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RESUMO

A paisagem florestal amazonica constitui um sistema complexo, moldado ao longo
do tempo por processos naturais e pela intensificagdo das atividades antrépicas,
resultando em alteragoes significativas na estrutura e no funcionamento dos ecossis-
temas. No municipio de Cruzeiro do Sul, Acre, essa dindmica manifesta-se por meio
de diferentes formas de uso e ocupagao do solo, promovendo distirbios florestais
e afetando a integridade da floresta. Tais modifica¢es refletem-se diretamente na
biomassa acima do solo, uma vez que processos de degradacao florestal, extragao se-
letiva de madeira e impactos de incéndios reduzem a capacidade de armazenamento
de carbono, muitas vezes sem serem plenamente captados por sistemas tradicionais
de monitoramento baseados exclusivamente no desmatamento. Nesse contexto, este
trabalho teve como objetivo analisar a relacao entre a variagao da biomassa florestal
acima do solo (AAGB) e a variacio dos valores do Indice de Integridade Florestal
(AINDIT) e do Indice de Disttirbio Florestal (AINDDF) no municipio de Cruzeiro
do Sul, entre os anos de 2014 e 2022, avaliando o potencial desses indices sintéticos
como métricas explicativas das alteragdes biofisicas na estrutura florestal. Para isso,
foram utilizados dados espaciais de biomassa e métricas de paisagem organizados em
uma grade regular, sobre os quais se aplicaram analises exploratorias espaciais para
a identificagao de padroes e autocorrelacao espacial, seguidas do ajuste de modelos
de regressao classicos e espaciais, incluindo modelos globais de erro espacial (SEM)
e modelos locais de Regressao Geograficamente Ponderada (GWR), considerando
relagoes lineares, quadraticas e termos de interagao entre os indices. Os resultados
indicaram uma perda média de biomassa de —369,41 Mg por célula no periodo ana-
lisado, associada a uma reducao expressiva da integridade florestal, evidenciada pela
diminuicao dos valores médios do INDIT, bem como a um aumento moderado nos
niveis de distirbio florestal representados pelo INDDF. Do ponto de vista estatistico,
os modelos que incorporaram a interacao entre integridade e distirbio, especialmente
a formulagao quadrética (INTER__Quad), apresentaram melhor desempenho expli-
cativo, com coeficiente de determinacio global de R? = 0,271 nos modelos SEM e
aumento para R? = 0,422 nos modelos GWR. A andlise local indicou que 15,7%
das células apresentaram coeficientes estatisticamente significativos, evidenciando a
dificuldade em capturar a relagdo entre distturbio, integridade florestal e variacao da
biomassa. Esses resultados confirmam que as rela¢oes detectadas, embora presentes,
manifestam-se de forma fraca e espacialmente limitada, indicando que a dindmica da
biomassa ¢ modulada por miltiplos fatores além dos indices aqui avaliados. De forma
geral, o estudo reforca a relevancia de empregar métricas integradas e abordagens
espaciais para investigar processos de degradacao e para aprimorar o monitoramento
ambiental em escala municipal na Amazodnia, ainda que se reconheca a necessidade
de avancos metodologicos e melhorias nas bases de dados utilizadas.

Palavras-chave: Regressao Espacial. Biomassa Florestal. Distirbio Florestal. Inte-
gridade Florestal.
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MODELLING THE SPATTAL RELATIONSHIP BETWEEN FOREST
INDICES AND FOREST BIOMASS IN CRUZEIRO DO SUL, ACRE.

ABSTRACT

The Amazonian forest landscape is a complex system, shaped over time by natural
processes and the intensification of human activities, resulting in significant changes
in the structure and functioning of ecosystems. In the municipality of Cruzeiro do
Sul, Acre, this dynamic manifests itself through different forms of land use and
occupation, promoting forest disturbances and affecting the integrity of the forest.
Such changes are directly reflected in above-ground biomass, since forest degradation
processes, selective timber extraction, and the impacts of fires reduce carbon stor-
age capacity, often without being fully captured by traditional monitoring systems
based exclusively on deforestation. In this context, this study aimed to analyze the
relationship between the variation in above-ground forest biomass (AAGB) and the
variation in the values of the Forest Integrity Index (AINDIT) and the Forest Dis-
turbance Index (AINDDF) in the municipality of Cruzeiro do Sul between 2014 and
2022, evaluating the potential of these synthetic indices as metrics explaining bio-
physical changes in forest structure. To this end, spatial biomass data and landscape
metrics organized in a regular grid were used, to which exploratory spatial analyses
were applied to identify patterns and spatial autocorrelation, followed by the adjust-
ment of classical and spatial regression models, including global spatial error models
(SEM) and local Geographically Weighted Regression (GWR) models, considering
linear and quadratic relationships and interaction terms between the indices. The
results indicated an average biomass loss of —369.41 Mg per cell in the analyzed
period, associated with a significant reduction in forest integrity, evidenced by the
decrease in the average INDIT values, as well as a moderate increase in forest distur-
bance levels represented by the INDDF. From a statistical point of view, the models
that incorporated the interaction between integrity and disturbance, especially the
quadratic formulation (INTER_ Quad), presented better explanatory performance,
with an overall coefficient of determination of R? = 0.271 in the SEM models and an
increase to R? = 0.422 in the GWR models. The local analysis indicated that 15.7%
of the cells had statistically significant coefficients, highlighting the difficulty in cap-
turing the relationship between disturbance, forest integrity, and biomass variation.
These results confirm that the relationships detected, although present, are weak
and spatially limited, indicating that biomass dynamics are modulated by multiple
factors beyond the indices evaluated here. Overall, the study reinforces the relevance
of using integrated metrics and spatial approaches to investigate degradation pro-
cesses and improve environmental monitoring at the municipal level in the Amazon,
while recognising the need for methodological advances and improvements in the
databases used.

Translated with DeepL.com (free version)

Palavras-chave: Spatial Regression. Forest Biomass. Forest Disturbance. Forest In-
tegrity.
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1 INTRODUCAO

A paisagem pode ser definida como um elemento complexo, moldado ao longo do
tempo e associado a diversos fatores, como a biodiversidade e a intensificacdo das
atividades antropicas (METZEGER et al., 2007). Nesse sentido, a paisagem vincu-
lada a Floresta Amazonica é constantemente modificada por diferentes atividades,
principalmente aquelas relacionadas a ocupagao das areas florestais e a exploragao
dos recursos naturais (LAPOLA et al., 2023; SOUZA et al., 2025). No municipio de
Cruzeiro do Sul, localizado no estado do Acre, essa dinamica também ¢é evidente,
uma vez que distintas atividades produtivas impactam e transformam a paisagem
florestal no municipio (SILVA; SILVA, 2020; CAMELI; SILVA, 2024; SANTOS et
al., 2025).

Essas modificagoes na paisagem se traduzem em alteragoes biofisicas da floresta. A
supressao da vegetacao, bem como a degradacao florestal, reduzem a biomassa acima
do solo, visto que a propria estrutura vegetal, responsavel pelo armazenamento de
carbono, ¢ diretamente removida ou danificada (BACCINI et al., 2017; GATTT et
al., 2021; HEINRICH et al., 2023). Logo, quantificar essa variagdo nos estoques de
biomassa torna-se, uma importante métrica, estando associada a intensidade dos

disturbios florestais, assim como a integridade florestal.

Nesse contexto, os disturbios florestais sao caracterizados por mudancas, no espaco
e no tempo, em padroes caracteristicos de um ecossistema, incluindo o ciclo hidrolo-
gico, a estocagem de carbono e a cobertura vegetal, entre outros fatores (PICKETT;
WHITE, 1985; TURNER; GARDNER, 2008; RODRIGUES, 2024). Por sua vez, a
integridade florestal pode ser entendida como a capacidade de um sistema em man-
ter sua estrutura, diversidade e funcionamento, assegurando a provisao sustentavel
dos servigos ecossistémicos (GRANTHAM et al., 2020; KARR et al., 2022; RODRI-
GUES, 2024). Enquanto o conceito de distiirbio esté associado ao evento que causa

a mudanca, o de integridade refere-se ao estado de conservagao resultante da floresta
(RODRIGUES, 2024).

Contudo, os programas de monitoramento da Amazonia enfrentam dificuldades para
captar a totalidade das caracteristicas associadas aos distturbios florestais e a inte-
gridade florestal (ALMEIDA et al., 2021; RODRIGUES, 2024). Processos como a
perda parcial do dossel, a extracao seletiva de madeira ou os danos provocados por
incéndios sao de dificil identificacio pelos sistemas de mapeamento (ALMEIDA et
al., 2021). Isso acaba por ocultar a perda de biomassa causada por fatores distintos

do desmatamento, evidenciando a necessidade de abordagens que considerem, de



forma integrada, os multiplos elementos que compoem a dindmica de perturbacao e

recuperacao florestal.

Nesse contexto, indicadores compostos, como o Indice de Distirbio Florestal e o
Indice de Integridade Florestal, propostos por Rodrigues et al. (2025), surgem como
alternativas para sintetizar essa complexidade. No entanto, mesmo com a capacidade
de representar alteragoes na paisagem por meio desses indices, ainda se faz necessario
verificar se as variagoes capturadas por esses indices sintéticos se correlacionam com
mudancas biofisicas nas florestas, como a varia¢gdo da biomassa. Outrossim, o recorte
temporal para as andlises se basea nos anos do mapeamento de uso e cobertura
TerraClass, que fornecem as informacoes necessarias para a elaboracao dos indices
florestais, também em anos com maiores valores de desmatamento identificados pelo
PRODES no municipio (INPE, 2022¢; INPE, 2022a; RODRIGUES, 2024).

Dessa forma, este trabalho tem como objetivo geral analisar a relacao entre a varia-
¢ao da biomassa florestal acima do solo (AGB) e os valores do Indice de Integridade
Florestal (INDIT) e do Indice de Distiirbio Florestal (INDDF) no municipio de Cru-
zeiro do Sul, Acre entre os anos de 2014 e 2022. Buscando, avaliar o potencial desses

indices como métricas explicativas das alteragoes biofisicas na estrutura florestal.



2 METODOLOGIA
2.1 Area de Estudo

A area de estudo, representada na Figura 2.1, compreende o municipio de Cruzeiro do
Sul, no estado do Acre, localizado na regiao sudoeste da Amazonia. Esse municipio
possui uma area de aproximadamente 7.925 km? e esta situado as margens do Rio
Jurua (IBGE, 2022a).

Figura 2.1 - Area de estudo
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Cruzeiro do Sul se destaca como o segundo polo econéomico do estado do Acre,
sua economia municipal apresenta uma estrutura diversificada, alicercada principal-
mente no comércio e na agropecudria, além de praticas extrativistas (SILVA; SILVA,
2020; FREITAS et al., 2011; CAMELI; SILVA, 2024). No meio urbano, predominam
o comércio e o setor de servigos publicos, enquanto na zona rural sobressaem a pe-

cudria bovina e agricultura (SILVA; SILVA, 2020; CAMELI; SILVA, 2024).



De acordo com os dados da Produgao Agricola Municipal (PAM), em 2022, apro-
ximadamente 61,65% da 4rea colhida foi destinada ao cultivo da mandioca, totali-
zando mais de 61 mil toneladas produzidas (IBGE, 2022b). Essa cultura representa
o principal produto agricola do municipio, com grande participacao de agricultores
familiares, cuja produgdo da farinha de mandioca ¢é reconhecida regionalmente pela
sua qualidade e importancia socioeconémica para a populagao local (SILVA; SILVA,
2020; FREITAS et al., 2011; CAMELI; SILVA, 2024).

Contudo, apesar dessa predominancia historica, o proprio cultivo da mandioca passa
por transformagoes (SILVA; SILVA, 2020; CAMELI; SILVA, 2024). O artigo de Ca-
meli e Silva (2024) destaca que uma nova dindmica agricola vem sendo implementada
por migrantes, especialmente de Ronddnia, que chegam ao municipio e introduzem
novas culturas, como o café e o cacau, e técnicas de producao distintas. Essa diver-
sificacdo,a continua expansao da pecudaria, e a busca por novas areas para cultivo,
somadas as praticas tradicionais de corte e queima historicamente ligadas a prépria
cultura da mandioca em terra firme, representam uma reconfiguracao do espaco
rural que influencia diretamente o padrao de uso da terra e, consequentemente, as
taxas de desmatamento de dreas florestais para exploragao agropecuaria (CAMELI,
SILVA, 2024) .

Nesse cendario de exploragao florestal, dados de desmatamento do PRODES indi-
cam que o municipio de Cruzeiro do Sul-AC apresentou variagoes significativas na
area desmatada entre 2008 e 2022, com alternancia entre periodos de reducgao e
aumento (INPE, 2022a). Entre 2008 e 2017, as taxas mantiveram flutuagoes mo-
deradas, com minimo de 3,43 km? em 2015 e maximo de 22,18 km? em 2010. A
partir de 2018, observa-se uma intensificacdo do desmatamento, com a area des-
matada praticamente dobrando em relacio ao ano anterior (18,06 km?) e atingindo
54,71 km? em 2022, o maior valor da série histérica (INPE, 2022a). Esse aumento
recente esta associado principalmente a expansao da pecuaria e a abertura de novas
frentes agricolas no municipio, intensificando a pressao sobre a cobertura florestal
nativa e reforcando a necessidade de monitoramento continuo da biomassa e integri-
dade florestal, assim como os disturbios incidentes sobre a floresta (GATTI et al.,
2021; RODRIGUES, 2024; CAMELI; SILVA, 2024).

2.2 DMateriais

Para a realizagao deste estudo, foram utilizadas diferentes bases de dados geoespa-
ciais com foco no ano de 2014 e 2022. Os dados estao detalhados na Tabela 2.1.



Tabela 2.1 - Base de dados

Fonte de Dados Ano(s) Tipo de Dado
DEGRAD (INPE, 2008) 2008 a 2014 Vetorial
TERRACLASS (INPE, 2022c) 2008 a 2022 Matricial
ESA CCI BIOMAS (SANTORO; CARTUS, 2024) 2015 e 2022 Matricial
PRODES (INPE, 2022a) 2014 e 2022 Matricial
DETER (INPE, 2022b) 2018 a 2022 Vetorial
Limites Municipais (IBGE, 2022a) 2022 Vetorial

Fonte: Producdo do autor (2025).

O Indice de Distiirbio Florestal (INDDF) e o Indice de Integridade Florestal (INDIT)
sdo adaptagoes dos indices propostos por Rodrigues et al. (2025). O maior detalha-
mento dos calculos realizados para a estimativa dos dois indices serao descritos nas
Secoes 2.3.3 e 2.3.4.

2.3 Métodos

A Figura 2.2 apresenta o fluxograma metodolégico utilizado no estudo. O processo
inicia-se com a compilacao das bases de dados, que sao organizadas em células e uti-
lizadas para a estimativa de biomassa e para o calculo dos indices florestais referentes
aos anos de 2014 e 2022. Em seguida, aplica-se o teste de Moran para verificar a pre-
senga de autocorrelagao espacial. Caso o resultado nao seja significativo, procede-se
com modelos de regressao nao-espacial; caso contrario, adotam-se modelos espaciais.
Esses modelos incluem abordagens globais e locais, cujos resultados sao posterior-

mente analisados para compor as conclusoes finais do estudo.



Figura 2.2 - Fluxograma metodolégico do estudo.
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2.3.1 Definicao da Grade Celular

Com a base de dados previamente estruturada, foi gerada uma malha quadriculada
sobre os dados geoespaciais obtidos, com o objetivo de uniformizar as unidades de
analise espacial. O tamanho de cada célula foi definido de forma empirica, sendo
estabelecida uma area de 4 km? (2 km x 2 km) por célula, de modo a permitir a
integragao entre as diferentes resolugoes espaciais dos dados utilizados (CARNEIRO,
2006; CARNEIRO et al., 2013). Além disso, essa malha serviu como unidade basica
para a elaboracao dos indices florestais e posterior modelagem da biomassa acima

do solo ao longo do periodo analisado.

2.3.2 Estimativa da Biomassa Acima do Solo (AGB)

A estimativa da AGB (Above-Ground Biomass) para o ano de 2014 foi obtida por
meio de um modelo de retroprojecao utilizando dados ESA CCI BIOMASS para o
ano de 2015, implementado no ambiente estatistico R (SANTORO; CARTUS, 2024;
HIJMANS, 2025). Também foram utilizados os dados de desmatamento dos anos de
2014 e 2015 proveniente do programa PRODES (INPE, 2022a).



A estimativa de biomassa foi feita por meio de um algoritmo iterativo que operou
pixel a pixel, ajustando os valores de AGB de 2015 com base na localizagao dos po-
ligonos de desmatamento. Para os pixels localizados em areas desmatadas em 2015,
assumiu-se que esses continham biomassa florestal maior no ano de 2014. Dessa
forma, seus valores foram reconstituidos a partir do valor maximo observado em
uma janela focal de 3x3 no mapa de AGB de 2015, representando a condicao da flo-
resta adjacente mais densa e menos impactada. Por outro lado, os pixels localizados
em areas desmatadas em 2014 tiveram seus valores ajustados para o minimo posi-
tivo (>0) encontrado na mesma vizinhanca, simulando uma condi¢ao de biomassa
residual, caracteristica de areas de borda ou transicao florestal. Para os pixels ob-
servados em areas fora dos poligonos de desmatamento entre 2014 e 2015, os valores

originais de AGB de 2015 foram mantidos inalterados.

Posteriormente, ja com os valores de AGB estimados para o ano de 2014, foi entao
somados os valores dos pixels contidos dentro de cada uma das células da grade,
devido a resolugao espacial do dado original (100m x 100m), sendo possivel estimar

o valor da biomassa para a area celular da grade de analise.

A etapa subsequente consistiu na modelagem da variacao da AGB na area de estudo,
composta por 2.290 células da malha definida. A varidvel dependente foi estabelecida
como a variagao total da biomassa (A AGB), correspondente ao delta entre o soma-
tério da biomassa nos anos de 2014 e 2022 (2.1). Essa varidvel permitiu quantificar
as mudancas no estoque de biomassa ao longo do periodo, possibilitando uma ana-
lise da dinamica espacial de perdas e ganhos de biomassa, associada aos processos

de desmatamento e regeneracao florestal.

A AGB = AGB_SUM_ 2022 — AGB_SUM_ 2014 (2.1)

Em que,

A AGB: Variacao da Biomassa Acima do Solo (AGB) entre 2014 e 2022;

AGB_SUM_ 2022: Biomassa Acima do Solo (AGB) total estimada em 2022

na area de 2 km?;

AGB_SUM_ 2014: Biomassa Acima do Solo (AGB) total estimada em 2014

na rea de 2 km?.

Unidade: Megagramas (Mg).



2.3.3 Indice de Distiirbio Florestal (INDDF)

A partir da base de dados, foram identificadas as classes relacionadas aos disturbios
florestais presentes no Municipio de Cruzeiro do Sul - AC no ano de 2014 e 2022,
sendo elas representadas na Tabela 2.2 (RODRIGUES et al., 2025).

Tabela 2.2 - Classes de estudo

Classes Base de Dados Descrigcao
Desmatamento (DM) PRODES Areas de remocao total da cober-
tura florestal nativa acumulado.
Floresta Remanescente (FR) PRODES Fragmentos de floresta primaria
preservada.

Vegetagao Secundaria (VS)  TERRACLASS Areas em regeneracdo natural
com no minimo 4 observagoes.

Degradagao Florestal (DG) DETER Areas detectadas como degrada-
¢ao até 4 observagoes.

Cicatriz de Incéndios (CI) DETER Superficies afetadas por fogo em
até 4 observacoes.

Fonte: Produgao do autor (2025).

Para integrar e analisar diferentes informagoes espaciais, todas as camadas teméaticas
utilizadas neste estudo foram convertidas para o formato raster. Posteriormente, foi
calculada a area de cobertura de cada classe dentro de cada uma das células, o que
permitiu estimar a area de floresta original, que representa a area que inicialmente

teria cobertura florestal, dada pela equacao:

Forig = Area(DM) + Area(FR) + Area(VS) (2.2)

Em que,

Forig3 Area de floresta original em cada célula;
Area(DM): Area da classe DM em cada célula;
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Area(FR): Area da classe FR em cada célula;

Area(VS): Area da classe VS em cada célula.

Unidade: Metros quadrados (m?).

A elaboracao dos indicadores florestais se deu a partir da area ocupada por cada
uma das classes dentro de cada célula. Os indicadores utilizados no trabalho estao
representados na Tabela 2.3 (RODRIGUES et al., 2025).

Tabela 2.3 - Indicadores utilizados para o calculo do INDDF

Nome do Indicador Equacao Unidade

Indicador de Degradacao Flores- IndDG = Area(Dg)fArea(CI) Adimensional
tal (IndDG) orig
Indicador de Desmatamento Flo- IndDM = M;’f(im Adimensional
restal (IndDM) orig
Indicador de Regeneracao Flores- IndRG = A}L\./S) Adimensional
tal (IndRQG) orlg

Fonte: Producao do autor (2025).

Para a aplicagao da técnica AHP (Analytic Hierarchy Process), foi construida uma
matriz de comparacao pareada para avaliar a influéncia relativa de cada indicador
nos disturbios florestais. A definicdo dos pesos foi realizada com base na escala
proposta por Saaty (2008) , que varia de 1 a 9, sendo 1 atribuido quando dois
critérios tém igual relevancia, e 9 quando um critério é extremamente mais relevante

que o outro.

Com base na metodologia elaborada por Rodrigues et al. (2025), definiu-se que o
IndDM apresenta forte relacao com os distturbios florestais, sendo mais relevante do
que o IndDG, e levemente mais importante que o IndRG. Do mesmo modo, a com-

paracao entre o IndRG e o IndDG indicou uma importancia moderada do primeiro



em relacdo ao segundo. Considera-se que a vegetacao secundaria estd associada a
areas anteriormente desmatadas, sendo interpretada como um componente de com-

pensacio no contexto do Indice de Disttirbio Florestal (INDDF).

A aplicacao do método AHP resultou na atribuicado dos seguintes pesos aos indi-
cadores utilizados, sendo eles: 0,58 para o IndDM, 0,30 para o IndRG e 0,12 para
o IndDG. Posteriormente, foi calculado o Indice de Disttirbio Florestal (INDDF),

descrito matematicamente por:

INDDF = (0,58 x IndDM) + (0,12 x IndDG) — (0,30 x IndRG)  (2.3)

Em que,

INDDF: Indice de Distirbio Florestal;
IndDM: Resultado do indicador IndDM;
IndDG: Resultado do indicador IndDG;

IndRG: Resultado do indicador IndRG.

Unidade: Adimensional. Na composicao do indice desenvolvido, adotou-se a conven-
¢ao de que o sinal positivo (+) representa a perda de cobertura vegetal, enquanto o

sinal negativo (—) indica o ganho de vegetagao.
2.3.4 Indice de Integridade Florestal (INDIT)

O INDIT (Indice de Integridade Florestal) foi aplicado neste estudo com base na
metodologia proposta por Rodrigues et al. (2025). O INDIT mensura a integridade
das manchas florestais remanescentes na paisagem, considerando fatores como area

nucleo, fragmentacao, conectividade e persisténcia da cobertura florestal.

O indice é composto por quatro indicadores, cada um representando diferentes di-
mensoes da estrutura da paisagem florestal. A Tabela 2.4 detalha os indicadores

utilizados.

Os calculos dos indicadores IndAC'e IndPF sao realizados a partir de F origy conforme
a Equagao 2.2. O IndAC é determinado pela razao entre a area de floresta nicleo e a

area de floresta original, conforme descrito na equacao 2.4. A area nucleo é definida
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Tabela 2.4 - Indicadores utilizados no célculo do INDIT

Nome do Indicador Descricao das Métricas Unidade
Indicador de Area Proporcao da drea nticleo da Floresta Adimensional
Core (IndAC) Remanescente (FR), indicando resilién-

cia estrutural.
Indicador de Per- Proporcdo da FR que é classificada Adimensional
sisténcia Florestal como area de vegetacao secundaria com
(IndPF) pelo menos 4 observagoes.
Indicador de Frag- Grau de fragmentagao, calculado pela Adimensional
mentacao  Florestal proporcao do nimero de manchas de
(IndFF) FR na paisagem.
Indicador de Conec- Grau de conectividade, calculado pela Adimensional

tividade Florestal
(IndFC)

distancia média euclidiana entre as
manchas de FR.

Fonte: Producao do autor (2025).

como a porcao de floresta nativa remanescente apods a aplicagado de um buffer interno

de 300 m, que considera o efeito de borda sobre o fragmento.

Em que:

IndAC =

Area de Floresta CORE

E Orig CORE

(2.4)

Area de Floresta Core: 4rea de floresta nativa do ano analisado subtraida

de um buffer interno de 300 m;

Forig3 area de floresta original em cada célula subtraida de um buffer

interno de 300 m.

Unidade: Adimensional.

O IndPF é definido como a proporc¢ao da area de vegetacao secundaria observada em

pelo menos quatro mapeamentos consecutivos, em relacao a area de floresta original,

conforme a Equacao 2.5.
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Area de Veg. Secundaria > 4 Avistamentos
Fy

IndPF =
rig

Em que:

Area de Veg. Secundéria > 4 Avistamentos: drea de vegetacdo secundéria

identificada em no minimo quatro periodos consecutivos;

Forig3 area de floresta original em cada célula.

Unidade: Adimensional.

A atribuicao dos pesos dos indicadores foi realizada utilizando a técnica AHP, con-
forme a escala de comparagao pareada proposta por Saaty (2008). Nessa adaptagao,
considerou-se que o IndAC representa o fator de maior relevancia para a integridade
Florestal, seguido pelo IndPF. Por outro lado, IndFF e IndFC configuram fatores

de estresse, com contribuicao negativa para o indice.

A aplicacao do método AHP resultou na definicao dos seguintes pesos: 0,55 para o
IndAC e 0,15 para cada um dos indicadores IndPF, IndFC'e IndFF. Assim, o INDIT

¢é obtido por meio de uma equagao ponderada, conforme a Equacao 2.6.

INDIT = (0,55 x IndAC) + (0,15 x IndPF) — (0,15 x IndFC) — (0,15 x IndFF) (2.6)

Em que:

INDIT: Indice de integridade Florestal;
IndAC: Indicador de Area Core;

IndPF': Indicador de Persisténcia Florestal;
IndFC: Indicador de Conectividade Florestal;

IndFF: Indicador de Fragmentacao Florestal.

Unidade: Adimensional.

12



Os sinais positivos (+) indicam fatores que promovem a integridade estrutu-

ral, enquanto os sinais negativos (—) correspondem a fatores que a comprometem.
2.3.5 Diagnéstico de Autocorrelacao Espacial

A segunda etapa metodoldgica compreendeu o diagndstico da estrutura espacial dos
dados para avaliar a presenca de autocorrelacao espacial, um fenémeno que viola a
premissa de independéncia das observagoes exigida pelos modelos de Minimos Qua-
drados Ordindrios (OLS) (BAILEY; GATRELL, 1995; BRUSDON et al., 1996).
A autocorrelacao espacial, onde valores de locais vizinhos apresentam-se sistemati-
camente relacionados, foi quantificada para as variaveis de Variagdo da Biomassa
Acima do Solo (A AGB), Variacio do Indice de Integridade Florestal (A INDIT)
e Variacdo do Indice de Distiirbio Florestal (A INDDF) por meio do indice I de
Moran Global, descrita matematicamente na equagao 2.7 (MORAN, 1948).

(2.7)

Em que:

I Indice de Moran Global;

n: Numero total de unidades espaciais;

X, Xj: Valores da varidvel observada nos locais i e j;

X: Média aritmética global da varidvel na &rea de estudo:
w;;: Elementos da matriz de pesos espaciais;

>~ > w;;: Somatério de todos os pesos da matriz de vizinhanca.

Unidade: Adimensional.

A construcao da matriz W baseou-se no critério de contiguidade do tipo Rainha
(Queen’s contiguity), no qual poligonos sao definidos como vizinhos ao compartilha-
rem qualquer borda ou vértice (ANSELIN, 1988b). Subsequentemente, a matriz de
contiguidade foi normalizada por linha, transformando W em uma matriz de pesos
relativos para garantir a comparabilidade da influéncia espacial entre as unidades.
Nesse modelo, se um poligono possui n vizinhos, cada um recebe um peso equiva-

lente a 1/n, o que evita que areas com elevada conectividade distorgam a média
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global da amostra (ANSELIN, 1988b; CHEN, 2013). O valor do I de Moran resul-
tante é, portanto, interpretavel como um autovalor (A) de uma matriz de correlagao
espacial generalizada, onde valores positivos indicam agrupamentos, valores negati-

vos indicam dispersao, e valores = 0 indicam uma distribuicao espacial aleatéria dos
dados (MORAN;, 1948; CHEN, 2013).

2.3.6 Modelagem Espacial Global (SAR/SEM)

A constatagao da autocorrelagao espacial dos dados analisados (Segao 2.3.5) inter-
fere em inferéncias estatisticas dos OLS, uma vez que os erros padrao dos coeficientes
tornam-se enviesados, levando a testes instédveis (ANSELIN, 1988b; BAILEY; GA-
TRELL, 1995). A etapa metodoldgica subsequente foi determinar a arquitetura de
modelo espacial global mais apropriada para corrigir essa dependéncia. Para guiar
esta selecao, foi primeiramente ajustado um modelo OLS de base unicamente como
um passo necessario para gerar os residuos. A estrutura de dependéncia espacial
nesses residuos foi entao avaliada através dos testes de Multiplicador de Lagrange
(LM), que avaliam duas hipdteses distintas: a dependéncia de Lag Espacial (LM-
Lag), onde a variavel resposta ¢ influenciada pelos seus vizinhos, e a dependéncia

de Erro Espacial (LM-Error), onde os residuos sdao espacialmente autocorrelaciona-
dos (ANSELIN, 1988a).

Contudo, dado que os testes LM simples sao suscetiveis a indicar uma dependéncia
espuria na presenca de outra forma de autocorrelagao, a anélise priorizou o uso dos
testes robustos (ANSELIN et al., 1996). A comparacao das estatisticas e p-valores
destes dois testes robustos permitiu determinar a estrutura de dependéncia mais
provavel, direcionando a selecao entre duas especificagoes de modelo mutuamente
exclusivas: o Modelo de Lag Espacial (SAR)!, que incorpora a dependéncia subs-
tantiva através do parametro Rho (p); ou o Modelo de Erro Espacial (SEM)?, que
captura a dependéncia de perturbagao através do pardmetro Lambda (A) (ANSELIN,
1988b).

Uma vez definida esta arquitetura de modelo base, procedeu-se a calibracao de
um conjunto de modelos concorrentes, utilizando as diferentes féormulas candidatas
identificadas. A selecao da especificagao final 6tima, dentre os modelos concorrentes,

foi baseada em métricas de ajuste e parcimonia.

O Critério de Informagao de Akaike (AIC) foi usado para comparar o ajuste rela-

! Spatial Autoregressive Model.
2 Spatial Error Model.
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tivo, onde valores menores indicam um melhor equilibrio entre ajuste e parcimo-
nia (AKAIKE, 1973; ANSELIN, 1988b; PINHEIRO et al., 2019). Juntamente a
selecao, foram gerados diagnésticos para todos os modelos globais a fim de verificar
as premissas estatisticas, aplicando-se o teste de Shapiro-Wilk para atestar a nor-
malidade dos residuos, o teste de Breusch-Pagan para testar a heterocedasticidade

e o indice I de Moran para avaliar a autocorrelagao espacial dos residuos (MORAN,
1948; SHAPIRO; WILK, 1965; BREUSCH; PAGAN, 1979).

2.3.7 Modelagem Espacial Local (GWR)

A ltima etapa investigou a hipétese de nao-estacionariedade dos processos®. Esta
hipétese parte do pressuposto de que os modelos espaciais globais, embora corrijam
a autocorrelagao, ainda impoem a restricao de que a relagao entre as variaveis é
constante em toda a area de estudo (BRUSDON et al., 1996; FOTHERINGHAM et
al., 2002). Para testar esta hipdtese e permitir que os coeficientes variem localmente,
foi empregada a Regressdo Geograficamente Ponderada (GWR) (BRUSDON et al.,
1996; FOTHERINGHAM et al., 2002). A GWR calibra os valores do modelo de
regressao para cada unidade de observacao, ponderando os vizinhos com base na sua
proximidade (BRUSDON et al., 1996; FOTHERINGHAM et al., 2002; CARVALHO
et al., 2006).

Com base nos modelos aplicados na modelagem global (Secao 2.3.6), foi selecio-
nado o melhor modelo global e ajustado um modelo GWR. Dito isso, o modelo foi
calibrado com um bandwidth adaptativo, que se adapta dinamicamente de acordo
com a densidade dos vizinhos locais (FOTHERINGHAM et al., 2002; GUO et al.,
2008). Diferentemente do bandwidth fixo, o adaptativo é definido com base em um
numero constante de vizinhos mais préximos, permitindo que cada regressao local
seja ajustada a partir de uma subamostra de tamanho variavel conforme a disper-
sao geografica dos dados (FOTHERINGHAM et al., 2002; CARVALHO et al., 2006;
GUO et al., 2008). A calibragao do modelo baseou-se na busca pelo bandwidth 6timo
através da minimizac¢ao do Critério de Informacao de Akaike corrigido, testando su-

cessivos raios de vizinhanca até encontrar o menor valor de AICc (GUO et al., 2008).

Adicionalmente, utilizou-se a fungao de decaimento bisquare, que governa a atribu-
icao de pesos as observagoes vizinhas (GUO et al., 2008). Esta fungdo garante que
o peso decresca suavemente com a distancia em relacao ao ponto de regressao, as-

segurando que observagoes fora do limite estabelecido pelo bandwidth nao exercam

3N&o-estacionariedade refere-se a relacdes que mudam no espaco, ou seja, os coeficientes do
modelo nao sao constantes em toda a area de estudo.
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influéncia no ajuste local (GUO et al., 2008).

A avaliagdo do modelo GWR baseou-se na comparacao direta de seus valores do
Critério de Informagao de Akaike Corrigido (AICc) (FOTHERINGHAM et al., 2002;
COMBER et al., 2020). Posteriormente, foram testadas a suposigao de normalidade
dos erros,por meio do teste de Shapiro-Wilk (SHAPIRO; WILK, 1965). Por fim,
para confirmar a eficacia do modelo em controlar a dependéncia espacial, aplicou-
se o Indice de Moran sobre os residuos, testando a hipdtese nula de aleatoriedade
espacial (MORAN, 1948).
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3 ANALISE E RESULTADOS

Com base na metodologia descrita no capitulo 2, o capitulo a seguir apresenta e

discute os resultados obtidos a partir dos processamentos realizados.
3.1 Analise das Variaveis florestais
3.1.1 Variagao da Biomassa acima do solo (ABG)

A Figura 3.1 apresenta a distribui¢ao espacial da Biomassa Acima do Solo (AGB),
em Megagramas (Mg), para os anos de 2014 e 2022, assim como a variacdo (A)

ocorrida entre os dois anos citados.

Figura 3.1 - Distribuicdo da Biomassa (AGB) em Cruzeiro do Sul (2014-2022)
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\\\\\

Biomassa (Mg)

[ 11.531-47.042 [171104.099 - 122.565
[ 147.043-77.409 [ 122.566 - 134.797
[ 177.410 - 104.098 [ 134.798 - 160.277

Biomassa (Mg)
[ 12.291-43.863 [ 101.943 - 122.414
[ 143.864-73.000 M 122.415 - 134.958
771 73.001 - 101.942 [l 134.959 - 158.819

P =
s mgoe als iand amel
Tt a E R
i it
O T yu-asE

xxxxxx

T

A Biomassa (Mg)

N -34.313--12.187 [ |-1.255-1.210
N -12.186 - -5.199 [0 1.211 - 5.136
[ 1-5.198--1.256 [ 5.137 - 19.483

.| A Biomassa

Fonte: Producéo do autor (2025).

No bloco com contorno azul observa-se o cenario de 2014, no qual se destaca a predo-
minancia de células com valores elevados de biomassa distribuidas ao longo da area

analisada. J& o bloco com contorno vermelho corresponde ao ano de 2022 e tam-
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bém apresenta uma maior concentracao de células com altos estoques de biomassa,

embora com diferengas perceptiveis em algumas regioes.

Na comparacao entre 2014 e 2022, nota-se uma reducgao nos estoques de biomassa
em areas especificas do municipio. As regides proximas ao Projeto de Assentamento
Santa Luzia e a sede municipal exibem células em tonalidades mais claras no ano

de 2022, indicando uma diminuicao dos valores.

A variagao espacial da biomassa é apresentada no bloco com contorno verde. As
células com valores negativos representam os locais onde ocorreu perda de biomassa
entre os anos analisados. Em contrapartida, observa-se a presenca de células com
valores positivos distribuidas de forma mais dispersa, o que indica ganhos pontuais de
biomassa. Também se identificam &reas com valores préximos de zero, que sugerem

estabilidade nos estoques ao longo do municipio.

Para complementar a andlise, as estatisticas descritivas referentes aos valores de
biomassa de 2014 e 2022, bem como da variacao entre esses anos, foram extraidas e

estao apresentadas na Tabela 3.1.

Tabela 3.1 - Estatisticas descritivas da Biomassa (AGB) por célula (2km x 2km).

Estatistica AGB 2014 (Mg) AGB 2022 (Mg) Variacao (A AGB) (Mg)

Minimo 2.291,00 1.531,00 -34.313,00
Maximo 158.819,00 160.277,00 19.483,00
Média 119.908,00 120.277,40 -369,41
Mediana 128.248,00 127.906,50 9,00
Moda 135.882,90 135.293,90 239,58

Fonte: Producédo do autor (2025).

A Tabela 3.1 mostra que, embora os valores médios de biomassa em 2014 e 2022 se-
jam proximos, a coluna referente a Variagao (A AGB) apresenta uma média negativa
de -369,41 Mg. Esse resultado confirma que, no total, o municipio registrou perda
de biomassa no periodo analisado, o que é reforcado pelo valor minimo observado,
de -34.313,00 Mg. Por outro lado, a mediana e a moda apresentam valores positivos,
9,00 Mg e 239,58 Mg, respectivamente. Esses resultados indicam que, apesar de mui-
tas células terem permanecido estaveis ou apresentado pequenos ganhos, as perdas

concentradas em determinadas areas exerceram maior influéncia no comportamento
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geral.
3.1.2 Variacio dos Indice de Integridade Florestal

A Figura 3.4 apresenta a distribuicdo espacial do Indice de Disttrbio e Integridade
Florestal (INDIT) para os anos de 2014 e 2022, bem como a variagao entre esses peri-
odos. No mapa de 2014, representado pelo bloco com contorno azul, observa-se uma
predominancia de valores intermediarios do indice, distribuidos de forma relativa-
mente homogénea ao longo do municipio. No mapa de 2022, destacado pelo contorno
vermelho, nota-se um padrao semelhante, embora algumas areas apresentem valores
mais baixo, indicando menor grau de integridade florestal em comparagao ao periodo

anterior.

Figura 3.2 - Distribuicdo do Indice de Integridade florestal (INDIT) em Cruzeiro do Sul
(2014-2022)
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Fonte: Produgao do autor (2025).

A variagao espacial exibida no mapa destacado pelo contorno verde reforca essa ten-
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déncia. As células com valores negativos aparecem de forma concentrada e abran-
gente, indicando reducao expressiva da integridade florestal em varias porc¢oes do
municipio. Em contraste, as células com valores positivos sao pontuais e pouco
numerosas, o que demonstra que poucos trechos apresentaram algum grau de re-
cuperacao ou melhora. Dessa forma, a analise visual sugere um cenario de declinio

estrutural da vegetagao entre 2014 e 2022.

A Tabela 3.2 complementa a interpretacao visual ao apresentar as estatisticas descri-
tivas do indice nos dois anos e da variacao entre eles. Os valores minimos e maximos
permanecem iguais em 2014 e 2022, o que indica que as condigdes extremas de inte-
gridade se mantiveram. Porém, a média apresenta uma redugao acentuada, passando
de 0,783 para 0,367, o que confirma uma queda da integridade florestal em grande
parte do municipio. Do mesmo modo, a mediana e a moda também diminuem , mos-
trando que a maioria das células experimentou uma reducao de integridade. Esses
valores resultaram em uma variacao média negativa de -0,416, demonstrando que o

declinio ocorreu em uma generalizagao das células.

Tabela 3.2 - Estatisticas descritivas do Indice de Integridade Florestal (INDIT).

Estatistica INDIT 2014 INDIT 2022 A INDIT

Minimo 0,000 0,000 -0,913
Maximo 1,000 1,000 0,065
Média 0,783 0,367 -0,416
Mediana 1,000 0,480 -0,505
Moda 0,996 0,492 -0,504

Fonte: Producao do autor (2025).

3.1.3 Variacio dos Indice de Disttrbio Florestal

A Figura 3.3 sintetiza o comportamento espacial do Indice de Disttrbio Florestal
(INDDF) nos anos de 2014 e 2022, além da diferenga registrada entre eles. No mapa
de 2014, delimitado em azul, é notavel um predominio de areas com baixos valores
do indice, o que revela um cenario inicial de distirbio pouco expressivo no municipio.
Porém, observa-se a presenga de algumas zonas de maior intensidade, especialmente

na porgao norte.
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Figura 3.3 - Distribuicio do Indice de Disttrbio florestal (INDDF)

(2014-2022)
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Fonte: Produgao do autor (2025).

No mapa de 2022, destacado em vermelho, observa-se uma mudanga mais expressiva
na configuracao espacial do disturbio. Regides que antes apresentavam valores me-
nores passam a registrar concentragoes mais marcantes, especialmente no proximo
ao projeto de assentamento Santa Luzia. Esse comportamento sugere o avanco de
atividades humanas capazes de provocar altera¢oes nos niveis de distirbios captados
pelo INDDF.

A variacao entre os anos representada pelo mapa com contorno verde reforca essa
dindmica. As células com incremento positivo do indice concentram-se justamente
nas areas previamente afetadas, indicando que o disttrbio ndo apenas persistiu, mas
também se intensificou. Ja as células com valores negativos, que indicam redugao

dos valores do indice, sio menos recorrentes e esparsa.

A Tabela 3.3 aprofunda essa interpretacao ao apresentar as estatisticas descritivas
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do indice nos dois anos. O aumento da média, de 0,063 em 2014 para 0,073 em
2022, revela uma elevacao gradual, ainda que moderada, do nivel geral de disturbio.
A manutencdo da mediana e da moda em zero confirma que a maior parte das
células continua apresentando pouca alteragao, mas a variagao média positiva de
0,009 demonstra que, no conjunto, houve intensificacdo do distturbio, coerente com

os padroes espaciais identificados nos mapas.

Tabela 3.3 - Estatisticas descritivas do Indice de Disttrbio Florestal (INDDF).

Estatistica INDDF 2014 INDDF 2022 A INDDF

Minimo 0,000 0,000 -0,166
Maximo 0,580 0,580 0,430
Média 0,063 0,073 0,009
Mediana 0,000 0,000 0,000
Moda 0,001 0,001 0,000

Fonte: Producéo do autor (2025).

3.1.4 Relacao das Variaveis Florestais

A Figura 3.4 apresenta a andlise de dispersao e a tendéncia linear entre a variagao
da biomassa acima do solo (AAGB) e a variagdo dos indicadores florestais para as
2290 células amostrados. No gréafico A, observa-se a relacio entre AAGB e o Indice
de Distirbio (AINDDF), revelando uma correlacao negativa onde o incremento do
distirbio estd associado & perda de biomassa. No gréfico B, a relacdo com o Indice
de Integridade (AINDIT) quase ndo se nota inclina¢ao na linha de tendéncia global,

sugerindo uma baixa relacao entre os valores das variaveis.
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Figura 3.4 - Comparacao dos valores das varidveis florestais: (A) Relagdo Biomassa vs
Distirbio e (B) Relagao Biomassa vs Integridade

A) Relag&o Biomassa vs Disturbio B) Relagdo Biomassa vs Integridade

20000 20000
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4 75 -0.50
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Fonte: Produgao do autor (2025).

3.2 Diagnéstico de Autocorrelacao Espacial

Com base na metodologia descrita na Se¢ao 2.3.5, o primeiro passo da analise estatis-
tica foi averiguar a estrutura de dependéncia espacial das variaveis. Os resultados do
teste, apresentados na Tabela 3.4, rejeitam a hipdétese nula de aleatoriedade espacial

para todas as trés variaveis.

Tabela 3.4 - Resultados do teste I de Moran Global para as varidveis do estudo.

Variavel I de Moran Desvio Padrao p-valor

A AGB 0,0993 9,2478 < 2.2e-16
A INDIT 0,6849 63,4010 < 2.2e-16
A INDDF 0,5542 51,4910 < 2.2e-16

Fonte: Produgao do autor (2025).

Todas as variaveis apresentaram autocorrelacao espacial positiva e estatisticamente
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significativa (p < 0,001). Isso indica que os valores nao estao distribuidos aleatoria-
mente no espago; ao contrario, eles demonstram um padrao de agrupamento (MO-

RAN, 1948).

As varidveis A INDIT e A INDDF apresentaram os maiores valores de Moran (I =
0,685 e I = 0,554, respectivamente), indicando um forte agrupamento espacial. Isso
demonstra que os processos de perda de integridade e de aumento de disturbio ocor-
rem de forma concentrada, formando agrupamentos na paisagem, o que é coerente
com a natureza de fendmenos como o desmatamento, que se expande a partir de
focos consolidados (ESCADA et al., 2023).

Do mesmo modo, a Variagdo da Biomassa (A AGB) também apresentou autocorre-
lagao positiva significativa (I = 0,099), embora com magnitude inferior & dos indices.
Esse valor baixo do [ de Moran, pode estar relacionado com a agregacao dos dados
de uma resolucao espacial mais refinada, originalmente 100 m x 100 m, para uma
resolucao espacial mais grosseira, sendo adequada a célula de 2km x 2km. Esse pro-
cesso de transformacao espacial pode ter suavizado as evidéncias de agrupamentos

espaciais, o que se refletiu num menor valor do [ de Moran, ainda que significa-

tivo (OPENSHAW, 1984; OLIVER, 2001).
3.3 Modelo Espacial Global
3.3.1 Definicao do Modelo Espacial Global

Apos a constatacao da autocorrelacao espacial apresentada na Secao 3.2, a etapa
seguinte consistiu em definir a arquitetura de modelo espacial global mais adequada

para corrigir essa dependéncia, conforme descrito na metodologia da Secao 2.3.6.

Primeiramente, foi ajustado um modelo OLS de base utilizando a férmula de in-
teracdo linear entre os indices, que apresentou um Pseudo R? de 0,1986. Sobre os
residuos desse modelo, aplicaram-se os testes de Multiplicador de Lagrange (LM)

robustos para identificar a natureza da dependéncia espacial.

Os resultados dos testes de diagnéstico indicaram a aplicabilidade de ambos os
modelos espaciais, SAR ou SEM. Contudo, a estatistica do LM de Erro Robusto
(adjRSerr = 183.02, p < 2.2e — 16) foi superior & do LM de Lag Robusto (adjRSlag
= 111.43, p < 2.2e — 16).

Ao comparar as métricas de desempenho, observou-se que o modelo SEM apresen-
tou um AIC de 4.351.311, valor inferior aos 4.358.975 obtidos pelo modelo SAR,
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indicando um melhor ajuste relativo e maior parciménia. Adicionalmente, o modelo
SEM demonstrou um maior poder explicativo, com um R? Ajustado de 0,2449 frente

aos 0,204 do modelo SAR.

Assim, utilizando os valores obtidos como critério de decisao, o modelo SEM foi
selecionado como a estrutura mais apropriada para os dados, sugerindo que a auto-
correlacao estd associada ao erros espacialmente correlacionadas, e nao a influéncia
da varidvel dependente exercida sobre seus vizinhos (ANSELIN, 1988b; ANSELIN et
al., 1996). A etapa seguinte consistiu em identificar a férmula com maior poder ex-
plicativo, utilizando o SEM como base para a calibracao das diferentes especificagoes

testadas.

3.3.2 Desempenho das Diferentes Abordagens para o Modelo Espacial
Global

A Tabela A.1 do documento Anexo A detalha as equacoes das hipdteses concor-
rentes para a variacao da biomassa em funcao dos indices florestais.Nesse contexto,
os modelos INDIT Lin e INDDF _Lin testam relacoes lineares simples entre cada
indice e a variavel resposta. As versoes INDIT Quad e INDDF Quad exploram
uma possivel nao linearidade, avaliando se o comportamento dos indices segue uma
tendéncia polinomial de segunda ordem. Os modelos de interagao investigam se o
efeito de um indice depende do nivel do outro (MONTGOMERY; RUNGER, 1994).
A féormula INTER__Lin analisa essa interacao de forma linear, enquanto INTER_ -
Quad considera uma intera¢ao nao linear (NETER et al., 1996). Por fim, os modelos
baseados em componentes decompdem os indices nos indicadores internos; aqueles
com sufixo _ Step foram obtidos por meio de um procedimento stepwise, utilizado
para reduzir a autocorrelagao residual ao selecionar apenas os componentes que con-
tribuiram significativamente para o ajuste do modelo (EFROYMSON, 1960). Assim,
COMP __INDIT Step e COMP_INDDF Step avaliam o efeito aditivo dos compo-
nentes mais influentes de cada indice, e 0 modelo COMP_FULL_Step combina os

indicadores com menor correlagao dos dois indices em uma estrutura aditiva tnica

(MONTGOMERY; RUNGER, 1994).

A Figura 3.5 apresenta uma comparacao visual do desempenho de todos os nove
modelos. Cada painel é um grafico de dispersao que compara os valores reais da
Variacao da Biomassa no eixo Y com os valores previstos pelo respectivo modelo no
eixo X. A linha tracejada vermelha em cada grafico representa a linha 1:1, onde um
modelo ideal teria todos os pontos alinhados (CHATFIELD; COLLINS, 1986; SIN-
GER et al., 2017). A métrica do Pseudo R? ¢ exibida em cada painel, quantificando
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o poder explicativo (ANSELIN, 1988b).

Figura 3.5 - Comparagao Real vs. Previsto para os modelos SEM.

Grafico 1: Comparacgéo Real vs. Previsto (Modelos SEM)
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Fonte: Produgao do autor (2025).

Os resultados da Figura 3.5 e os dados apresentados na Tabela A.2, do documento
Anexo A, evidenciam que os modelos com os menores valores de AIC sao também
aqueles que exibem os maiores valores de Pseudo R?. Entre eles, o modelo INTER._ -
Quad destaca-se como o de melhor desempenho, alcancando o menor critério de
informagao (AIC = 43453,25) e o maior poder explicativo, com um Pseudo R?
de 0,271. Além disso, os modelos INTER_Lin (AIC = 43513,11; R? = 0,245) e
COMP_FULL_Step (AIC = 43527,68; R? = 0,241) mostraram bons resultados
em comparacao aos outros modelos testados, caracterizados por nuvens de pontos

mais concentradas e préximas da linha 1:1 nos gréaficos comparativos (CHATFIELD;

COLLINS, 1986).

Estes resultados sugerem que os modelos que incluem a interagao entre a variacao dos
indices (INTER__Quad e INTER_ Lin) obtiveram um ajuste superior aos modelos
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que tratam esses fatores de forma independente (BURNHAM; ANDERSON;, 2002;
CRUZ, 2020). Outrossim, o melhor desempenho do INTER__Quad em relagdo ao
INTER__Lin indica que a relacao entre os indices e a variacao da biomassa apresenta
comportamento nao linear (MONTGOMERY; RUNGER, 1994; PINHEIRO et al.,
2019).

Adicionalmente, observa-se que os modelos baseados exclusivamente no A INDDF
apresentam um ajuste superior aos modelos fundamentados apenas no A INDIT, evi-
denciando diferencas na contribuicao explicativa das varidaveis dentro de um conjunto
multivariado (CHATFIELD; COLLINS, 1986; BURNHAM; ANDERSON, 2002).

3.3.3 Anadlise Estatistica dos Modelos Globais

A adequabilidade dos modelos SEM ajustados foi avaliada por meio de diagnésticos
de normalidade, homocedasticidade e independéncia espacial dos residuos (MORAN,
1948; SHAPIRO; WILK, 1965; BREUSCH; PAGAN, 1979). A Tabela A.3, no docu-
mento Anexo A, apresenta o sumario dos diagnosticos estatisticos para os modelos
SEM avaliados.

O teste de Moran’s I aplicado aos residuos dos modelos SEM demonstrou que o
ajuste espacial foi capaz de tratar a autocorrel¢ao espacial dos modelos em todos os
cenarios. Para todos os modelos testados, a hipotese nula de aleatoriedade espacial
nao pdde ser rejeitada (p > 0,05). Isso indica que a estrutura de dependéncia espacial
foi efetivamente capturada e modelada pelo termo de erro, resultando em residuos
espacialmente independentes (MORAN, 1948; CHEN, 2021).

Em relacao a distribuicao dos erros, o teste de Shapiro-Wilk indicou a rejeigao
da hipétese de normalidade para todos os modelos, resultado esse podendo estar
relacionado ao grande tamanho amostral, o que torna o teste sensivel a pequenos
desvios da normalidade (TORMAN et al., 2012; BOEDEC, 2016; MIOT, 2017). Da
mesma forma, o teste de Breusch-Pagan apontou a presenca de heterocedasticidade
significativa em todos os ajustes (p < 0,05), sugerindo que a varidncia dos erros nao
é constante ao longo da area de estudo (BREUSCH; PAGAN, 1979).

3.3.4 Analise de Residuos para a Modelagem Espacial Global

A Figura 3.6 apresenta a andlise de diagnodstico dos residuos para os nove modelos
SEM. O gréfico relaciona os residuos no eixo Y com os valores previstos no eixo
X. Em condigoes ideais, espera-se que um modelo bem ajustado produza uma dis-

tribuicao aleatéria e homogénea de pontos, sem tendéncia sistematica ao longo do
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eixo dos valores previstos, caracteristica associada a auséncia de padroes estrutu-
rados nos residuos (SINGER et al., 2017). Além disso, essa nuvem deve se manter
concentrada em torno da linha zero, indicada em vermelho, o que caracteriza homo-
cedasticidade e auséncia de estrutura residual, aspectos essenciais para validagao de
modelos lineares e mistos (NOBRE; SINGER, 2007). Esse comportamento reforga
que o modelo nao esteja omitindo variaveis relevantes nem capturando relagoes ina-
dequadas entre os processos representados pelos indices florestais e a variacao da
biomassa, reforcando a importancia de diagnodsticos residuais na avaliacdo de de-
sempenho estatistico (CRUZ, 2020).

Figura 3.6 - Comparacao Residuos vs. Previsto.

Grafico 2: Comparagao Residuos vs. Previsto (Modelos SEM)
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Fonte: Produgao do autor (2025).

A andlise dos graficos de dispersao revela que os modelos de melhor desempenho,
especialmente INTER__Quad, INTER__Lin e COMP_FULL _Step, exibem uma dis-
persao residual mais homogénea e concentrada em torno da linha zero. Esse padrao
sugere um menor viés estrutural e maior adequacao da formulacao, indicando que a

inclusao das interagoes entre integridade e distirbio produz um ajuste estatistica-
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mente mais consistente (NOBRE; SINGER, 2007).

Assim, os valores de AIC e pseudo-R? , juntamente ao diagndstico residual con-
firmam o INTER__Quad como o modelo global que melhor se ajustou, dentre os
modelos estudados. Na etapa seguinte, conforme a metodologia apresentada na Se-
¢ao 2.3.7, sera investigado se um modelo local, como a modelagem GWR, ¢é capaz de
capturar os efeitos da nao-estacionariedade espacial e ampliar a compreensao sobre
a distribuicdo dos coeficientes ao longo do territério, aprofundando a andlise dos

padrdes identificados nos modelos globais.
3.4 Modelagem Local Através de GWR
3.4.1 Modelo Local

Conforme apresentado na Se¢ao 3.3, o modelo INTER__(Quad obteve o melhor desem-
penho entre as formulagoes globais avaliadas. Com base nesse resultado, procedeu-se
a calibracao do modelo GWR correspondente, com o objetivo de investigar possiveis
padroes de nao-estacionariedade espacial nas relagoes entre a variacao da biomassa

e os indices florestais.

O modelo GWR INTER__Quad apresentou desempenho superior na representacao
da relagao entre integridade, disturbio e variacao da biomassa, evidenciando que os
coeficientes associados a interacao polinomial variam espacialmente ao longo do terri-
torio. Essa flexibilidade permitiu capturar padroes locais nao identificados no modelo
global SEM, cujo valor de Pseudo R? foi de 0,271, enquanto o GWR INTER__Quad
alcancou um Pseudo R? de 0,422. Embora essa diferenca indique aumento no poder
explicativo, sua interpretacao requer cautela, uma vez que modelos GWR tendem a
inflar medidas de ajuste devido a variacao espacial dos coeficientes, o que nem sem-
pre implica melhoria substantiva nos processos subjacentes (FOTHERINGHAM et
al., 2002; GUO et al., 2008).

O critério de informacao AICc também reforga a adequagao estatistica do modelo
espacial, com o GWR INTER__Quad apresentando valor igual a 43113,28, inferior
ao registrado pelo modelo global SEM (AIC = 43453,25). A redugao do AICc indica
maior adequacao do modelo aos dados observados, sugerindo que a interacao poli-
nomial entre integridade e distirbio, quando estimada localmente, proporciona um
ajuste mais consistente da variabilidade espacial da biomassa (HURVICH; TSAI,
1989). Além disso, o bandwidth convergiu para uma vizinhanga composta por 116

unidades espaciais, indicando que a relagao entre a variagao dos indices florestais e a
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variacao da biomassa opera em escala local relativamente fina, quando considerada

as 2290 unidades presentes no mapa (LU et al., 2018).

A Tabela 3.5 resume os resultados dos teste estatisticos aplicados ao modelo. Nota-
se que, apesar da auséncia de normalidade nos residuos, o pressuposto de indepen-
déncia espacial foi plenamente atendido pelo modelo GWR (p > 0.05 no teste de
Moran), demonstrando que a estrutura de variabilidade espacial da biomassa foi

adequadamente modelada pelas variaveis explicativas e seus componentes locais.

Tabela 3.5 - Resultados dos residuos do modelo GWR (INTER_Quad).

Teste Estatistico Estatistica p-valor Conclusao
Normalidade (Shapiro-Wilk) W =0.9396 < 0.001* Rejeita Hy
Autocorrelagao (I de Moran) I = —0.0011 0.9502  Aceita Hy

* Significativo ao nivel de 5%.

Fonte: Producdo do autor (2025).

3.4.2 Analise espacial do Modelo GWR INT__Quad

A distribuigao espacial do coeficiente de determinacao local (R? Ajustado), apre-
sentada na Figura 3.7, permite avaliar a variabilidade da capacidade explicativa do
modelo GWR INT _Quad ao longo da area de estudo. Diferentemente dos modelos
de regressao global, que assumem um ajuste constante para todo o territorio, o mapa
revela uma expressiva heterogeneidade no desempenho do modelo, com valores de
ajuste oscilando entre 0.025 e 0.743.
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Figura 3.7 - Distribuicdo dos valores de R? Ajustado do modelo GWR INT _Quad.
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Fonte: Producédo do autor (2025).

A distribuicao espacial do ajuste do modelo destaca niicleos de maior desempenho
(R?Ajustado de 0.57 a 0.74) associados a dreas de pressdao antrépica, como o Assen-
tamento Santa Luzia e o entorno da Sede do Municipio. Nestas regioes, as varidveis
independentes capturam a variabilidade da biomassa de maneira eficaz, evidenciando
a melhor representacao local do modelo. Por outro lado, as areas em tons de roxo
indicam regioes onde a capacidade preditiva é inferior, associada principalmente &

areas afastadas de zonas antropicas ou proximas aos limites do municipio.

Essa distincdo espacial sugere que, nas zonas de baixo R?Ajustado, a dindmica
da biomassa pode estar sendo influenciada por variaveis latentes nao incorpora-
das ao modelo ou que a resposta da vegetacao aos indices de integridade e distir-
bio ocorre de maneira mais complexa nessas sub-regioes (BRUSDON et al., 1996;
FOTHERINGHAM et al., 2002). Portanto, o mapeamento reforga a ideia de nao-
estacionariedade do processo e justifica a necessidade da abordagem local para evitar
generalizagoes que mascarariam essas discrepancias regionais (FOTHERINGHAM
et al., 2002; GUO et al., 2008; COMBER et al., 2020).
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A Figura 3.8 apresenta a distribuicao espacial dos coeficientes 8 estimados pelo mo-
delo GWR INTER_Quad. Observa-se forte variagao espacial em todos os termos,
com valores positivos e negativos que indicam mudangas no sentido e na magnitude
da influéncia dos indices florestais sobre a variacdo da biomassa. O coeficiente linear
para Integridade, por exemplo, varia de médias negativas préximas de —1,04 x 10°
a positivas de 1,29 x 10°, enquanto o termo quadratico correspondente oscila entre
—3,18 x 10° e 1,04 x 10°. J4 os coeficientes associados ao Disttirbio exibem amplitu-
des ainda maiores, especialmente no componente quadratico, que apresenta médias
negativas de —1,04 x 107 e positivas de 7,24 x 107. As interacoes apresentam os mai-
ores intervalos, variando entre —5,89 x 107 e 2,94 x 108, sugerindo que a combinacao
entre integridade e distirbio exerce papel de maior impacto na modelagem local da

biomassa no modelo estudado.

Figura 3.8 - Distribui¢ao dos valores de 8 do modelo GWR INT _Quad.
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Fonte: Producéo do autor (2025).
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A Figura 3.9 apresenta o padrao espacial da significancia local dos coeficientes asso-
ciados & AABG no modelo INTER__Quad, evidenciando como o sinal e a magnitude
da associacdo variam ao longo do territério. Areas em vermelho indicam coeficien-
tes negativos estatisticamente significativos, sugerindo que incrementos no nivel de
disturbio estao associados, localmente, a redugoes na biomassa estimada. Em con-
traste, areas em azul representam coeficientes positivos significativos, indicando que
aumentos nos valores das variaveis explicativas tendem a estar associados a variagoes
positivas locais da biomassa. As células em cinza claro correspondem a coeficientes
nao significativos, predominantes na maior parte da area, sinalizando auséncia de

evidéncia estatistica de efeito local nessas regioes.

Figura 3.9 - Distribuigao das Células GWR, Significativas.

Significancia Espacial dos Coeficientes GWR

Intercepto Beta_IT_Linear Beta_IT_Quadratico Teste t (It > 1.96)

(8 sionif. Negativo (-)
() Néo Significativo
@ sioni. Positivo (+)

Beta_DF_Linear Beta_DF_Quadratico Int_Lin_Lin

Int_Quad_Lin Int_Lin_Quad Int_Quad_Quad

Fonte: Produgao do autor (2025).

Dentre os termos estimados no modelo, o coeficiente linear de disturbio, Beta_ -
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DF _Linear, destaca-se como o driver de maior impacto negativo, apresentando 22%
de significancia negativa. Esse comportamento é coerente com a relagao inversa es-
perada entre niveis de disturbio e estoque de biomassa, uma vez que incrementos
locais em disturbio tendem a associar-se a reduc¢oes na cobertura florestal e conse-
quentemente na biomassa dessas areas (?7). Em contraste, os coeficientes associados
as interagoes (Int_Lin_ Lin, Int_Quad_ Lin, Int_Lin_ Quad e Int_Quad_ Quad) e
aos termos quadraticos exibem reducao de significincia, com auséncia de sinal esta-
tistico atingindo cerca de 87% da area modelada. As relacgoes positivas significativas
(6 > 0) mostram-se espacialmente restritas, variando entre 3% e 9% da area, suge-
rindo que incrementos locais na biomassa associados aos indices ocorrem de forma

pontual.

Para o indice de integridade, os coeficientes Beta_ I'TLinear e Beta_IT Quadra-
tico também apresentam padroes negativos em parte do territério. Esse comporta-
mento pode refletir a prépria estrutura dos indicadores que compoem o indice de
integridade, pois alguns destes assumem sinais negativos quando associados a degra-
dacao, fazendo com que coeficientes negativos expressem uma relagao alinhada ao
significado matematico do indicador. Ainda assim, tais padroes devem ser interpreta-
dos com cautela, pois refletem associagoes estatisticas locais, e ndo necessariamente

processos causais diretos.

Por fim, o Intercepto apresenta predominancia de neutralidade (80%), mas retém
cerca de 13% de significAncia negativa e 7% positiva, indicando que fatores nao ex-
plicitamente modelados parecem modular a biomassa de referéncia em determinados

locais, possivelmente associados ao contexto espacial especifico de cada célula.
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4 CONCLUSOES

Os resultados obtidos demonstram que foi possivel identificar uma relacao entre a
variagao da biomassa acima do solo e a variagao dos indices de integridade (INDIT) e
disttrbio florestal (INDDF'). Contudo, essa relacao mostrou-se fraca e espacialmente
heterogénea, indicando que os indices compostos possuem capacidade limitada de

explicar as alteragoes biofisicas na estrutura florestal no periodo analisado.

Os modelos espaciais confirmaram que formulagoes que integram simultaneamente
integridade e disturbio fornecem melhor desempenho estatistico. Ainda assim, o po-
der explicativo moderado, aliado ao predominio de coeficientes nao significativos
em grande parte do territorio, sugere que essa influéncia ocorre de forma localizada
e com baixa intensidade. Parte dessa limitagdo pode estar associada as incertezas
dos dados utilizados. As estimativas de biomassa derivadas de sensoriamento re-
moto apresentam erros inerentes ao processo de modelagem, e a agregacao final
em células de 2 x 2 km tende a suavizar variacoes locais relevantes, reduzindo o
contraste espacial entre areas mais ou menos impactadas. Essa propagacao de incer-
tezas pode contribuir para o enfraquecimento das relagoes detectadas, o que deve
ser considerado na interpretacdo dos resultados. Dessa forma, no cenario analisado
e considerando as limitagoes decorrentes da escala e dos dados empregados, conclui-
se que os indices INDIT e INDDF apresentam potencial explicativo baixo, dada
as condigoes de execucao desse trabalho. Esses achados destacam a importancia de
aperfeicoar as bases de dados e incorporar variaveis complementares, de modo a for-
talecer futuras investigagoes sobre degradacao e mudancas estruturais na paisagem

florestal amazonica.

Ainda assim, estudos posteriores poderao aprofundar a analise do efeito da propa-
gacao dos erros associados as transformagoes e estimativas utilizadas, bem como
explorar variaveis latentes em regides onde os modelos apresentaram menor capa-
cidade explicativa, integrando fatores histéricos, climéticos e socioecondémicos que
influenciam a dindmica da biomassa. Além disso, os indices podem ser aplicados
como variaveis secundarias a modelos preditivos que possuem informagoes espec-
trais, podem potencializar os ajuste de modelos relacionados a biomassa. Por fim,
recomenda-se avaliar o desempenho de métodos alternativos de dependéncia espacial
e técnicas nao lineares ou baseadas em aprendizado de maquina, comparando-os aos

modelos empregados neste estudo para verificar potenciais ganhos preditivos.
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ANEXO A - DETALHAMENTO DOS MODELOS ESTATISTICOS
APLICADOS

Tabela A.1 - Férmulas e valores dos coeficientes dos modelos concorrentes.

Modelo Fé6rmula Estrutural

INTER,_ Quad AAGB = —305, 15 + (3527,91 - AINDIT) + (10264, 26 - AINDIT?)
—(40107,02 - AINDDF) — (438639, 7 - AINDDF?)
—19307, 4(AINDIT - AINDDF) — 225301, 3(AINDIT? - AINDDF)
—20491, 2(AINDIT - AINDDF?2) — 125178, 5(AINDIT? - AINDDF?)

+(0,4046 - Wu) + &

INTER._ Lin AAGB = —1865,99 — (4634, 13 - AINDIT) — (62184, 51 - AINDDF)

—(27661,57 - AINDIT - AINDDF) + (0, 3705 - Wu) + ¢

COMP_FULL_Step  AAGB = 108,01 — (6514, 14 - AIndAC) — (36950, 31 - AIndDM)

+(8183,38 - AIndRG) + (0,3803 - Wu) + &

COMP_INDDF_Step AAGB = 252,42 — (29731,05 - AIndDM) + (7628, 25 - AIndRG)

+(0,4453 - Wu) + &

INDDF_ Lin AAGB = 82,81 — (47892,97 - AINDDF) + (0,4561 - Wu) + &

INDDF_Quad AAGB = 81,94 — (48521, 84 - AINDDF) + (3746, 32 - AINDDF2)

+(0,4570 - Wu) + &

COMP__INDIT_Step AAGB = —778,14 — (9587,61 - AIndFF) + (3341,92 - AIndAC)

+(2630,37 - AIndPF) + (0,3384 - Wu) + ¢

INDIT_Lin AAGB = —1211,83 — (2028,17 - AINDIT) + (0,2351 - Wu) + ¢

INDIT _Quad AAGB = —1364, 66 — (3272, 79 - AINDIT) — (1810, 23 - AINDIT?)

+(0,2315 - Wu) + ¢
Fonte: Producao do autor (2025).
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Tabela A.2 - Comparagao de desempenho e correlagdo espacial dos modelos globais con-

correntes.
Modelo AIC  Pseudo - R? Lambda ()\)
INTER,_ Quad 43453,25 0,2708 0,4046
INTER_Lin 43513,11 0,2449 0,3705
COMP_ FULL_ Step  43527,68 0,2407 0,3803
COMP__INDDF_Step 43585,53 0,2278 0,4453
INDDF_Lin 43603,61 0,2223 0,4561
INDDF_ Quad 43605,55 0,2225 0,4570
COMP_INDIT Step 43843,53 0,1245 0,3384
INDIT_Lin 44027,92 0,0437 0,2351
INDIT Quad 44029,43 0,0435 0,2315

Fonte: Producao do autor (2025).

Tabela A.3 - Resultados dos testes de normalidade, heterocedasticidade e autocorrelagao

espacial.

Modelo

Shapiro-Wilk

(Estatistica ; p-valor)

Breusch-Pagan

(Estatistica ; p-valor)

I de Moran

(Indice ; p-valor)

INDIT_Lin
INDIT__Quad
INDDF_ Lin
INDDF__Quad
INTER_ Lin

INTER, Quad
COMP__INDIT_ Step
COMP__INDDF _Step
COMP_FULL_ Step

0,8738 ; < 2.2e-16
0,8738 ; < 2.2e-16
0,9063 ; < 2.2e-16
0,9065 ; < 2.2e-16
0,9082 ; < 2.2e-16
0,9177 ; < 2.2e-16
0,8914 ; < 2.2e-16
0,9048 ; < 2.2e-16
0,9024 ; < 2.2e-16

46,13 ; < 2.2e-16
952,25 ; < 2.2e-16
78,89 ; < 2.2e-16
132,07 ; < 2.2e-16
177,83 ; < 2.2e-16
220,61 ; < 2.2e-16
62,37 ; < 2.2e-16
179,34 ; < 2.2e-16
195,17 ; < 2.2e-16

—0,0083 ; 0,7669
—0,0080 ; 0,7592
—0,0213 ; 0,9735
—0,0214 ; 0,9742
—0,0144 ; 0,9024
—0,0168 ; 0,9346
—0,0140 ; 0,8958
—0,0199 ; 0,9643
—0,0149 ; 0,9106

Fonte: Produgao do autor (2025).
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