
MODELAGEM DA RELAÇÃO ESPACIAL ENTRE
ÍNDICES FLORESTAIS E BIOMASSA FLORESTAL EM

CRUZEIRO DO SUL, ACRE.

Marcus Vinicius Gonçalves da Silva
Antonio Miguel Vieira Monteiro

Maria Isabel Sobral Escada

Trabalho final para cumprimento
das exigências da disciplina SER-
301 Análise Espacial de Dados Ge-
ográficos, para a conclusão do mes-
trado em Sensoriamento Remoto.

INPE
São José dos Campos

2025





RESUMO

A paisagem florestal amazônica constitui um sistema complexo, moldado ao longo
do tempo por processos naturais e pela intensificação das atividades antrópicas,
resultando em alterações significativas na estrutura e no funcionamento dos ecossis-
temas. No município de Cruzeiro do Sul, Acre, essa dinâmica manifesta-se por meio
de diferentes formas de uso e ocupação do solo, promovendo distúrbios florestais
e afetando a integridade da floresta. Tais modificações refletem-se diretamente na
biomassa acima do solo, uma vez que processos de degradação florestal, extração se-
letiva de madeira e impactos de incêndios reduzem a capacidade de armazenamento
de carbono, muitas vezes sem serem plenamente captados por sistemas tradicionais
de monitoramento baseados exclusivamente no desmatamento. Nesse contexto, este
trabalho teve como objetivo analisar a relação entre a variação da biomassa florestal
acima do solo (∆AGB) e a variação dos valores do Índice de Integridade Florestal
(∆INDIT) e do Índice de Distúrbio Florestal (∆INDDF) no município de Cruzeiro
do Sul, entre os anos de 2014 e 2022, avaliando o potencial desses índices sintéticos
como métricas explicativas das alterações biofísicas na estrutura florestal. Para isso,
foram utilizados dados espaciais de biomassa e métricas de paisagem organizados em
uma grade regular, sobre os quais se aplicaram análises exploratórias espaciais para
a identificação de padrões e autocorrelação espacial, seguidas do ajuste de modelos
de regressão clássicos e espaciais, incluindo modelos globais de erro espacial (SEM)
e modelos locais de Regressão Geograficamente Ponderada (GWR), considerando
relações lineares, quadráticas e termos de interação entre os índices. Os resultados
indicaram uma perda média de biomassa de −369,41 Mg por célula no período ana-
lisado, associada a uma redução expressiva da integridade florestal, evidenciada pela
diminuição dos valores médios do INDIT, bem como a um aumento moderado nos
níveis de distúrbio florestal representados pelo INDDF. Do ponto de vista estatístico,
os modelos que incorporaram a interação entre integridade e distúrbio, especialmente
a formulação quadrática (INTER_Quad), apresentaram melhor desempenho expli-
cativo, com coeficiente de determinação global de R2 = 0,271 nos modelos SEM e
aumento para R2 = 0,422 nos modelos GWR. A análise local indicou que 15,7%
das células apresentaram coeficientes estatisticamente significativos, evidenciando a
dificuldade em capturar a relação entre distúrbio, integridade florestal e variação da
biomassa. Esses resultados confirmam que as relações detectadas, embora presentes,
manifestam-se de forma fraca e espacialmente limitada, indicando que a dinâmica da
biomassa é modulada por múltiplos fatores além dos índices aqui avaliados. De forma
geral, o estudo reforça a relevância de empregar métricas integradas e abordagens
espaciais para investigar processos de degradação e para aprimorar o monitoramento
ambiental em escala municipal na Amazônia, ainda que se reconheça a necessidade
de avanços metodológicos e melhorias nas bases de dados utilizadas.

Palavras-chave: Regressão Espacial. Biomassa Florestal. Distúrbio Florestal. Inte-
gridade Florestal.
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MODELLING THE SPATIAL RELATIONSHIP BETWEEN FOREST
INDICES AND FOREST BIOMASS IN CRUZEIRO DO SUL, ACRE.

ABSTRACT

The Amazonian forest landscape is a complex system, shaped over time by natural
processes and the intensification of human activities, resulting in significant changes
in the structure and functioning of ecosystems. In the municipality of Cruzeiro do
Sul, Acre, this dynamic manifests itself through different forms of land use and
occupation, promoting forest disturbances and affecting the integrity of the forest.
Such changes are directly reflected in above-ground biomass, since forest degradation
processes, selective timber extraction, and the impacts of fires reduce carbon stor-
age capacity, often without being fully captured by traditional monitoring systems
based exclusively on deforestation. In this context, this study aimed to analyze the
relationship between the variation in above-ground forest biomass (∆AGB) and the
variation in the values of the Forest Integrity Index (∆INDIT) and the Forest Dis-
turbance Index (∆INDDF) in the municipality of Cruzeiro do Sul between 2014 and
2022, evaluating the potential of these synthetic indices as metrics explaining bio-
physical changes in forest structure. To this end, spatial biomass data and landscape
metrics organized in a regular grid were used, to which exploratory spatial analyses
were applied to identify patterns and spatial autocorrelation, followed by the adjust-
ment of classical and spatial regression models, including global spatial error models
(SEM) and local Geographically Weighted Regression (GWR) models, considering
linear and quadratic relationships and interaction terms between the indices. The
results indicated an average biomass loss of −369.41 Mg per cell in the analyzed
period, associated with a significant reduction in forest integrity, evidenced by the
decrease in the average INDIT values, as well as a moderate increase in forest distur-
bance levels represented by the INDDF. From a statistical point of view, the models
that incorporated the interaction between integrity and disturbance, especially the
quadratic formulation (INTER_Quad), presented better explanatory performance,
with an overall coefficient of determination of R2 = 0.271 in the SEM models and an
increase to R2 = 0.422 in the GWR models. The local analysis indicated that 15.7%
of the cells had statistically significant coefficients, highlighting the difficulty in cap-
turing the relationship between disturbance, forest integrity, and biomass variation.
These results confirm that the relationships detected, although present, are weak
and spatially limited, indicating that biomass dynamics are modulated by multiple
factors beyond the indices evaluated here. Overall, the study reinforces the relevance
of using integrated metrics and spatial approaches to investigate degradation pro-
cesses and improve environmental monitoring at the municipal level in the Amazon,
while recognising the need for methodological advances and improvements in the
databases used.

Translated with DeepL.com (free version)

Palavras-chave: Spatial Regression. Forest Biomass. Forest Disturbance. Forest In-
tegrity.
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1 INTRODUÇÃO

A paisagem pode ser definida como um elemento complexo, moldado ao longo do
tempo e associado a diversos fatores, como a biodiversidade e a intensificação das
atividades antrópicas (METZEGER et al., 2007). Nesse sentido, a paisagem vincu-
lada à Floresta Amazônica é constantemente modificada por diferentes atividades,
principalmente aquelas relacionadas à ocupação das áreas florestais e à exploração
dos recursos naturais (LAPOLA et al., 2023; SOUZA et al., 2025). No município de
Cruzeiro do Sul, localizado no estado do Acre, essa dinâmica também é evidente,
uma vez que distintas atividades produtivas impactam e transformam a paisagem
florestal no município (SILVA; SILVA, 2020; CAMELI; SILVA, 2024; SANTOS et
al., 2025).

Essas modificações na paisagem se traduzem em alterações biofísicas da floresta. A
supressão da vegetação, bem como a degradação florestal, reduzem a biomassa acima
do solo, visto que a própria estrutura vegetal, responsável pelo armazenamento de
carbono, é diretamente removida ou danificada (BACCINI et al., 2017; GATTI et
al., 2021; HEINRICH et al., 2023). Logo, quantificar essa variação nos estoques de
biomassa torna-se, uma importante métrica, estando associada a intensidade dos
distúrbios florestais, assim como a integridade florestal.

Nesse contexto, os distúrbios florestais são caracterizados por mudanças, no espaço
e no tempo, em padrões característicos de um ecossistema, incluindo o ciclo hidroló-
gico, a estocagem de carbono e a cobertura vegetal, entre outros fatores (PICKETT;
WHITE, 1985; TURNER; GARDNER, 2008; RODRIGUES, 2024). Por sua vez, a
integridade florestal pode ser entendida como a capacidade de um sistema em man-
ter sua estrutura, diversidade e funcionamento, assegurando a provisão sustentável
dos serviços ecossistêmicos (GRANTHAM et al., 2020; KARR et al., 2022; RODRI-
GUES, 2024). Enquanto o conceito de distúrbio está associado ao evento que causa
a mudança, o de integridade refere-se ao estado de conservação resultante da floresta
(RODRIGUES, 2024).

Contudo, os programas de monitoramento da Amazônia enfrentam dificuldades para
captar a totalidade das características associadas aos distúrbios florestais e a inte-
gridade florestal (ALMEIDA et al., 2021; RODRIGUES, 2024). Processos como a
perda parcial do dossel, a extração seletiva de madeira ou os danos provocados por
incêndios são de difícil identificação pelos sistemas de mapeamento (ALMEIDA et
al., 2021). Isso acaba por ocultar a perda de biomassa causada por fatores distintos
do desmatamento, evidenciando a necessidade de abordagens que considerem, de
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forma integrada, os múltiplos elementos que compõem a dinâmica de perturbação e
recuperação florestal.

Nesse contexto, indicadores compostos, como o Índice de Distúrbio Florestal e o
Índice de Integridade Florestal, propostos por Rodrigues et al. (2025), surgem como
alternativas para sintetizar essa complexidade. No entanto, mesmo com a capacidade
de representar alterações na paisagem por meio desses índices, ainda se faz necessário
verificar se as variações capturadas por esses índices sintéticos se correlacionam com
mudanças biofísicas nas florestas, como a variação da biomassa. Outrossim, o recorte
temporal para as análises se basea nos anos do mapeamento de uso e cobertura
TerraClass, que fornecem as informações necessárias para a elaboração dos índices
florestais, também em anos com maiores valores de desmatamento identificados pelo
PRODES no município (INPE, 2022c; INPE, 2022a; RODRIGUES, 2024).

Dessa forma, este trabalho tem como objetivo geral analisar a relação entre a varia-
ção da biomassa florestal acima do solo (AGB) e os valores do Índice de Integridade
Florestal (INDIT) e do Índice de Distúrbio Florestal (INDDF) no município de Cru-
zeiro do Sul, Acre entre os anos de 2014 e 2022. Buscando, avaliar o potencial desses
índices como métricas explicativas das alterações biofísicas na estrutura florestal.
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2 METODOLOGIA

2.1 Área de Estudo

A área de estudo, representada na Figura 2.1, compreende o município de Cruzeiro do
Sul, no estado do Acre, localizado na região sudoeste da Amazônia. Esse município
possui uma área de aproximadamente 7.925 km2 e está situado às margens do Rio
Juruá (IBGE, 2022a).

Figura 2.1 - Área de estudo

Fonte: Produção do autor (2025).

Cruzeiro do Sul se destaca como o segundo polo econômico do estado do Acre,
sua economia municipal apresenta uma estrutura diversificada, alicerçada principal-
mente no comércio e na agropecuária, além de práticas extrativistas (SILVA; SILVA,
2020; FREITAS et al., 2011; CAMELI; SILVA, 2024). No meio urbano, predominam
o comércio e o setor de serviços públicos, enquanto na zona rural sobressaem a pe-
cuária bovina e agricultura (SILVA; SILVA, 2020; CAMELI; SILVA, 2024).
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De acordo com os dados da Produção Agrícola Municipal (PAM), em 2022, apro-
ximadamente 61,65% da área colhida foi destinada ao cultivo da mandioca, totali-
zando mais de 61 mil toneladas produzidas (IBGE, 2022b). Essa cultura representa
o principal produto agrícola do município, com grande participação de agricultores
familiares, cuja produção da farinha de mandioca é reconhecida regionalmente pela
sua qualidade e importância socioeconômica para a população local (SILVA; SILVA,
2020; FREITAS et al., 2011; CAMELI; SILVA, 2024).

Contudo, apesar dessa predominância histórica, o próprio cultivo da mandioca passa
por transformações (SILVA; SILVA, 2020; CAMELI; SILVA, 2024). O artigo de Ca-
meli e Silva (2024) destaca que uma nova dinâmica agrícola vem sendo implementada
por migrantes, especialmente de Rondônia, que chegam ao município e introduzem
novas culturas, como o café e o cacau, e técnicas de produção distintas. Essa diver-
sificação,a contínua expansão da pecuária, e a busca por novas áreas para cultivo,
somadas às práticas tradicionais de corte e queima historicamente ligadas à própria
cultura da mandioca em terra firme, representam uma reconfiguração do espaço
rural que influencia diretamente o padrão de uso da terra e, consequentemente, as
taxas de desmatamento de áreas florestais para exploração agropecuária (CAMELI;
SILVA, 2024) .

Nesse cenário de exploração florestal, dados de desmatamento do PRODES indi-
cam que o município de Cruzeiro do Sul–AC apresentou variações significativas na
área desmatada entre 2008 e 2022, com alternância entre períodos de redução e
aumento (INPE, 2022a). Entre 2008 e 2017, as taxas mantiveram flutuações mo-
deradas, com mínimo de 3,43 km2 em 2015 e máximo de 22,18 km2 em 2010. A
partir de 2018, observa-se uma intensificação do desmatamento, com a área des-
matada praticamente dobrando em relação ao ano anterior (18,06 km2) e atingindo
54,71 km2 em 2022, o maior valor da série histórica (INPE, 2022a). Esse aumento
recente está associado principalmente à expansão da pecuária e à abertura de novas
frentes agrícolas no município, intensificando a pressão sobre a cobertura florestal
nativa e reforçando a necessidade de monitoramento contínuo da biomassa e integri-
dade florestal, assim como os distúrbios incidentes sobre a floresta (GATTI et al.,
2021; RODRIGUES, 2024; CAMELI; SILVA, 2024).

2.2 Materiais

Para a realização deste estudo, foram utilizadas diferentes bases de dados geoespa-
ciais com foco no ano de 2014 e 2022. Os dados estão detalhados na Tabela 2.1.
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Tabela 2.1 - Base de dados

Fonte de Dados Ano(s) Tipo de Dado

DEGRAD (INPE, 2008) 2008 à 2014 Vetorial

TERRACLASS (INPE, 2022c) 2008 à 2022 Matricial

ESA CCI BIOMAS (SANTORO; CARTUS, 2024) 2015 e 2022 Matricial

PRODES (INPE, 2022a) 2014 e 2022 Matricial

DETER (INPE, 2022b) 2018 à 2022 Vetorial

Limites Municipais (IBGE, 2022a) 2022 Vetorial
Fonte: Produção do autor (2025).

O Índice de Distúrbio Florestal (INDDF) e o Índice de Integridade Florestal (INDIT)
são adaptações dos índices propostos por Rodrigues et al. (2025). O maior detalha-
mento dos cálculos realizados para a estimativa dos dois índices serão descritos nas
Seções 2.3.3 e 2.3.4.

2.3 Métodos

A Figura 2.2 apresenta o fluxograma metodológico utilizado no estudo. O processo
inicia-se com a compilação das bases de dados, que são organizadas em células e uti-
lizadas para a estimativa de biomassa e para o cálculo dos índices florestais referentes
aos anos de 2014 e 2022. Em seguida, aplica-se o teste de Moran para verificar a pre-
sença de autocorrelação espacial. Caso o resultado não seja significativo, procede-se
com modelos de regressão não-espacial; caso contrário, adotam-se modelos espaciais.
Esses modelos incluem abordagens globais e locais, cujos resultados são posterior-
mente analisados para compor as conclusões finais do estudo.
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Figura 2.2 - Fluxograma metodológico do estudo.

Fonte: Produção do autor (2025).

2.3.1 Definição da Grade Celular

Com a base de dados previamente estruturada, foi gerada uma malha quadriculada
sobre os dados geoespaciais obtidos, com o objetivo de uniformizar as unidades de
análise espacial. O tamanho de cada célula foi definido de forma empírica, sendo
estabelecida uma área de 4 km2 (2 km x 2 km) por célula, de modo a permitir a
integração entre as diferentes resoluções espaciais dos dados utilizados (CARNEIRO,
2006; CARNEIRO et al., 2013). Além disso, essa malha serviu como unidade básica
para a elaboração dos índices florestais e posterior modelagem da biomassa acima
do solo ao longo do período analisado.

2.3.2 Estimativa da Biomassa Acima do Solo (AGB)

A estimativa da AGB (Above-Ground Biomass) para o ano de 2014 foi obtida por
meio de um modelo de retroprojeção utilizando dados ESA CCI BIOMASS para o
ano de 2015, implementado no ambiente estatístico R (SANTORO; CARTUS, 2024;
HIJMANS, 2025). Também foram utilizados os dados de desmatamento dos anos de
2014 e 2015 proveniente do programa PRODES (INPE, 2022a).
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A estimativa de biomassa foi feita por meio de um algoritmo iterativo que operou
pixel a pixel, ajustando os valores de AGB de 2015 com base na localização dos po-
lígonos de desmatamento. Para os pixels localizados em áreas desmatadas em 2015,
assumiu-se que esses continham biomassa florestal maior no ano de 2014. Dessa
forma, seus valores foram reconstituídos a partir do valor máximo observado em
uma janela focal de 3x3 no mapa de AGB de 2015, representando a condição da flo-
resta adjacente mais densa e menos impactada. Por outro lado, os pixels localizados
em áreas desmatadas em 2014 tiveram seus valores ajustados para o mínimo posi-
tivo (>0) encontrado na mesma vizinhança, simulando uma condição de biomassa
residual, característica de áreas de borda ou transição florestal. Para os pixels ob-
servados em áreas fora dos polígonos de desmatamento entre 2014 e 2015, os valores
originais de AGB de 2015 foram mantidos inalterados.

Posteriormente, já com os valores de AGB estimados para o ano de 2014, foi então
somados os valores dos pixels contidos dentro de cada uma das células da grade,
devido a resolução espacial do dado original (100m x 100m), sendo possível estimar
o valor da biomassa para a área celular da grade de análise.

A etapa subsequente consistiu na modelagem da variação da AGB na área de estudo,
composta por 2.290 células da malha definida. A variável dependente foi estabelecida
como a variação total da biomassa (∆ AGB), correspondente ao delta entre o soma-
tório da biomassa nos anos de 2014 e 2022 (2.1). Essa variável permitiu quantificar
as mudanças no estoque de biomassa ao longo do período, possibilitando uma aná-
lise da dinâmica espacial de perdas e ganhos de biomassa, associada aos processos
de desmatamento e regeneração florestal.

∆ AGB = AGB_SUM_2022 − AGB_SUM_2014 (2.1)

Em que,

∆ AGB: Variação da Biomassa Acima do Solo (AGB) entre 2014 e 2022;

AGB_SUM_2022: Biomassa Acima do Solo (AGB) total estimada em 2022
na área de 2 km2;

AGB_SUM_2014: Biomassa Acima do Solo (AGB) total estimada em 2014
na área de 2 km2.

Unidade: Megagramas (Mg).
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2.3.3 Índice de Distúrbio Florestal (INDDF)

A partir da base de dados, foram identificadas as classes relacionadas aos distúrbios
florestais presentes no Município de Cruzeiro do Sul - AC no ano de 2014 e 2022,
sendo elas representadas na Tabela 2.2 (RODRIGUES et al., 2025).

Tabela 2.2 - Classes de estudo

Classes Base de Dados Descrição

Desmatamento (DM) PRODES Áreas de remoção total da cober-
tura florestal nativa acumulado.

Floresta Remanescente (FR) PRODES Fragmentos de floresta primária
preservada.

Vegetação Secundária (VS) TERRACLASS Áreas em regeneração natural
com no mínimo 4 observações.

Degradação Florestal (DG) DETER Áreas detectadas como degrada-
ção até 4 observações.

Cicatriz de Incêndios (CI) DETER Superfícies afetadas por fogo em
até 4 observações.

Fonte: Produção do autor (2025).

Para integrar e analisar diferentes informações espaciais, todas as camadas temáticas
utilizadas neste estudo foram convertidas para o formato raster. Posteriormente, foi
calculada a área de cobertura de cada classe dentro de cada uma das células, o que
permitiu estimar a área de floresta original, que representa a área que inicialmente
teria cobertura florestal, dada pela equação:

Forig = Área(DM) + Área(FR) + Área(VS) (2.2)

Em que,

Forig: Área de floresta original em cada célula;

Área(DM): Área da classe DM em cada célula;
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Área(FR): Área da classe FR em cada célula;

Área(VS): Área da classe VS em cada célula.

Unidade: Metros quadrados (m2).

A elaboração dos indicadores florestais se deu a partir da área ocupada por cada
uma das classes dentro de cada célula. Os indicadores utilizados no trabalho estão
representados na Tabela 2.3 (RODRIGUES et al., 2025).

Tabela 2.3 - Indicadores utilizados para o cálculo do INDDF

Nome do Indicador Equação Unidade

Indicador de Degradação Flores-
tal (IndDG)

IndDG = Área(DG)+Área(CI)
Forig

Adimensional

Indicador de Desmatamento Flo-
restal (IndDM)

IndDM = Área(DM)
Forig

Adimensional

Indicador de Regeneração Flores-
tal (IndRG)

IndRG = Área(VS)
Forig

Adimensional

Fonte: Produção do autor (2025).

Para a aplicação da técnica AHP (Analytic Hierarchy Process), foi construída uma
matriz de comparação pareada para avaliar a influência relativa de cada indicador
nos distúrbios florestais. A definição dos pesos foi realizada com base na escala
proposta por Saaty (2008) , que varia de 1 a 9, sendo 1 atribuído quando dois
critérios têm igual relevância, e 9 quando um critério é extremamente mais relevante
que o outro.

Com base na metodologia elaborada por Rodrigues et al. (2025), definiu-se que o
IndDM apresenta forte relação com os distúrbios florestais, sendo mais relevante do
que o IndDG, e levemente mais importante que o IndRG. Do mesmo modo, a com-
paração entre o IndRG e o IndDG indicou uma importância moderada do primeiro
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em relação ao segundo. Considera-se que a vegetação secundária está associada a
áreas anteriormente desmatadas, sendo interpretada como um componente de com-
pensação no contexto do Índice de Distúrbio Florestal (INDDF).

A aplicação do método AHP resultou na atribuição dos seguintes pesos aos indi-
cadores utilizados, sendo eles: 0,58 para o IndDM, 0,30 para o IndRG e 0,12 para
o IndDG. Posteriormente, foi calculado o Índice de Distúrbio Florestal (INDDF),
descrito matematicamente por:

INDDF = (0,58 × IndDM) + (0,12 × IndDG) − (0,30 × IndRG) (2.3)

Em que,

INDDF: Índice de Distúrbio Florestal;

IndDM: Resultado do indicador IndDM;

IndDG: Resultado do indicador IndDG;

IndRG: Resultado do indicador IndRG.

Unidade: Adimensional. Na composição do índice desenvolvido, adotou-se a conven-
ção de que o sinal positivo (+) representa a perda de cobertura vegetal, enquanto o
sinal negativo (−) indica o ganho de vegetação.

2.3.4 Índice de Integridade Florestal (INDIT)

O INDIT (Índice de Integridade Florestal) foi aplicado neste estudo com base na
metodologia proposta por Rodrigues et al. (2025). O INDIT mensura a integridade
das manchas florestais remanescentes na paisagem, considerando fatores como área
núcleo, fragmentação, conectividade e persistência da cobertura florestal.

O índice é composto por quatro indicadores, cada um representando diferentes di-
mensões da estrutura da paisagem florestal. A Tabela 2.4 detalha os indicadores
utilizados.

Os cálculos dos indicadores IndAC e IndPF são realizados a partir de Forig, conforme
a Equação 2.2. O IndAC é determinado pela razão entre a área de floresta núcleo e a
área de floresta original, conforme descrito na equação 2.4. A área núcleo é definida
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Tabela 2.4 - Indicadores utilizados no cálculo do INDIT

Nome do Indicador Descrição das Métricas Unidade

Indicador de Área
Core (IndAC)

Proporção da área núcleo da Floresta
Remanescente (FR), indicando resiliên-
cia estrutural.

Adimensional

Indicador de Per-
sistência Florestal
(IndPF)

Proporção da FR que é classificada
como área de vegetação secundária com
pelo menos 4 observações.

Adimensional

Indicador de Frag-
mentação Florestal
(IndFF)

Grau de fragmentação, calculado pela
proporção do número de manchas de
FR na paisagem.

Adimensional

Indicador de Conec-
tividade Florestal
(IndFC)

Grau de conectividade, calculado pela
distância média euclidiana entre as
manchas de FR.

Adimensional

Fonte: Produção do autor (2025).

como a porção de floresta nativa remanescente após a aplicação de um buffer interno
de 300 m, que considera o efeito de borda sobre o fragmento.

IndAC = Área de Floresta CORE
Forig_CORE

(2.4)

Em que:

Área de Floresta Core: área de floresta nativa do ano analisado subtraída
de um buffer interno de 300 m;

Forig: área de floresta original em cada célula subtraída de um buffer
interno de 300 m.

Unidade: Adimensional.

O IndPF é definido como a proporção da área de vegetação secundária observada em
pelo menos quatro mapeamentos consecutivos, em relação à área de floresta original,
conforme a Equação 2.5.
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IndPF = Área de Veg. Secundária ≥ 4 Avistamentos
Forig

(2.5)

Em que:

Área de Veg. Secundária ≥ 4 Avistamentos: área de vegetação secundária
identificada em no mínimo quatro períodos consecutivos;

Forig: área de floresta original em cada célula.

Unidade: Adimensional.

A atribuição dos pesos dos indicadores foi realizada utilizando a técnica AHP, con-
forme a escala de comparação pareada proposta por Saaty (2008). Nessa adaptação,
considerou-se que o IndAC representa o fator de maior relevância para a integridade
Florestal, seguido pelo IndPF. Por outro lado, IndFF e IndFC configuram fatores
de estresse, com contribuição negativa para o índice.

A aplicação do método AHP resultou na definição dos seguintes pesos: 0,55 para o
IndAC e 0,15 para cada um dos indicadores IndPF, IndFC e IndFF. Assim, o INDIT
é obtido por meio de uma equação ponderada, conforme a Equação 2.6.

INDIT = (0,55× IndAC)+(0,15× IndPF)− (0,15× IndFC)− (0,15× IndFF) (2.6)

Em que:

INDIT: Índice de integridade Florestal;

IndAC: Indicador de Área Core;

IndPF: Indicador de Persistência Florestal;

IndFC: Indicador de Conectividade Florestal;

IndFF: Indicador de Fragmentação Florestal.

Unidade: Adimensional.
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Os sinais positivos (+) indicam fatores que promovem a integridade estrutu-
ral, enquanto os sinais negativos (−) correspondem a fatores que a comprometem.

2.3.5 Diagnóstico de Autocorrelação Espacial

A segunda etapa metodológica compreendeu o diagnóstico da estrutura espacial dos
dados para avaliar a presença de autocorrelação espacial, um fenômeno que viola a
premissa de independência das observações exigida pelos modelos de Mínimos Qua-
drados Ordinários (OLS) (BAILEY; GATRELL, 1995; BRUSDON et al., 1996).
A autocorrelação espacial, onde valores de locais vizinhos apresentam-se sistemati-
camente relacionados, foi quantificada para as variáveis de Variação da Biomassa
Acima do Solo (∆ AGB), Variação do Índice de Integridade Florestal (∆ INDIT )
e Variação do Índice de Distúrbio Florestal (∆ INDDF) por meio do índice I de
Moran Global, descrita matematicamente na equação 2.7 (MORAN, 1948).

I =
n

∑n
i=1

∑n
j=1 wij(Xi − X̄)(Xj − X̄)(∑n

i=1
∑n

j=1 wij

) ∑n
i=1(Xi − X̄)2

(2.7)

Em que:

I: Índice de Moran Global;

n: Número total de unidades espaciais;

Xi, Xj: Valores da variável observada nos locais i e j;

X̄: Média aritmética global da variável na área de estudo;

wij: Elementos da matriz de pesos espaciais;
∑ ∑

wij: Somatório de todos os pesos da matriz de vizinhança.

Unidade: Adimensional.

A construção da matriz W baseou-se no critério de contiguidade do tipo Rainha
(Queen’s contiguity), no qual polígonos são definidos como vizinhos ao compartilha-
rem qualquer borda ou vértice (ANSELIN, 1988b). Subsequentemente, a matriz de
contiguidade foi normalizada por linha, transformando W em uma matriz de pesos
relativos para garantir a comparabilidade da influência espacial entre as unidades.
Nesse modelo, se um polígono possui n vizinhos, cada um recebe um peso equiva-
lente a 1/n, o que evita que áreas com elevada conectividade distorçam a média

13



global da amostra (ANSELIN, 1988b; CHEN, 2013). O valor do I de Moran resul-
tante é, portanto, interpretável como um autovalor (λ) de uma matriz de correlação
espacial generalizada, onde valores positivos indicam agrupamentos, valores negati-
vos indicam dispersão, e valores = 0 indicam uma distribuição espacial aleatória dos
dados (MORAN, 1948; CHEN, 2013).

2.3.6 Modelagem Espacial Global (SAR/SEM)

A constatação da autocorrelação espacial dos dados analisados (Seção 2.3.5) inter-
fere em inferências estatísticas dos OLS, uma vez que os erros padrão dos coeficientes
tornam-se enviesados, levando a testes instáveis (ANSELIN, 1988b; BAILEY; GA-
TRELL, 1995). A etapa metodológica subsequente foi determinar a arquitetura de
modelo espacial global mais apropriada para corrigir essa dependência. Para guiar
esta seleção, foi primeiramente ajustado um modelo OLS de base unicamente como
um passo necessário para gerar os resíduos. A estrutura de dependência espacial
nesses resíduos foi então avaliada através dos testes de Multiplicador de Lagrange
(LM), que avaliam duas hipóteses distintas: a dependência de Lag Espacial (LM-
Lag), onde a variável resposta é influenciada pelos seus vizinhos, e a dependência
de Erro Espacial (LM-Error), onde os resíduos são espacialmente autocorrelaciona-
dos (ANSELIN, 1988a).

Contudo, dado que os testes LM simples são suscetíveis a indicar uma dependência
espúria na presença de outra forma de autocorrelação, a análise priorizou o uso dos
testes robustos (ANSELIN et al., 1996). A comparação das estatísticas e p-valores
destes dois testes robustos permitiu determinar a estrutura de dependência mais
provável, direcionando a seleção entre duas especificações de modelo mutuamente
exclusivas: o Modelo de Lag Espacial (SAR)1, que incorpora a dependência subs-
tantiva através do parâmetro Rho (ρ); ou o Modelo de Erro Espacial (SEM)2, que
captura a dependência de perturbação através do parâmetro Lambda (λ) (ANSELIN,
1988b).

Uma vez definida esta arquitetura de modelo base, procedeu-se à calibração de
um conjunto de modelos concorrentes, utilizando as diferentes fórmulas candidatas
identificadas. A seleção da especificação final ótima, dentre os modelos concorrentes,
foi baseada em métricas de ajuste e parcimônia.

O Critério de Informação de Akaike (AIC) foi usado para comparar o ajuste rela-

1Spatial Autoregressive Model.
2Spatial Error Model.
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tivo, onde valores menores indicam um melhor equilíbrio entre ajuste e parcimô-
nia (AKAIKE, 1973; ANSELIN, 1988b; PINHEIRO et al., 2019). Juntamente à
seleção, foram gerados diagnósticos para todos os modelos globais a fim de verificar
as premissas estatísticas, aplicando-se o teste de Shapiro-Wilk para atestar a nor-
malidade dos resíduos, o teste de Breusch-Pagan para testar a heterocedasticidade
e o índice I de Moran para avaliar a autocorrelação espacial dos resíduos (MORAN,
1948; SHAPIRO; WILK, 1965; BREUSCH; PAGAN, 1979).

2.3.7 Modelagem Espacial Local (GWR)

A última etapa investigou a hipótese de não-estacionariedade dos processos3. Esta
hipótese parte do pressuposto de que os modelos espaciais globais, embora corrijam
a autocorrelação, ainda impõem a restrição de que a relação entre as variáveis é
constante em toda a área de estudo (BRUSDON et al., 1996; FOTHERINGHAM et
al., 2002). Para testar esta hipótese e permitir que os coeficientes variem localmente,
foi empregada a Regressão Geograficamente Ponderada (GWR) (BRUSDON et al.,
1996; FOTHERINGHAM et al., 2002). A GWR calibra os valores do modelo de
regressão para cada unidade de observação, ponderando os vizinhos com base na sua
proximidade (BRUSDON et al., 1996; FOTHERINGHAM et al., 2002; CARVALHO
et al., 2006).

Com base nos modelos aplicados na modelagem global (Seção 2.3.6), foi selecio-
nado o melhor modelo global e ajustado um modelo GWR. Dito isso, o modelo foi
calibrado com um bandwidth adaptativo, que se adapta dinamicamente de acordo
com a densidade dos vizinhos locais (FOTHERINGHAM et al., 2002; GUO et al.,
2008). Diferentemente do bandwidth fixo, o adaptativo é definido com base em um
número constante de vizinhos mais próximos, permitindo que cada regressão local
seja ajustada a partir de uma subamostra de tamanho variável conforme a disper-
são geográfica dos dados (FOTHERINGHAM et al., 2002; CARVALHO et al., 2006;
GUO et al., 2008). A calibração do modelo baseou-se na busca pelo bandwidth ótimo
através da minimização do Critério de Informação de Akaike corrigido, testando su-
cessivos raios de vizinhança até encontrar o menor valor de AICc (GUO et al., 2008).

Adicionalmente, utilizou-se a função de decaimento bisquare, que governa a atribu-
ição de pesos às observações vizinhas (GUO et al., 2008). Esta função garante que
o peso decresça suavemente com a distância em relação ao ponto de regressão, as-
segurando que observações fora do limite estabelecido pelo bandwidth não exerçam

3Não-estacionariedade refere-se a relações que mudam no espaço, ou seja, os coeficientes do
modelo não são constantes em toda a área de estudo.
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influência no ajuste local (GUO et al., 2008).

A avaliação do modelo GWR baseou-se na comparação direta de seus valores do
Critério de Informação de Akaike Corrigido (AICc) (FOTHERINGHAM et al., 2002;
COMBER et al., 2020). Posteriormente, foram testadas a suposição de normalidade
dos erros,por meio do teste de Shapiro-Wilk (SHAPIRO; WILK, 1965). Por fim,
para confirmar a eficácia do modelo em controlar a dependência espacial, aplicou-
se o Índice de Moran sobre os resíduos, testando a hipótese nula de aleatoriedade
espacial (MORAN, 1948).
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3 ANÁLISE E RESULTADOS

Com base na metodologia descrita no capítulo 2, o capítulo a seguir apresenta e
discute os resultados obtidos a partir dos processamentos realizados.

3.1 Análise das Variáveis florestais

3.1.1 Variação da Biomassa acima do solo (ABG)

A Figura 3.1 apresenta a distribuição espacial da Biomassa Acima do Solo (AGB),
em Megagramas (Mg), para os anos de 2014 e 2022, assim como a variação (∆)
ocorrida entre os dois anos citados.

Figura 3.1 - Distribuição da Biomassa (AGB) em Cruzeiro do Sul (2014-2022)

Fonte: Produção do autor (2025).

No bloco com contorno azul observa-se o cenário de 2014, no qual se destaca a predo-
minância de células com valores elevados de biomassa distribuídas ao longo da área
analisada. Já o bloco com contorno vermelho corresponde ao ano de 2022 e tam-
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bém apresenta uma maior concentração de células com altos estoques de biomassa,
embora com diferenças perceptíveis em algumas regiões.

Na comparação entre 2014 e 2022, nota-se uma redução nos estoques de biomassa
em áreas específicas do município. As regiões próximas ao Projeto de Assentamento
Santa Luzia e à sede municipal exibem células em tonalidades mais claras no ano
de 2022, indicando uma diminuição dos valores.

A variação espacial da biomassa é apresentada no bloco com contorno verde. As
células com valores negativos representam os locais onde ocorreu perda de biomassa
entre os anos analisados. Em contrapartida, observa-se a presença de células com
valores positivos distribuídas de forma mais dispersa, o que indica ganhos pontuais de
biomassa. Também se identificam áreas com valores próximos de zero, que sugerem
estabilidade nos estoques ao longo do município.

Para complementar a análise, as estatísticas descritivas referentes aos valores de
biomassa de 2014 e 2022, bem como da variação entre esses anos, foram extraídas e
estão apresentadas na Tabela 3.1.

Tabela 3.1 - Estatísticas descritivas da Biomassa (AGB) por célula (2km x 2km).

Estatística AGB 2014 (Mg) AGB 2022 (Mg) Variação (∆ AGB) (Mg)

Mínimo 2.291,00 1.531,00 -34.313,00

Máximo 158.819,00 160.277,00 19.483,00

Média 119.908,00 120.277,40 -369,41

Mediana 128.248,00 127.906,50 9,00

Moda 135.882,90 135.293,90 239,58
Fonte: Produção do autor (2025).

A Tabela 3.1 mostra que, embora os valores médios de biomassa em 2014 e 2022 se-
jam próximos, a coluna referente à Variação (∆ AGB) apresenta uma média negativa
de -369,41 Mg. Esse resultado confirma que, no total, o município registrou perda
de biomassa no período analisado, o que é reforçado pelo valor mínimo observado,
de -34.313,00 Mg. Por outro lado, a mediana e a moda apresentam valores positivos,
9,00 Mg e 239,58 Mg, respectivamente. Esses resultados indicam que, apesar de mui-
tas células terem permanecido estáveis ou apresentado pequenos ganhos, as perdas
concentradas em determinadas áreas exerceram maior influência no comportamento
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geral.

3.1.2 Variação dos Índice de Integridade Florestal

A Figura 3.4 apresenta a distribuição espacial do Índice de Distúrbio e Integridade
Florestal (INDIT) para os anos de 2014 e 2022, bem como a variação entre esses perí-
odos. No mapa de 2014, representado pelo bloco com contorno azul, observa-se uma
predominância de valores intermediários do índice, distribuídos de forma relativa-
mente homogênea ao longo do município. No mapa de 2022, destacado pelo contorno
vermelho, nota-se um padrão semelhante, embora algumas áreas apresentem valores
mais baixo, indicando menor grau de integridade florestal em comparação ao período
anterior.

Figura 3.2 - Distribuição do Índice de Integridade florestal (INDIT) em Cruzeiro do Sul
(2014-2022)

Fonte: Produção do autor (2025).

A variação espacial exibida no mapa destacado pelo contorno verde reforça essa ten-
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dência. As células com valores negativos aparecem de forma concentrada e abran-
gente, indicando redução expressiva da integridade florestal em várias porções do
município. Em contraste, as células com valores positivos são pontuais e pouco
numerosas, o que demonstra que poucos trechos apresentaram algum grau de re-
cuperação ou melhora. Dessa forma, a análise visual sugere um cenário de declínio
estrutural da vegetação entre 2014 e 2022.

A Tabela 3.2 complementa a interpretação visual ao apresentar as estatísticas descri-
tivas do índice nos dois anos e da variação entre eles. Os valores mínimos e máximos
permanecem iguais em 2014 e 2022, o que indica que as condições extremas de inte-
gridade se mantiveram. Porém, a média apresenta uma redução acentuada, passando
de 0,783 para 0,367, o que confirma uma queda da integridade florestal em grande
parte do município. Do mesmo modo, a mediana e a moda também diminuem , mos-
trando que a maioria das células experimentou uma redução de integridade. Esses
valores resultaram em uma variação média negativa de -0,416, demonstrando que o
declínio ocorreu em uma generalização das células.

Tabela 3.2 - Estatísticas descritivas do Índice de Integridade Florestal (INDIT).

Estatística INDIT 2014 INDIT 2022 ∆ INDIT

Mínimo 0,000 0,000 -0,913

Máximo 1,000 1,000 0,065

Média 0,783 0,367 -0,416

Mediana 1,000 0,480 -0,505

Moda 0,996 0,492 -0,504
Fonte: Produção do autor (2025).

3.1.3 Variação dos Índice de Distúrbio Florestal

A Figura 3.3 sintetiza o comportamento espacial do Índice de Distúrbio Florestal
(INDDF) nos anos de 2014 e 2022, além da diferença registrada entre eles. No mapa
de 2014, delimitado em azul, é notável um predomínio de áreas com baixos valores
do índice, o que revela um cenário inicial de distúrbio pouco expressivo no município.
Porém, observa-se a presença de algumas zonas de maior intensidade, especialmente
na porção norte.
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Figura 3.3 - Distribuição do Índice de Distúrbio florestal (INDDF) em Cruzeiro do Sul
(2014-2022)

Fonte: Produção do autor (2025).

No mapa de 2022, destacado em vermelho, observa-se uma mudança mais expressiva
na configuração espacial do distúrbio. Regiões que antes apresentavam valores me-
nores passam a registrar concentrações mais marcantes, especialmente no próximo
ao projeto de assentamento Santa Luzia. Esse comportamento sugere o avanço de
atividades humanas capazes de provocar alterações nos níveis de distúrbios captados
pelo INDDF.

A variação entre os anos representada pelo mapa com contorno verde reforça essa
dinâmica. As células com incremento positivo do índice concentram-se justamente
nas áreas previamente afetadas, indicando que o distúrbio não apenas persistiu, mas
também se intensificou. Já as células com valores negativos, que indicam redução
dos valores do índice, são menos recorrentes e esparsa.

A Tabela 3.3 aprofunda essa interpretação ao apresentar as estatísticas descritivas
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do índice nos dois anos. O aumento da média, de 0,063 em 2014 para 0,073 em
2022, revela uma elevação gradual, ainda que moderada, do nível geral de distúrbio.
A manutenção da mediana e da moda em zero confirma que a maior parte das
células continua apresentando pouca alteração, mas a variação média positiva de
0,009 demonstra que, no conjunto, houve intensificação do distúrbio, coerente com
os padrões espaciais identificados nos mapas.

Tabela 3.3 - Estatísticas descritivas do Índice de Distúrbio Florestal (INDDF).

Estatística INDDF 2014 INDDF 2022 ∆ INDDF

Mínimo 0,000 0,000 -0,166

Máximo 0,580 0,580 0,430

Média 0,063 0,073 0,009

Mediana 0,000 0,000 0,000

Moda 0,001 0,001 0,000
Fonte: Produção do autor (2025).

3.1.4 Relação das Variáveis Florestais

A Figura 3.4 apresenta a análise de dispersão e a tendência linear entre a variação
da biomassa acima do solo (∆AGB) e a variação dos indicadores florestais para as
2290 células amostrados. No gráfico A, observa-se a relação entre ∆AGB e o Índice
de Distúrbio (∆INDDF), revelando uma correlação negativa onde o incremento do
distúrbio está associado à perda de biomassa. No gráfico B, a relação com o Índice
de Integridade (∆INDIT) quase não se nota inclinação na linha de tendência global,
sugerindo uma baixa relação entre os valores das variáveis.
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Figura 3.4 - Comparação dos valores das variáveis florestais: (A) Relação Biomassa vs
Distúrbio e (B) Relação Biomassa vs Integridade

Fonte: Produção do autor (2025).

3.2 Diagnóstico de Autocorrelação Espacial

Com base na metodologia descrita na Seção 2.3.5, o primeiro passo da análise estatís-
tica foi averiguar a estrutura de dependência espacial das variáveis. Os resultados do
teste, apresentados na Tabela 3.4, rejeitam a hipótese nula de aleatoriedade espacial
para todas as três variáveis.

Tabela 3.4 - Resultados do teste I de Moran Global para as variáveis do estudo.

Variável I de Moran Desvio Padrão p-valor

∆ AGB 0,0993 9,2478 < 2.2e-16

∆ INDIT 0,6849 63,4010 < 2.2e-16

∆ INDDF 0,5542 51,4910 < 2.2e-16
Fonte: Produção do autor (2025).

Todas as variáveis apresentaram autocorrelação espacial positiva e estatisticamente
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significativa (p < 0,001). Isso indica que os valores não estão distribuídos aleatoria-
mente no espaço; ao contrário, eles demonstram um padrão de agrupamento (MO-
RAN, 1948).

As variáveis ∆ INDIT e ∆ INDDF apresentaram os maiores valores de Moran (I =
0,685 e I = 0,554, respectivamente), indicando um forte agrupamento espacial. Isso
demonstra que os processos de perda de integridade e de aumento de distúrbio ocor-
rem de forma concentrada, formando agrupamentos na paisagem, o que é coerente
com a natureza de fenômenos como o desmatamento, que se expande a partir de
focos consolidados (ESCADA et al., 2023).

Do mesmo modo, a Variação da Biomassa (∆ AGB) também apresentou autocorre-
lação positiva significativa (I = 0,099), embora com magnitude inferior à dos índices.
Esse valor baixo do I de Moran, pode estar relacionado com a agregação dos dados
de uma resolução espacial mais refinada, originalmente 100 m x 100 m, para uma
resolução espacial mais grosseira, sendo adequada a célula de 2km x 2km. Esse pro-
cesso de transformação espacial pode ter suavizado as evidências de agrupamentos
espaciais, o que se refletiu num menor valor do I de Moran, ainda que significa-
tivo (OPENSHAW, 1984; OLIVER, 2001).

3.3 Modelo Espacial Global

3.3.1 Definição do Modelo Espacial Global

Após a constatação da autocorrelação espacial apresentada na Seção 3.2, a etapa
seguinte consistiu em definir a arquitetura de modelo espacial global mais adequada
para corrigir essa dependência, conforme descrito na metodologia da Seção 2.3.6.

Primeiramente, foi ajustado um modelo OLS de base utilizando a fórmula de in-
teração linear entre os índices, que apresentou um Pseudo R2 de 0,1986. Sobre os
resíduos desse modelo, aplicaram-se os testes de Multiplicador de Lagrange (LM)
robustos para identificar a natureza da dependência espacial.

Os resultados dos testes de diagnóstico indicaram a aplicabilidade de ambos os
modelos espaciais, SAR ou SEM. Contudo, a estatística do LM de Erro Robusto
(adjRSerr = 183.02, p < 2.2e − 16) foi superior à do LM de Lag Robusto (adjRSlag
= 111.43, p < 2.2e − 16).

Ao comparar as métricas de desempenho, observou-se que o modelo SEM apresen-
tou um AIC de 4.351.311, valor inferior aos 4.358.975 obtidos pelo modelo SAR,
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indicando um melhor ajuste relativo e maior parcimônia. Adicionalmente, o modelo
SEM demonstrou um maior poder explicativo, com um R2 Ajustado de 0,2449 frente
aos 0,204 do modelo SAR.

Assim, utilizando os valores obtidos como critério de decisão, o modelo SEM foi
selecionado como a estrutura mais apropriada para os dados, sugerindo que a auto-
correlação está associada ao erros espacialmente correlacionadas, e não a influência
da variável dependente exercida sobre seus vizinhos (ANSELIN, 1988b; ANSELIN et
al., 1996). A etapa seguinte consistiu em identificar a fórmula com maior poder ex-
plicativo, utilizando o SEM como base para a calibração das diferentes especificações
testadas.

3.3.2 Desempenho das Diferentes Abordagens para o Modelo Espacial
Global

A Tabela A.1 do documento Anexo A detalha as equações das hipóteses concor-
rentes para a variação da biomassa em função dos índices florestais.Nesse contexto,
os modelos INDIT_Lin e INDDF_Lin testam relações lineares simples entre cada
índice e a variável resposta. As versões INDIT_Quad e INDDF_Quad exploram
uma possível não linearidade, avaliando se o comportamento dos índices segue uma
tendência polinomial de segunda ordem. Os modelos de interação investigam se o
efeito de um índice depende do nível do outro (MONTGOMERY; RUNGER, 1994).
A fórmula INTER_Lin analisa essa interação de forma linear, enquanto INTER_-
Quad considera uma interação não linear (NETER et al., 1996). Por fim, os modelos
baseados em componentes decompõem os índices nos indicadores internos; aqueles
com sufixo _Step foram obtidos por meio de um procedimento stepwise, utilizado
para reduzir a autocorrelação residual ao selecionar apenas os componentes que con-
tribuíram significativamente para o ajuste do modelo (EFROYMSON, 1960). Assim,
COMP_INDIT_Step e COMP_INDDF_Step avaliam o efeito aditivo dos compo-
nentes mais influentes de cada índice, e o modelo COMP_FULL_Step combina os
indicadores com menor correlação dos dois índices em uma estrutura aditiva única
(MONTGOMERY; RUNGER, 1994).

A Figura 3.5 apresenta uma comparação visual do desempenho de todos os nove
modelos. Cada painel é um gráfico de dispersão que compara os valores reais da
Variação da Biomassa no eixo Y com os valores previstos pelo respectivo modelo no
eixo X. A linha tracejada vermelha em cada gráfico representa a linha 1:1, onde um
modelo ideal teria todos os pontos alinhados (CHATFIELD; COLLINS, 1986; SIN-
GER et al., 2017). A métrica do Pseudo R2 é exibida em cada painel, quantificando
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o poder explicativo (ANSELIN, 1988b).

Figura 3.5 - Comparação Real vs. Previsto para os modelos SEM.

Fonte: Produção do autor (2025).

Os resultados da Figura 3.5 e os dados apresentados na Tabela A.2, do documento
Anexo A, evidenciam que os modelos com os menores valores de AIC são também
aqueles que exibem os maiores valores de Pseudo R2. Entre eles, o modelo INTER_-
Quad destaca-se como o de melhor desempenho, alcançando o menor critério de
informação (AIC = 43453,25) e o maior poder explicativo, com um Pseudo R2

de 0,271. Além disso, os modelos INTER_Lin (AIC = 43513,11; R2 = 0,245) e
COMP_FULL_Step (AIC = 43527,68; R2 = 0,241) mostraram bons resultados
em comparação aos outros modelos testados, caracterizados por nuvens de pontos
mais concentradas e próximas da linha 1:1 nos gráficos comparativos (CHATFIELD;
COLLINS, 1986).

Estes resultados sugerem que os modelos que incluem a interação entre a variação dos
índices (INTER_Quad e INTER_Lin) obtiveram um ajuste superior aos modelos

26



que tratam esses fatores de forma independente (BURNHAM; ANDERSON, 2002;
CRUZ, 2020). Outrossim, o melhor desempenho do INTER_Quad em relação ao
INTER_Lin indica que a relação entre os índices e a variação da biomassa apresenta
comportamento não linear (MONTGOMERY; RUNGER, 1994; PINHEIRO et al.,
2019).

Adicionalmente, observa-se que os modelos baseados exclusivamente no ∆ INDDF
apresentam um ajuste superior aos modelos fundamentados apenas no ∆ INDIT, evi-
denciando diferenças na contribuição explicativa das variáveis dentro de um conjunto
multivariado (CHATFIELD; COLLINS, 1986; BURNHAM; ANDERSON, 2002).

3.3.3 Análise Estatística dos Modelos Globais

A adequabilidade dos modelos SEM ajustados foi avaliada por meio de diagnósticos
de normalidade, homocedasticidade e independência espacial dos resíduos (MORAN,
1948; SHAPIRO; WILK, 1965; BREUSCH; PAGAN, 1979). A Tabela A.3, no docu-
mento Anexo A, apresenta o sumário dos diagnósticos estatísticos para os modelos
SEM avaliados.

O teste de Moran’s I aplicado aos resíduos dos modelos SEM demonstrou que o
ajuste espacial foi capaz de tratar a autocorrelção espacial dos modelos em todos os
cenários. Para todos os modelos testados, a hipótese nula de aleatoriedade espacial
não pôde ser rejeitada (p > 0, 05). Isso indica que a estrutura de dependência espacial
foi efetivamente capturada e modelada pelo termo de erro, resultando em resíduos
espacialmente independentes (MORAN, 1948; CHEN, 2021).

Em relação à distribuição dos erros, o teste de Shapiro-Wilk indicou a rejeição
da hipótese de normalidade para todos os modelos, resultado esse podendo estar
relacionado ao grande tamanho amostral, o que torna o teste sensível a pequenos
desvios da normalidade (TORMAN et al., 2012; BOEDEC, 2016; MIOT, 2017). Da
mesma forma, o teste de Breusch-Pagan apontou a presença de heterocedasticidade
significativa em todos os ajustes (p < 0, 05), sugerindo que a variância dos erros não
é constante ao longo da área de estudo (BREUSCH; PAGAN, 1979).

3.3.4 Análise de Resíduos para a Modelagem Espacial Global

A Figura 3.6 apresenta a análise de diagnóstico dos resíduos para os nove modelos
SEM. O gráfico relaciona os resíduos no eixo Y com os valores previstos no eixo
X. Em condições ideais, espera-se que um modelo bem ajustado produza uma dis-
tribuição aleatória e homogênea de pontos, sem tendência sistemática ao longo do
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eixo dos valores previstos, característica associada à ausência de padrões estrutu-
rados nos resíduos (SINGER et al., 2017). Além disso, essa nuvem deve se manter
concentrada em torno da linha zero, indicada em vermelho, o que caracteriza homo-
cedasticidade e ausência de estrutura residual, aspectos essenciais para validação de
modelos lineares e mistos (NOBRE; SINGER, 2007). Esse comportamento reforça
que o modelo não esteja omitindo variáveis relevantes nem capturando relações ina-
dequadas entre os processos representados pelos índices florestais e a variação da
biomassa, reforçando a importância de diagnósticos residuais na avaliação de de-
sempenho estatístico (CRUZ, 2020).

Figura 3.6 - Comparação Resíduos vs. Previsto.

Fonte: Produção do autor (2025).

A análise dos gráficos de dispersão revela que os modelos de melhor desempenho,
especialmente INTER_Quad, INTER_Lin e COMP_FULL_Step, exibem uma dis-
persão residual mais homogênea e concentrada em torno da linha zero. Esse padrão
sugere um menor viés estrutural e maior adequação da formulação, indicando que a
inclusão das interações entre integridade e distúrbio produz um ajuste estatistica-
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mente mais consistente (NOBRE; SINGER, 2007).

Assim, os valores de AIC e pseudo-R2 , juntamente ao diagnóstico residual con-
firmam o INTER_Quad como o modelo global que melhor se ajustou, dentre os
modelos estudados. Na etapa seguinte, conforme a metodologia apresentada na Se-
ção 2.3.7, será investigado se um modelo local, como a modelagem GWR, é capaz de
capturar os efeitos da não-estacionariedade espacial e ampliar a compreensão sobre
a distribuição dos coeficientes ao longo do território, aprofundando a análise dos
padrões identificados nos modelos globais.

3.4 Modelagem Local Através de GWR

3.4.1 Modelo Local

Conforme apresentado na Seção 3.3, o modelo INTER_Quad obteve o melhor desem-
penho entre as formulações globais avaliadas. Com base nesse resultado, procedeu-se
à calibração do modelo GWR correspondente, com o objetivo de investigar possíveis
padrões de não-estacionariedade espacial nas relações entre a variação da biomassa
e os índices florestais.

O modelo GWR INTER_Quad apresentou desempenho superior na representação
da relação entre integridade, distúrbio e variação da biomassa, evidenciando que os
coeficientes associados à interação polinomial variam espacialmente ao longo do terri-
tório. Essa flexibilidade permitiu capturar padrões locais não identificados no modelo
global SEM, cujo valor de Pseudo R2 foi de 0,271, enquanto o GWR INTER_Quad
alcançou um Pseudo R2 de 0,422. Embora essa diferença indique aumento no poder
explicativo, sua interpretação requer cautela, uma vez que modelos GWR tendem a
inflar medidas de ajuste devido à variação espacial dos coeficientes, o que nem sem-
pre implica melhoria substantiva nos processos subjacentes (FOTHERINGHAM et
al., 2002; GUO et al., 2008).

O critério de informação AICc também reforça a adequação estatística do modelo
espacial, com o GWR INTER_Quad apresentando valor igual a 43113,28, inferior
ao registrado pelo modelo global SEM (AIC = 43453,25). A redução do AICc indica
maior adequação do modelo aos dados observados, sugerindo que a interação poli-
nomial entre integridade e distúrbio, quando estimada localmente, proporciona um
ajuste mais consistente da variabilidade espacial da biomassa (HURVICH; TSAI,
1989). Além disso, o bandwidth convergiu para uma vizinhança composta por 116
unidades espaciais, indicando que a relação entre a variação dos índices florestais e a
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variação da biomassa opera em escala local relativamente fina, quando considerada
as 2290 unidades presentes no mapa (LU et al., 2018).

A Tabela 3.5 resume os resultados dos teste estatísticos aplicados ao modelo. Nota-
se que, apesar da ausência de normalidade nos resíduos, o pressuposto de indepen-
dência espacial foi plenamente atendido pelo modelo GWR (p > 0.05 no teste de
Moran), demonstrando que a estrutura de variabilidade espacial da biomassa foi
adequadamente modelada pelas variáveis explicativas e seus componentes locais.

Tabela 3.5 - Resultados dos resíduos do modelo GWR (INTER_Quad).

Teste Estatístico Estatística p-valor Conclusão
Normalidade (Shapiro-Wilk) W = 0.9396 < 0.001∗ Rejeita H0
Autocorrelação (I de Moran) I = −0.0011 0.9502 Aceita H0

∗ Significativo ao nível de 5%.

Fonte: Produção do autor (2025).

3.4.2 Análise espacial do Modelo GWR INT_Quad

A distribuição espacial do coeficiente de determinação local (R2 Ajustado), apre-
sentada na Figura 3.7, permite avaliar a variabilidade da capacidade explicativa do
modelo GWR INT_Quad ao longo da área de estudo. Diferentemente dos modelos
de regressão global, que assumem um ajuste constante para todo o território, o mapa
revela uma expressiva heterogeneidade no desempenho do modelo, com valores de
ajuste oscilando entre 0.025 e 0.743.
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Figura 3.7 - Distribuição dos valores de R2 Ajustado do modelo GWR INT_Quad.

Fonte: Produção do autor (2025).

A distribuição espacial do ajuste do modelo destaca núcleos de maior desempenho
(R2Ajustado de 0.57 a 0.74) associados a áreas de pressão antrópica, como o Assen-
tamento Santa Luzia e o entorno da Sede do Município. Nestas regiões, as variáveis
independentes capturam a variabilidade da biomassa de maneira eficaz, evidenciando
a melhor representação local do modelo. Por outro lado, as áreas em tons de roxo
indicam regiões onde a capacidade preditiva é inferior, associada principalmente á
areas afastadas de zonas antrópicas ou próximas aos limites do município.

Essa distinção espacial sugere que, nas zonas de baixo R2Ajustado, a dinâmica
da biomassa pode estar sendo influenciada por variáveis latentes não incorpora-
das ao modelo ou que a resposta da vegetação aos índices de integridade e distúr-
bio ocorre de maneira mais complexa nessas sub-regiões (BRUSDON et al., 1996;
FOTHERINGHAM et al., 2002). Portanto, o mapeamento reforça a ideia de não-
estacionariedade do processo e justifica a necessidade da abordagem local para evitar
generalizações que mascarariam essas discrepâncias regionais (FOTHERINGHAM
et al., 2002; GUO et al., 2008; COMBER et al., 2020).
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A Figura 3.8 apresenta a distribuição espacial dos coeficientes β estimados pelo mo-
delo GWR INTER_Quad. Observa-se forte variação espacial em todos os termos,
com valores positivos e negativos que indicam mudanças no sentido e na magnitude
da influência dos índices florestais sobre a variação da biomassa. O coeficiente linear
para Integridade, por exemplo, varia de médias negativas próximas de −1,04 × 105

a positivas de 1,29 × 105, enquanto o termo quadrático correspondente oscila entre
−3,18 × 105 e 1,04 × 105. Já os coeficientes associados ao Distúrbio exibem amplitu-
des ainda maiores, especialmente no componente quadrático, que apresenta médias
negativas de −1,04×107 e positivas de 7,24×107. As interações apresentam os mai-
ores intervalos, variando entre −5,89×107 e 2,94×108, sugerindo que a combinação
entre integridade e distúrbio exerce papel de maior impacto na modelagem local da
biomassa no modelo estudado.

Figura 3.8 - Distribuição dos valores de β do modelo GWR INT_Quad.

Fonte: Produção do autor (2025).
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A Figura 3.9 apresenta o padrão espacial da significância local dos coeficientes asso-
ciados à ∆ABG no modelo INTER_Quad, evidenciando como o sinal e a magnitude
da associação variam ao longo do território. Áreas em vermelho indicam coeficien-
tes negativos estatisticamente significativos, sugerindo que incrementos no nível de
distúrbio estão associados, localmente, a reduções na biomassa estimada. Em con-
traste, áreas em azul representam coeficientes positivos significativos, indicando que
aumentos nos valores das variáveis explicativas tendem a estar associados a variações
positivas locais da biomassa. As células em cinza claro correspondem a coeficientes
não significativos, predominantes na maior parte da área, sinalizando ausência de
evidência estatística de efeito local nessas regiões.

Figura 3.9 - Distribuição das Células GWR Significativas.

Fonte: Produção do autor (2025).

Dentre os termos estimados no modelo, o coeficiente linear de distúrbio, Beta_-
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DF_Linear, destaca-se como o driver de maior impacto negativo, apresentando 22%
de significância negativa. Esse comportamento é coerente com a relação inversa es-
perada entre níveis de distúrbio e estoque de biomassa, uma vez que incrementos
locais em distúrbio tendem a associar-se a reduções na cobertura florestal e conse-
quentemente na biomassa dessas áreas (??). Em contraste, os coeficientes associados
às interações (Int_Lin_Lin, Int_Quad_Lin, Int_Lin_Quad e Int_Quad_Quad) e
aos termos quadráticos exibem redução de significância, com ausência de sinal esta-
tístico atingindo cerca de 87% da área modelada. As relações positivas significativas
(β > 0) mostram-se espacialmente restritas, variando entre 3% e 9% da área, suge-
rindo que incrementos locais na biomassa associados aos índices ocorrem de forma
pontual.

Para o índice de integridade, os coeficientes Beta_IT_Linear e Beta_IT_Quadra-
tico também apresentam padrões negativos em parte do território. Esse comporta-
mento pode refletir a própria estrutura dos indicadores que compõem o índice de
integridade, pois alguns destes assumem sinais negativos quando associados à degra-
dação, fazendo com que coeficientes negativos expressem uma relação alinhada ao
significado matemático do indicador. Ainda assim, tais padrões devem ser interpreta-
dos com cautela, pois refletem associações estatísticas locais, e não necessariamente
processos causais diretos.

Por fim, o Intercepto apresenta predominância de neutralidade (80%), mas retém
cerca de 13% de significância negativa e 7% positiva, indicando que fatores não ex-
plicitamente modelados parecem modular a biomassa de referência em determinados
locais, possivelmente associados ao contexto espacial específico de cada célula.
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4 CONCLUSÕES

Os resultados obtidos demonstram que foi possível identificar uma relação entre a
variação da biomassa acima do solo e a variação dos índices de integridade (INDIT) e
distúrbio florestal (INDDF). Contudo, essa relação mostrou-se fraca e espacialmente
heterogênea, indicando que os índices compostos possuem capacidade limitada de
explicar as alterações biofísicas na estrutura florestal no período analisado.

Os modelos espaciais confirmaram que formulações que integram simultaneamente
integridade e distúrbio fornecem melhor desempenho estatístico. Ainda assim, o po-
der explicativo moderado, aliado ao predomínio de coeficientes não significativos
em grande parte do território, sugere que essa influência ocorre de forma localizada
e com baixa intensidade. Parte dessa limitação pode estar associada às incertezas
dos dados utilizados. As estimativas de biomassa derivadas de sensoriamento re-
moto apresentam erros inerentes ao processo de modelagem, e a agregação final
em células de 2 × 2 km tende a suavizar variações locais relevantes, reduzindo o
contraste espacial entre áreas mais ou menos impactadas. Essa propagação de incer-
tezas pode contribuir para o enfraquecimento das relações detectadas, o que deve
ser considerado na interpretação dos resultados. Dessa forma, no cenário analisado
e considerando as limitações decorrentes da escala e dos dados empregados, conclui-
se que os índices INDIT e INDDF apresentam potencial explicativo baixo, dada
as condições de execução desse trabalho. Esses achados destacam a importância de
aperfeiçoar as bases de dados e incorporar variáveis complementares, de modo a for-
talecer futuras investigações sobre degradação e mudanças estruturais na paisagem
florestal amazônica.

Ainda assim, estudos posteriores poderão aprofundar a análise do efeito da propa-
gação dos erros associados às transformações e estimativas utilizadas, bem como
explorar variáveis latentes em regiões onde os modelos apresentaram menor capa-
cidade explicativa, integrando fatores históricos, climáticos e socioeconômicos que
influenciam a dinâmica da biomassa. Além disso, os índices podem ser aplicados
como variáveis secundárias a modelos preditivos que possuem informações espec-
trais, podem potencializar os ajuste de modelos relacionados a biomassa. Por fim,
recomenda-se avaliar o desempenho de métodos alternativos de dependência espacial
e técnicas não lineares ou baseadas em aprendizado de máquina, comparando-os aos
modelos empregados neste estudo para verificar potenciais ganhos preditivos.
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ANEXO A - DETALHAMENTO DOS MODELOS ESTATÍSTICOS
APLICADOS

Tabela A.1 - Fórmulas e valores dos coeficientes dos modelos concorrentes.

Modelo Fórmula Estrutural

INTER_Quad ∆AGB = −305, 15 + (3527, 91 · ∆INDIT) + (10264, 26 · ∆INDIT2)

−(40107, 02 · ∆INDDF) − (438639, 7 · ∆INDDF2)

−19307, 4(∆INDIT · ∆INDDF) − 225301, 3(∆INDIT2 · ∆INDDF)

−20491, 2(∆INDIT · ∆INDDF2) − 125178, 5(∆INDIT2 · ∆INDDF2)

+(0, 4046 · W u) + ε

INTER_Lin ∆AGB = −1865, 99 − (4634, 13 · ∆INDIT) − (62184, 51 · ∆INDDF)

−(27661, 57 · ∆INDIT · ∆INDDF) + (0, 3705 · W u) + ε

COMP_FULL_Step ∆AGB = 108, 01 − (6514, 14 · ∆IndAC) − (36950, 31 · ∆IndDM)

+(8183, 38 · ∆IndRG) + (0, 3803 · W u) + ε

COMP_INDDF_Step ∆AGB = 252, 42 − (29731, 05 · ∆IndDM) + (7628, 25 · ∆IndRG)

+(0, 4453 · W u) + ε

INDDF_Lin ∆AGB = 82, 81 − (47892, 97 · ∆INDDF) + (0, 4561 · W u) + ε

INDDF_Quad ∆AGB = 81, 94 − (48521, 84 · ∆INDDF) + (3746, 32 · ∆INDDF2)

+(0, 4570 · W u) + ε

COMP_INDIT_Step ∆AGB = −778, 14 − (9587, 61 · ∆IndFF) + (3341, 92 · ∆IndAC)

+(2630, 37 · ∆IndPF) + (0, 3384 · W u) + ε

INDIT_Lin ∆AGB = −1211, 83 − (2028, 17 · ∆INDIT) + (0, 2351 · W u) + ε

INDIT_Quad ∆AGB = −1364, 66 − (3272, 79 · ∆INDIT) − (1810, 23 · ∆INDIT2)

+(0, 2315 · W u) + ε

Fonte: Produção do autor (2025).
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Tabela A.2 - Comparação de desempenho e correlação espacial dos modelos globais con-
correntes.

Modelo AIC Pseudo - R2 Lambda (λ)

INTER_Quad 43453,25 0,2708 0,4046

INTER_Lin 43513,11 0,2449 0,3705

COMP_FULL_Step 43527,68 0,2407 0,3803

COMP_INDDF_Step 43585,53 0,2278 0,4453

INDDF_Lin 43603,61 0,2223 0,4561

INDDF_Quad 43605,55 0,2225 0,4570

COMP_INDIT_Step 43843,53 0,1245 0,3384

INDIT_Lin 44027,92 0,0437 0,2351

INDIT_Quad 44029,43 0,0435 0,2315
Fonte: Produção do autor (2025).

Tabela A.3 - Resultados dos testes de normalidade, heterocedasticidade e autocorrelação
espacial.

Modelo
Shapiro-Wilk

(Estatística ; p-valor)

Breusch-Pagan

(Estatística ; p-valor)

I de Moran

(Índice ; p-valor)

INDIT_Lin 0,8738 ; < 2.2e-16 46,13 ; < 2.2e-16 −0,0083 ; 0,7669

INDIT_Quad 0,8738 ; < 2.2e-16 52,25 ; < 2.2e-16 −0,0080 ; 0,7592

INDDF_Lin 0,9063 ; < 2.2e-16 78,89 ; < 2.2e-16 −0,0213 ; 0,9735

INDDF_Quad 0,9065 ; < 2.2e-16 132,07 ; < 2.2e-16 −0,0214 ; 0,9742

INTER_Lin 0,9082 ; < 2.2e-16 177,83 ; < 2.2e-16 −0,0144 ; 0,9024

INTER_Quad 0,9177 ; < 2.2e-16 220,61 ; < 2.2e-16 −0,0168 ; 0,9346

COMP_INDIT_Step 0,8914 ; < 2.2e-16 62,37 ; < 2.2e-16 −0,0140 ; 0,8958

COMP_INDDF_Step 0,9048 ; < 2.2e-16 179,34 ; < 2.2e-16 −0,0199 ; 0,9643

COMP_FULL_Step 0,9024 ; < 2.2e-16 195,17 ; < 2.2e-16 −0,0149 ; 0,9106
Fonte: Produção do autor (2025).
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