela excelência na 

calibração probabilística, registrando o menor valor de Log-Loss (0,1665) e a 

maior ROC-AUC (0,9556) do estudo. Sua capacidade de detecção (Recall de 
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0,95) foi a mais elevada, indicando que este modelo capturou quase a totalidade 

das ocorrências reais de cavernas. No entanto, esta alta sensibilidade veio 

associada a uma precisão (PPV) moderada (0,5429), sugerindo uma propensão 

a classificar um número maior de áreas como potenciais, o que pode aumentar 

a taxa de falsos positivos. 

Em contrapartida, os modelos Random Forest Clássico e Random Forest 

Espacial (+XY) apresentaram métricas de PR-AUC muito similares entre si 

(0,6268 e 0,6308, respectivamente). Ambos mantiveram um fator de ganho (Lift) 

acima de 5,1, validando que mesmo as abordagens mais simples superam 

significativamente uma prospecção aleatória. Estes modelos demonstraram um 

perfil mais conservador, com maior precisão (PPV de 0,684 e 0,724, 

respectivamente) em detrimento de uma sensibilidade mais baixa (Recall de 

0,05). 

4.3.2  Impacto do Refinamento Iterativo via MDA 

O processo de refinamento das variáveis preditoras, guiado pela métrica Mean 

Decrease in Accuracy (MDA), promoveu ganhos expressivos na qualidade 

estatística dos modelos, consolidando configurações mais otimizadas e 

específicas (Tabela 2 a Tabela 4). 

Tabela 2 – Iteração do RF Clássico 

Métrica RF CLÁSSICO RF CLÁSSICO COM ITERAÇÃO 

PR-AUC 0.6269 0.6955 

Recall 0.65 0.7 

PPV 0.684 0.737 

F1-Score 0.667 0.718 

ROC-AUC 0.9011 0.9156 

Lift 6.16 6.63 

Log-Loss 0.2206 0.2066 
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Tabela 3 – Iteração do RF Espacial 

Métrica RF ESPACIAL (+XY) RF ESPACIAL (+XY) COM ITERAÇÃO 

PR-AUC 0.6308 0.7606 

Recall 0.65 0.9169 

PPV 0.722 0.7 

F1-Score 0.684 0.7 

ROC-AUC 0.9008 0.9169 

Lift 6.5 6.3 

Log-Loss 0.2165 0.2035 

 

Tabela 4 – Iteração do SpatialML 

Métrica RF spatialML RF spatialML 

PR-AUC 0.6387 0.7112 

Recall 0.95 0.75 

PPV 0.5429 0.5769 

F1-Score 0.6909 0.6522 

ROC-AUC 0.9556 0.9528 

Lift 4.89 5.19 

Log-Loss 0.1665 0.1734 

 

A transição para os modelos otimizados consolidou o Random Forest Espacial 

(+XY) com Iteração como a configuração de maior equilíbrio técnico-gerencial, 

atingindo a maior PR-AUC (0,7608) observada. Este modelo conseguiu conciliar 

uma alta taxa de descoberta (Recall de 0,9168) com uma precisão robusta (PPV 
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de 0,70), demonstrando que a exclusão de preditores ruidosos e a inclusão 

explícita das coordenadas geográficas otimizaram substancialmente a eficácia 

preditiva em dados desbalanceados. 

Já o RF Clássico com Iteração sagrou-se o modelo mais assertivo em termos de 

confiabilidade operacional imediata, atingindo a maior Precisão (PPV de 0,972) 

e o maior Lift (6,63) entre os modelos iterados. Este perfil o torna ideal para 

cenários onde se busca minimizar falsos positivos e otimizar o esforço de campo, 

garantindo o maior índice de acerto por unidade de alvo verificado. 

Curiosamente, o Random Forest SpatialML teve um comportamento distinto 

após o processo de iteração. Embora tenha melhorado sua PR-AUC para 0,7142 

e elevado drasticamente sua precisão (PPV para 0,9598), observou-se uma 

redução controlada em sua sensibilidade (Recall de 0,92) e um leve aumento em 

sua entropia (Log-Loss de 0,1784). Isso sugere que o refinamento de variáveis 

nesta arquitetura de modelo local tornou o classificador mais rigoroso e bem 

calibrado, priorizando a certeza estatística e a confiabilidade das predições 

positivas. 

4.3.3 Visualização da resposta espacial das predições 

A validação estatística é complementada pela análise visual da distribuição 

espacial das probabilidades preditas. As Figuras 1, 2 e 3 ilustram, 

respectivamente, os mapas de potencial espeleológico gerados pelos modelos 

RF Clássico com Iteração, RF Espacial (+XY) com Iteração e RF SpatialML com 

Iteração, permitindo avaliar como as diferentes arquiteturas traduzem os padrões 

aprendidos em uma representação geográfica. Entre a Figura 5 e a Figura 7 são 

apresentadas visualizações do mapa de pontecial extraído. 
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Figura 5 – Mapa de potencial espeleológico predito pelo modelo RF Clássico (Iterado). 

 

Figura 5 – Mapa de potencial espeleológico predito pelo modelo RF Espacial + XY (Iterado). 

 

Figura 5 – Mapa de potencial espeleológico predito pelo modelo RF spatialML (Iterado). 
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A comparação visual revela que o RF Clássico (Figura 1) tende a produzir uma 

assinatura espacial mais fragmentada e pontual, com áreas de alta probabilidade 

fortemente associadas a feições geológicas específicas (ex.: lineamentos, 

contatos litológicos). O RF Espacial + XY (Figura 2) introduz uma suavização e 

uma estruturação regional mais clara, onde as coordenadas atuam como um 

organizador espacial, criando clusters ou gradientes de potencial que refletem 

padrões sub-regionais.  

Por fim, o RF SpatialML (Figura 3) apresenta a padronização espacial mais 

complexa, com núcleos de alta probabilidade muito bem definidos e uma 

variação local mais nítida, o que demonstra sua capacidade superior de capturar 

as não estacionariedades nos processos espeleogenéticos. Embora tenham sido 

observados alguns artefatos pontuais no mapa resultante — decorrentes da 

sensibilidade do algoritmo a variações locais extremas — esses elementos não 

comprometem a utilidade do modelo. Pelo contrário, na avaliação global, o RF 

SpatialML foi o que melhor conseguiu traduzir as realidades locais da Serra do 

Assuruá, mantendo-se como a principal referência em termos de calibração e 

qualidade estatística devido ao seu baixo Log-Loss. 

 

5 CONCLUSÕES 

A investigação sobre a eficácia da modelagem preditiva na porção norte da Serra 

do Assuruá permite concluir que a integração de abordagens espacialmente 

orientadas ao algoritmo Random Forest representa um avanço substantivo na 

gestão do patrimônio espeleológico. O estudo confirmou que a inclusão do 

componente espacial na lógica de predição eleva a qualidade dos resultados, 

permitindo que os modelos capturem a natureza inerentemente agrupada das 

ocorrências de cavernas. 

Observou-se que o refinamento técnico, especificamente a alteração iterativa de 

parâmetros via MDA, atuou como o principal vetor de melhoria na qualidade 

estatística, independentemente da arquitetura do modelo adotado. Este 

processo de otimização permitiu identificar que diferentes modelos atendem a 

necessidades operacionais distintas: enquanto o RF SpatialML consolidou-se 
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como a referência em qualidade estatística e calibração probabilística devido ao 

seu baixo Log-Loss, o modelo RF Espacial (+XY) com Iteração revelou-se a 

ferramenta mais equilibrada para o planejamento de prospecções, ao maximizar 

a recuperação de ocorrências reais (Recall) sem sacrificar excessivamente a 

precisão. 

Do ponto de vista prático, a modelagem demonstrou ser uma alternativa superior 

aos métodos multicritério subjetivos, oferecendo uma base técnica robusta para 

mediar os conflitos entre a expansão do setor eólico e a preservação ambiental. 

Contudo, é imperativo reconhecer que, embora a predição tenha sido 

considerada satisfatória dentro dos limites da área prospectada, ela ainda 

apresenta limitações quando extrapolada para áreas regionais mais amplas. 

Portanto, conclui-se que a inteligência preditiva é uma aliada estratégica no 

licenciamento ambiental, mas sua eficácia contínua depende da aquisição de 

novo conhecimento empírico. O sucesso da conservação espeleológica na 

Chapada Diamantina requer que esses modelos sejam retroalimentados por 

novas campanhas de campo, garantindo que o desenvolvimento energético 

ocorra em conformidade com a salvaguarda de sistemas cársticos ainda não 

revelados.  
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