Towards a General Theory for Spatial Patterns of Change
Angela, Thomas, Giovana, Gilberto, others….
Introduction
One of the important motivations for improvements on GIScience research is the increased availability of large sets of geospatial data that provide both spatial and temporal information. Such data sets include remote sensing databases, urban cadastral systems, and data for mobile devices. Given this availability of data, GIScience researchers are challenged to devise ways to use it effectively. One of the important scientific challenges is to devise a general theory for spatial patterns of change. Such patterns appear in remote sensing data (land changes) and in urban cadastre (changes in parcels and roads), but there is currently no comprehensive theory on how they evolve and on how to recover their history.
In this section, we consider previous work on models for evolving objects and introduce the challenges in describing the evolution of geospatial objects. Evolving objects are typical of cadastral and land change applications. Computational models for describing such objects are also referred to as lifeline models. Lifeline models use three ideas: identity, life, and genealogy. Identity is the characteristic that distinguishes each object during all its life. Life is the time period from the object’s creation until its elimination. Genealogy implies managing the changes that an object has during its life. Hornsby and Egenhofer (2000) stress the need to preserve an object’s identity when its geometry, topology, or attributes change, a view supported by Grenon and Smith (2003). Consider the case of parcels in an urban cadastre. A parcel can change its owner, be merged with another, or split into two. A possible approach is to describe an object’s history based on operations such as creation, splitting and merging (Hornsby and Egenhofer, 2000; Medak, 2001). However, these authors are not concerned with extracting the evolution rules from the objects themselves. They also only consider objects of a single type. In this paper, we consider objects of different types and we provide ways to extract their evolution rules.

In this paper, we deal with evolving objects. We deal with cases where the simple rules of merging and splitting are not enough to describe their evolution. These situations arise when objects are defined not only by their shape and properties, but also by their type. Consider the case of riverbanks. Definition of what is ‘the river’ and what is ‘the land’ changes over the seasons. When a river expands during the wet season, the part of the land that is flooded will be split and merged with the river. The object that matches the flooded area will change its type and properties. In the dry season, this object may become land once again. In this evolution, expansions and contractions produce junctions and splitting which are type-dependent. In this and similar cases, recording the history of changes needs keeping track of type-dependent cases. This requires a higher-level of semantics above that of the basic operations of creation, splitting and merging. We shall refer to those objects as typed evolving objects. This raises the question we explore in this paper: “How can we deal with spatiotemporal objects whose evolution is type-dependent?”

Operations for Evolving Objects

This section defines the operations for evolving objects. We define the operations create, split, merge, evolve, setType, getType, getInstance and remove in our experiments. The signature and explanations are presented in the Table 1.  

Table 1. Operations for evolving objects

	Function
	Signature

	create
	timestamp x type<T> ( ST_object<T>
Given a specific type and its timestamp, create an instance of a spatiotemporal object of the same type.

	getInstance
	ST_object<T> x timestamp ( S_object<T>
Retrieve the static instance of the spatiotemporal object, given a timestamp.  

	getType
	ST_object<T> x timestamp ( type<T>
Given a timestamp, retrieve the type of the spatiotemporal object. 

	merge
	ST_object<T1> x ST_object<T2> x timestamp ( ST_object<T3>
Given two evolving objects, merge them produce an object based on the evolution rules. 

	split
	ST_object<T1> x ST_object<T2> x timestamp ( ST_object<T3> x ST_object<T4>
Given two evolving objects, split them produce two objects based on the evolution rules. 

	remove
	ST_object ( null

Removes the spatiotemporal object of the model. 


We propose the evolve function to give us the option of grouping evolutions according with similarity concepts or specific actions significant to user and that will be further recognized during the history recovery. Its signature is:

evolve identifier [ timestamp ] { operations }

Furthermore, we define polymorphic operations to recover the history of objects. This polymorphism allows defining richer and relevant forms of recovering information inside the history of objects. It is more than just recovering the static operations. Our distinct signatures give us kinds of looking the history by different points of view, recovering distinct information and combining it with relevant information that is related to the evolution of the spatiotemporal object. Each distinct signature recovers one aspect of the history, as specified by a parameter option, presented in the Table 2. The basic signature of history is:

history option1 option2 option3 ([ (S_object, timestamp) ]

Table 2. Polimorphic operations to the history function 

	Parameter
	Signature

	option1
	ST_object ( [ (S_object, timestamp) ]

Retrieve the evolution of a spatiotemporal object using its identifier. This evolution consists of a set of static objects and their respective timestamps.

	
	Alias ( [ (S_object, timestamp) ]

Retrieve the evolution of a spatiotemporal object using the alias defined to the object. This evolution consists of a set of static objects and their respective timestamps.

	option2


	complete ( [ (S_object, timestamp) ]

Retrieve the complete history of the spatiotemporal object, including all evolutions that happened with any split of this object. The idea is recovering the tree with the original object on the root and all subtrees with its evolutions.

	
	reverse ( [ (S_object, timestamp) ]

Retrieve the reverse history of the object with the focus on the last evolution to its beginning. 

	Option3

	from timestamp ( [ (S_object, timestamp) ]

Determine the initial timestamp to recovery the history. The result will contain information until the last evolution of the spatiotemporal object.  

	
	until timestamp ( [ (S_object, timestamp) ]

Determine the end timestamp to recovery the history. The result will contain information from the first evolution of the spatiotemporal object until the evolutions before the  specified timestamp. 

	
	from timestamp until timestamp ( [ (S_object, timestamp) ]

Determine the initial and end timestamp to recover the history of the spatiotemporal object.


To evolve our objects, we use a rule-based evolution. The idea is to derive a set of rules from domain knowledge. These rules will act as the constraints on the specific types of spatiotemporal objects. In a general case, we propose a series of steps for using the concepts of typed spatiotemporal objects and rule-based evolution for modeling a real-life situation, as outlined below:

1. Use a domain expert to elicit the different types of objects required to model the problem.

2. Use a domain expert to establish the rules that govern the evolution of the different types of objects.

3. Express the object types and the evolution rules in a computer model. Preferably, develop a set of algebraic data types and operations on them.

4. Use the computer model to capture the history of the study area.

References

GRENON, P.; SMITH, B. SNAP and SPAN: Towards Dynamic Spatial Ontology. Spatial Cognition & Computation, v. 4, n.1, p. 69-104, 2003.

HORNSBY, K.; EGENHOFER, M. Identity-Based Change: A Foundation for Spatio-Temporal Knowledge Representation. International Journal of Geographical Information Science, v. 14, n.3, p. 207-224, 2000.

MEDAK, D., 2001. Lifestyles. In: FRANK, A. U., RAPER, J., & CHEYLAN, J.-P., ed., Life and Motion of Socio-Economic Units. ESF Series: London, Taylor & Francis.



