

Disciplina: Introdução à Geoinformática

Docente: Silvana Amaral Kampel

Discente: Manoel de Jesus de Souza Miranda

PROPOSTA DE MONOGRAFIA

Título Provisório: Sistema de cadastro geoespacial para georreferenciamento de árvores matrizes de espécies nativas produtoras de sementes na Amazônia

Justificativa

A região amazônica desempenha um papel fundamental na conservação da biodiversidade e nos serviços ecossistêmicos globais, abrangendo mais de 7 milhões de quilômetros quadrados distribuídos entre Brasil, Bolívia, Colômbia, Equador, Guiana Francesa, Guiana, Peru, Suriname e Venezuela, sendo que a maior parte da Amazônia está localizada no Brasil (Cardoso *et al.*, 2017; Freitas *et al.*, 2024). A distribuição de abundância de arbórea na Amazônia é estimada em mais de 15.000 espécies de árvores e muitas destas ainda permanecem desconhecidas (Ter Steege *et al.*, 2023).

Estudos apontam que a resiliência da floresta amazônica às mudanças climáticas e de uso da terra, é crucial para a biodiversidade, o clima regional e o ciclo global do carbono (Boulton et al. 2022; Smith and Boers, 2023). No entanto, o ritmo acentuado da degradação contínua, a perda da cobertura florestal e da biodiversidade, sobre ações diretas de desmatamentos e incêndios florestais, estima-se que em toda Amazônia legal, entre os meses de agosto de 2020 a julho de 2023, aproximadamente 43,6km² de área de floresta foram transformadas em corte raso (INPE, 2024).

Diante dos crescentes índices de degradação do bioma amazônico torna-se importante entendimento do atual cenário e a dinâmica do ritmo de degradação do bioma e a necessidade da força de trabalho nos projetos de recuperação de áreas degradadas e desflorestadas. Entretanto, no que diz respeito as espécies de árvores nativas, ainda é limitada pela falta de sementes e propágulos em qualidade e quantidade para suprir a grande demanda de plantios na Amazônia voltados para negócios florestais e mercado de carbono.

Considerando o elevado potencial da biodiversidade florestal amazônica e a demanda crescente por sementes de qualidade de espécies nativas, acredita-se que o uso de uma rede de apoio colaborativa — formada por agricultores, profissionais, empresários, pesquisadores, estudantes, comunitários e extrativistas — associada a metodologias participativas e tecnologias de mapeamento geoespacial, pode fomentar as possibilidades de identificar, registrar e georreferenciar uma quantidade expressiva de árvores matrizes distribuídas em diferentes ambientes da Amazônia, ampliando significativamente a base genética disponível para a produção de sementes nativas."

No Brasil, iniciativas online de plataformas como "painel brasileiro das sementes" - produção de sementes por espécies, cultivares e municípios (MAPA, 2025), projeto Mapa das Sementes Florestais Nativas no Brasil (MSFNB, 2025), e ações nos biomas Amazônicos - Mapa das Sementes do Brasil SF, 2025), Rede de Sementes do Cerrado (RSS, 2025) funcionam como repositórios de informações e rede de contatos, porém, ainda existe lacunas relacionadas à protocolos de coleta, gestão dados e disponibilização de informações.

Nesse contexto, o georreferenciamento de árvores matrizes de sementes nativas fornece informações geoespaciais precisas sobre a localização dos indivíduos de maior interesse genético, permitindo novas aplicações e desenvolvimentos de novas tecnologias, a saber:

- A criação de bancos de dados geográficos de sementes;
- O rastreamento da origem genética das mudas produzidas;
- O planejamento adequado da coleta, evitando coleta concentrada em indivíduos próximos, o que poderia reduzir a diversidade genética

Nesse sentido, o presente trabalho tem objetivo de desenvolver um projeto piloto, de um sistema integrado de georreferenciamento de árvores matrizes de espécies florestais, utilizando dispositivos móveis (smartphones e iPhones) para coleta de dados em campo, estruturado em ambiente de Sistema de Informação Geográfica (SIG) com o uso do QGIS e gerenciamento dos dados espaciais em banco de dados PostgreSQL com extensão PostGIS.

Metodologia

Área de Estudo

Os testes de campo ocorrerão na área do Instituto Nacional de Pesquisas Espaciais (INPE), na Cidade de São José dos Campos, São Paulo. A área do INPE foi selecionada com base em critérios de acessibilidade, ocorrência de espécies arbóreas adultas que apresentam porte e distribuição espacial característicos de umas árvores matrizes com potencial para coleta de sementes em áreas naturais da Amazônia.

Sistemas de Informação Geográfica (SIG)

O QGIS será o software para realização da etapa de geoprocessamento, pois permite edição, análise, visualização e publicação de dados geoespaciais. Combinado a plugins como o Lizmap, o QGIS possibilita a publicação de mapas interativos na web (Vinhas et al., 2016). Além disso, o QGIS se destaca pela sua compatibilidade com múltiplos formatos de dados, como shapefiles, GeoJSON, GeoPackage e bancos de dados relacionais como PostgreSQL/PostGIS. Essa versatilidade é crucial para projetos de campo, onde a interoperabilidade entre diferentes fontes de dados é um fator determinante para o sucesso.

Coleta de dados em campo com dispositivos móveis

Aplicativos como QField (para Android) e Input App (para iOS) permitem a coleta de dados georreferenciados com o uso de GPS, câmera e sensores de orientação (Gomes et al., 2020). Esses aplicativos se integram ao QGIS, garantindo a portabilidade de projetos e a sincronização dos dados coletados.

Análise dos resultados

A coleta de atributos como espécie, diâmetro à altura do peito (DAP), altura total, fenologia e saúde da planta será realizada por meio de formulários personalizados, criados previamente no qGIS.

Referências Bibliográficas

BOULTON, A. C., LENTON, T. M., BOERS, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. **Nature Climate Change**. 2022, 12, p.271–278.

CARDOSO, D., SÄRKINEN, T., ALEXANDER, S., AMORIMD, A.M., BITTRICH, V., CELIS, M.. Amazon plant diversity revealed by a taxonomically verified species list. **PNAS**, 2017, 114(40): p.10695–10700

FREITAS, L.C.; SANTOS, R.W.S.; REIS, F.R.; HAMINIUK, C.W.I.; CORAZZA, M.L.; MASSON, M.L. Green extraction technologies: A path to the Amazon bioeconomy development. **Trends in Food Science & Technology**, 2024, 147, 104462. https://doi.org/10.1016/j.tifs.2024.104462.

INSTITUTO NACIONAL DE PESQUISAS ESPECIAIS - INPE. **TerraBrasilles. Deter. 2024**. Acesso em http://Taxas anuais e incrementos de desmatamento na Amazônia Legal e Cerrado>. Acesso em 03 abr. 2024.

MAPA DAS SEMENTES FLORESTAIS NATIVAS NO BRASIL – MSFNB. Portal MAPA DE SEMENTES DO BRASIL. Disponível em < https://www.sementesflorestais.org/>. Acesso em 11 mar. 2025.

MINISTÉRIO DA AGRICULTURA E PECUÁRIA – MAPA. **Painel Brasileiro de Sementes**. Disponível em https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/insumos-agricolas/sementes-e-mudas/painel-brasileiro-sementes>. Acesso em 11 mar. 2025.

REDE DE SEMENTES DO CERRADO -RSC. Portal Rede de Sementes do Cerrado. Disponível em https://rededesementesdocerrado.com.br/>. Acesso em 11 abr. 2024 SEMENTES FLORESTAIS. SF. Portal Sementes Florestais. Disponível em https://www.sementesflorestais.org/redes-programas.html. Acesso em 11 abr. 2024

SMITH, T AND BOERS, N. Global vegetation resilience is linked to water availability and variability. **Nature Communications**, 2023, 14:498.

TER STEEGE, H., PITMAN, N.C.A., DO AMARAL, I.L. *et al.* Mapping density, diversity, and species-richness of the Amazon tree flora. **Commun Biol**, 2023.6, 1130. https://doi.org/10.1038/s42003-023-05514-6.

VINHAS, L., QUEIROZ, G. R., FERREIRA, K. R., & CÂMARA, G. Web Services for Big Earth Observation Data. In **Proceedings of the XVII Brazilian Symposium on GeoInformatics**. GeoInfo 2016.. Campos do Jordão, SP, Brasil. 2016, pp. 166–177